NCBI Taxonomy: 79828

Capillipedium (ncbi_taxid: 79828)

found 218 associated metabolites at genus taxonomy rank level.

Ancestor: Anthistiriinae

Child Taxonomies: Capillipedium venustum, Capillipedium assimile, Capillipedium spicigerum, Capillipedium parviflorum

2-Hexenal

InChI=1/C6H10O/c1-2-3-4-5-6-7/h4-6H,2-3H2,1H3/b5-4+

C6H10O (98.07316100000001)


(2E)-hexenal is a 2-hexenal in which the olefinic double bond has E configuration. It occurs naturally in a wide range of fruits, vegetables, and spices. It has a role as a flavouring agent, an antibacterial agent and a plant metabolite. 2-Hexenal is a natural product found in Lonicera japonica, Origanum sipyleum, and other organisms with data available. 2-Hexenal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. 2-Hexenal is found in allspice. 2-Hexenal is used in perfumery and flavourings. 2-Hexenal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms. 2-Hexenal (CAS: 505-57-7), also known as 2-hexenaldehyde or 3-propylacrolein, belongs to the class of organic compounds known as medium-chain aldehydes. These are aldehydes with a chain length containing between 6 and 12 carbon atoms. Thus, 2-hexenal is considered to be a fatty aldehyde lipid molecule. Outside of the human body, 2-hexenal is found, on average, in the highest concentration within a few different foods, such as corn, tea, and bilberries. 2-Hexenal has also been detected, but not quantified in, several different foods, such as common wheat, ginkgo nuts, spearmints, sunflowers, and watermelons. This could make 2-hexenal a potential biomarker for the consumption of these foods. (E)-2-Hexenal is found in allspice. It is used in perfumery and flavouring. (E)-2-Hexenal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators Acquisition and generation of the data is financially supported in part by CREST/JST. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].

   

(-)-alpha-Pinene

(-)-alpha-Pinene, 99\\%, optical purity ee: >=86\\% (GLC)

C10H16 (136.1251936)


(-)-alpha-pinene is an alpha-pinene. It is an enantiomer of a (+)-alpha-pinene. (-)-alpha-Pinene is a natural product found in Curcuma amada, Thryptomene saxicola, and other organisms with data available. (-)-alpha-Pinene is found in almond. alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (Wikipedia) (-)-alpha-Pinene belongs to the family of Bicyclic Monoterpenes. These are monoterpenes containing exactly 2 rings, which are fused to each other. alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). (-)-alpha-Pinene is found in almond. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

(-)-beta-Pinene

Bicyclo(3.1.1)heptane, 6,6-dimethyl-2-methylene-, (1S,5S)-

C10H16 (136.1251936)


(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

Caryophyllene alpha-oxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.18270539999997)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). Caryophyllene alpha-oxide is a minor produced of epoxidn. of KGV69-V. Minor production of epoxidn. of KGV69-V Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

alpha-Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.18779039999998)


alpha-Humulene, also known as alpha-caryophyllene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, alpha-humulene is considered to be an isoprenoid lipid molecule. alpha-Humulene is found in allspice. alpha-Humulene is a constituent of many essential oils including hops (Humulus lupulus) and cloves (Syzygium aromaticum). (1E,4E,8E)-alpha-humulene is the (1E,4E,8E)-isomer of alpha-humulene. Humulene is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. See also: Caryophyllene (related). α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Decanal

N-Decanal (capric aldehyde)

C10H20O (156.151407)


Decanal, also known as 1-decyl aldehyde or capraldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, decanal is considered to be a fatty aldehyde lipid molecule. Decanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Decanal exists in all eukaryotes, ranging from yeast to humans. Decanal is a sweet, aldehydic, and citrus tasting compound. Decanal is found, on average, in the highest concentration within a few different foods, such as corianders, dills, and gingers and in a lower concentration in limes, sweet oranges, and safflowers. Decanal has also been detected, but not quantified, in several different foods, such as fishes, cauliflowers, citrus, fats and oils, and lemon grass. This could make decanal a potential biomarker for the consumption of these foods. Decanal is a potentially toxic compound. Decanal, with regard to humans, has been found to be associated with several diseases such as uremia, asthma, and perillyl alcohol administration for cancer treatment; decanal has also been linked to the inborn metabolic disorder celiac disease. Decanal occurs naturally and is used in fragrances and flavoring. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Constituent of Cassia, Neroli and other oils especies citrus peel oilsand is also present in coriander leaf or seed, caviar, roast turkey, roast filbert, green tea, fish oil, hop oil and beer. Flavouring agent Decyl aldehyde is a simple ten-carbon aldehyde. Decyl aldehyde is a bacterial luciferase substrate. Decyl aldehyde is a simple ten-carbon aldehyde. Decyl aldehyde is a bacterial luciferase substrate.

