2-Hexen-1-ol (BioDeep_00000022531)
Secondary id: BioDeep_00000868639, BioDeep_00000872119, BioDeep_00001871771
human metabolite Endogenous
代谢物信息卡片
化学式: C6H12O (100.0888102)
中文名称: 反式-2-已烯-1-醇, 反式-2-己烯醇
谱图信息:
最多检出来源 Viridiplantae(plant) 4.58%
分子结构信息
SMILES: CCC/C=C/CO
InChI: InChI=1S/C6H12O/c1-2-3-4-5-6-7/h4-5,7H,2-3,6H2,1H3/b5-4+
描述信息
2-Hexen-1-ol (CAS: 2305-21-7), also known as 2-hexenyl alcohol, belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms. The