   

Octanol

Octyl alcohol normal-primary

C8H18O (130.1357578)


1-Octanol, also known as octan-1-ol, is the organic compound with the molecular formula CH3(CH2)7OH. It is a fatty alcohol. Many other isomers are also known generically as octanols. Octanol is mainly produced industrially by the oligomerization of ethylene using triethylaluminium followed by oxidation of the alkylaluminium products. This route is known as the Ziegler alcohol synthesis. Octanol also occurs naturally in the form of esters in some essential oils. Octanol and water are immiscible. The distribution of a compound between water and octanol is used to calculate the partition coefficient (logP) of that molecule. Water/octanol partitioning is a good approximation of the partitioning between the cytosol and lipid membranes of living systems. Octanol is a colorless, slightly viscous liquid used as a defoaming or wetting agent. It is also used as a solvent for protective coatings, waxes, and oils, and as a raw material for plasticizers. It is also one of many compounds derived from tobacco and tobacco smoke and shown to increase the permeability of the membranes of human lung fibroblasts (PMID 7466833). Occurs in the form of esters in some essential oils. Flavouring agent. 1-Octanol is found in many foods, some of which are common wheat, lime, tea, and corn. D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

Hexanal

N-Caproic aldehyde

C6H12O (100.0888102)


Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.18779039999998)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Germacrene D

(1E,6E,8S)-1-methyl-8-(1-methylethyl)-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1251936)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

(3R)-Linalool

(R)-(-)-3,7-Dimethyl-1,6-octadien-3-ol

C10H18O (154.1357578)


   

Nonanal

Aldehyde C9, Nonyl aldehyde, Pelargonaldehyde

C9H18O (142.1357578)


Nonanal, also known as nonyl aldehyde or pelargonaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, nonanal is considered to be a fatty aldehyde lipid molecule. Nonanal acts synergistically with carbon dioxide in that regard. Nonanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Nonanal exists in all eukaryotes, ranging from yeast to humans. Nonanal is an aldehydic, citrus, and fat tasting compound. nonanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and gingers and in a lower concentration in sweet oranges, carrots, and limes. nonanal has also been detected, but not quantified, in several different foods, such as olives, cereals and cereal products, chinese cinnamons, common grapes, and oats. This could make nonanal a potential biomarker for the consumption of these foods. Nonanal has been identified as a compound that attracts Culex mosquitoes. Nonanal is a potentially toxic compound. Nonanal has been found to be associated with several diseases such as pervasive developmental disorder not otherwise specified, autism, crohns disease, and ulcerative colitis; also nonanal has been linked to the inborn metabolic disorders including celiac disease. Nonanal, also called nonanaldehyde, pelargonaldehyde or Aldehyde C-9, is an alkyl aldehyde. Although it occurs in several natural oils, it is produced commercially by hydroformylation of 1-octene. A colourless, oily liquid, nonanal is a component of perfumes. Nonanal is a clear brown liquid characterized by a rose-orange odor. Insoluble in water. Found in at least 20 essential oils, including rose and citrus oils and several species of pine oil. Nonanal is a saturated fatty aldehyde formally arising from reduction of the carboxy group of nonanoic acid. Metabolite observed in cancer metabolism. It has a role as a human metabolite and a plant metabolite. It is a saturated fatty aldehyde, a n-alkanal and a medium-chain fatty aldehyde. It is functionally related to a nonanoic acid. Nonanal is a natural product found in Teucrium montanum, Eupatorium cannabinum, and other organisms with data available. Nonanal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.Nonanal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms. Found in various plant sources including fresh fruits, citrus peels, cassava (Manihot esculenta), rice (Oryza sativa). Flavouring ingredient A saturated fatty aldehyde formally arising from reduction of the carboxy group of nonanoic acid. Metabolite observed in cancer metabolism. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1]. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1].

   

1-Heptanol

Heptyl alcohol, 8ci

C7H16O (116.12010860000001)


1-Heptanol is found in alcoholic beverages. 1-Heptanol is found in a few essential oils, e.g. Rosa rugosa. Also present in roasted peanut, roasted filbert, plum brandy, rice bran, cooked rice, peated malt, Bourbon vanilla, banana, morello cherry, orange, guava fruit, pineapple and plum. 1-Heptanol is a flavouring ingredient.1-Heptanol is an alcohol with a seven carbon chain and the structural formula of CH3(CH2)6OH. It is a clear colorless liquid that is very slightly soluble in water, but miscible with ether and ethanol Found in a few essential oils, e.g. Rosa rugosaand is also present in roasted peanut, roasted filbert, plum brandy, rice bran, cooked rice, peated malt, Bourbon vanilla, banana, morello cherry, orange, guava fruit, pineapple and plum. Flavouring ingredient

   

2-Hexenyl acetate

trans-Hex-2-en-1-yl acetic acid

C8H14O2 (142.09937440000002)


2-Hexenyl acetate is found in fruits. 2-Hexenyl acetate is found in strawberry (Fragaria) and other fruits and essential oils. 2-Hexenyl acetate is used in artificial fruit flavours. Found in strawberry (Fragaria) and other fruits and essential oils. It is used in artificial fruit flavours

   

2-Hexenyl butanoate

Butyric Acid trans-2-Hexenyl Ester

C10H18O2 (170.1306728)


2-Hexenyl butanoate is found in highbush blueberry. 2-Hexenyl butanoate is a flavouring agent Flavouring agent. 2-Hexenyl butanoate is found in highbush blueberry.

   

2-Hexen-1-ol

trans-4-Ethyl-2-buten-1-ol

C6H12O (100.0888102)


2-Hexen-1-ol (CAS: 2305-21-7), also known as 2-hexenyl alcohol, belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms. The E-isomer has been isolated from tea and is a constituent of many fruits (e.g. apples, grapes). It is also present in asparagus (cooked or raw), cooked potato, cooked beef, beer, cognac, white wine, soybean and olives. The Z-isomer is found in cereals and cereal products, currants, and hops. The Z-isomer is also a food flavouring for baked goods and candies, producing a fresher note than the E-isomer. Isolated from tea. Constituent of many fruits, e.g., apples, grapesand is also present in asparagus (cooked or raw), cooked potato, cooked beef, beer, cognac, white wine, soybean and olives. Flavouring agent. (E)-2-Hexen-1-ol is found in many foods, some of which are blackcurrant, pomes, alcoholic beverages, and sweet orange.

   

4-Heptanone

Di-N-propyl ketone

C7H14O (114.10445940000001)


4-Heptanone, also known as dipropyl ketone or 4-oxoheptane, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, 4-heptanone is considered to be an oxygenated hydrocarbon lipid molecule. 4-Heptanone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 4-Heptanone is a sweet, cheese, and cognac tasting compound. With regards to humans, 4-Heptanone has been found to be associated with several diseases such as kidney disease, perillyl alcohol administration for cancer treatment, pervasive developmental disorder not otherwise specified, and autism; 4-heptanone has also been linked to the inborn metabolic disorder celiac disease. Flavouring ingredient

   

Amyl propyl ketone

Pentyl propyl ketone

C9H18O (142.1357578)


Amyl propyl ketone is found in herbs and spices. Amyl propyl ketone is isolated from lemongras

   

alpha-Caryophyllene

2,6,6,9-tetramethylcycloundeca-1,4,8-triene

C15H24 (204.18779039999998)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Hexenal

alpha,beta-Hexylenaldehyde

C6H10O (98.07316100000001)


Constituent of many foods. Flavouring ingredient. 2-Hexenal is found in many foods, some of which are black elderberry, ginkgo nuts, cucumber, and burdock. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].

   
   
   
   

Germacrene D

1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-, [s-(E,E)]-

C15H24 (204.18779039999998)


(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).

   

4-Heptanone

4-Heptanone

C7H14O (114.10445940000001)


A dialkyl ketone that is heptane in which the two methylene protons at position 4 have been replaced by an oxo group.

   

Caproaldehyde

Caproic aldehyde

C6H12O (100.0888102)


A saturated fatty aldehyde that is hexane in which one of the terminal methyl group has been mono-oxygenated to form the corresponding aldehyde. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

3-OCTANOL

(±)-octan-3-ol

C8H18O (130.1357578)


Present in Japanese peppermint oil and many other essential oils. (S)-3-Octanol is found in herbs and spices.

   

Decanal

4-01-00-03366 (Beilstein Handbook Reference)

C10H20O (156.151407)


A saturated fatty aldehyde formally arising from reduction of the carboxy group of capric acid (decanoic acid). Decyl aldehyde is a simple ten-carbon aldehyde. Decyl aldehyde is a bacterial luciferase substrate. Decyl aldehyde is a simple ten-carbon aldehyde. Decyl aldehyde is a bacterial luciferase substrate.

   

Octanol

InChI=1\C8H18O\c1-2-3-4-5-6-7-8-9\h9H,2-8H2,1H

C8H18O (130.1357578)


D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.18779039999998)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Nonanal

4-01-00-03352 (Beilstein Handbook Reference)

C9H18O (142.1357578)


Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1]. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1].

   

Heptan-1-ol

Heptan-1-ol

C7H16O (116.12010860000001)


A primary alcohol that is heptane substituted by a hydroxy group at position 1. It has been isolated from Capillipedium parviflorum.

   

Butyrone

Dipropyl ketone [UN2710] [Flammable liquid]

C7H14O (114.10445940000001)


   

Octan-1-ol

Octan-1-ol

C8H18O (130.1357578)


An octanol carrying the hydroxy group at position 1.

   

4-Nonanone

Pentyl propyl ketone

C9H18O (142.1357578)


   

FEMA 3926

2-Hexenyl ester(Z)-butanoic acid

C10H18O2 (170.1306728)


   

Heptan-4-ol

Heptan-4-ol

C7H16O (116.12010860000001)


A secondary alcohol that is heptane substituted by a hydroxy group at position 4.

   
   

FOH 7:0

(3S,4S)-4-Methylhexan-3-ol

C7H16O (116.12010860000001)


   

FOH 8:0

(2S)-2-octanol;(S)-(+)-2-octanol;(S)-2-octanol;d-octan-2-ol

C8H18O (130.1357578)


D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

FAL 6:0

Caproic aldehyde

C6H12O (100.0888102)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   
   
   

(1S,4S,4aS,8aR)-1-Isopropyl-4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-4a-ol

(1S,4S,4aS,8aR)-1-Isopropyl-4,7-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-4a-ol

C15H26O (222.1983546)


   

Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.18779039999998)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

α-Pinene

InChI=1\C10H16\c1-7-4-5-8-6-9(7)10(8,2)3\h4,8-9H,5-6H2,1-3H

C10H16 (136.1251936)


A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

LS-2339

4-01-00-03296 (Beilstein Handbook Reference)

C6H12O (100.0888102)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Hexenal

4-01-00-03468 (Beilstein Handbook Reference)

C6H10O (98.07316100000001)


Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1]. Trans-?2-?Hexenal can be used for the determination of low-molecular-weight carbonyl compounds which are reactive with biological nucleophiles in biological samples[1].

   

Gentanol

4-01-00-01731 (Beilstein Handbook Reference)

C7H16O (116.12010860000001)


   

AI3-34792

InChI=1\C6H12O\c1-2-3-4-5-6-7\h4-5,7H,2-3,6H2,1H3\b5-4

C6H12O (100.0888102)


   

2-Hexen-1-ol

(Z)-2-Hexen-1-ol

C6H12O (100.0888102)


A primary allylic alcohol that is 2-hexene in which a hydrogen at position 1 has been replaced by a hydroxy group. Constituent of currants and hops. Food flavouring for baked goods and candies producing a fresher note than the E-isomer. (Z)-2-Hexen-1-ol is found in cereals and cereal products and fruits. It is used as a food additive . 2-Hexen-1-ol is found in many foods, some of which are white lupine, olive, kelp, and chinese water chestnut.

   

(-)-α-Pinene

(-)-alpha-Pinene

C10H16 (136.1251936)


alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   
   

epoxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.18270539999997)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). A natural product found in Cupania cinerea. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

1-octanol

1-octanol

C8H18O (130.1357578)


D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   
   

Hex-2-enyl acetate

trans-2-Hexenyl acetate

C8H14O2 (142.09937440000002)


   

trans-2-hexenyl butyrate

trans-2-hexenyl butyrate

C10H18O2 (170.1306728)


   

undecan-4-ol

undecan-4-ol

C11H24O (172.18270539999997)


A secondary alcohol that is undecane substituted by a hydroxy group at position 4.

   

nonan-4-ol

nonan-4-ol

C9H20O (144.151407)


A secondary alcohol that is nonane substituted by a hydroxy group at position 4.

   

octan-3-ol

octan-3-ol

C8H18O (130.1357578)


A secondary alcohol that is octane substituted by a hydroxy group at position 3.

   

Decan-4-ol

Decan-4-ol

C10H22O (158.1670562)


A secondary alcohol that is decane substituted by a hydroxy group at position 4.

   

(4s,4as,8as)-4-isopropyl-6-methyl-1-methylidene-3,4,4a,7,8,8a-hexahydro-2h-naphthalene

(4s,4as,8as)-4-isopropyl-6-methyl-1-methylidene-3,4,4a,7,8,8a-hexahydro-2h-naphthalene

C15H24 (204.18779039999998)


   

(1r,4s,4as,8ar)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

(1r,4s,4as,8ar)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

C15H26O (222.1983546)


   

(3s)-octan-3-ol

(3s)-octan-3-ol

C8H18O (130.1357578)


   
   
   
   

11-methyldodecan-4-one

11-methyldodecan-4-one

C13H26O (198.1983546)


   

(4r)-nonan-4-ol

(4r)-nonan-4-ol

C9H20O (144.151407)


   

(4s)-decan-4-ol

(4s)-decan-4-ol

C10H22O (158.1670562)


   

(1s,4s,4as,8ar)-1-isopropyl-4,7-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-4a-ol

(1s,4s,4as,8ar)-1-isopropyl-4,7-dimethyl-2,3,4,5,6,8a-hexahydro-1h-naphthalen-4a-ol

C15H26O (222.1983546)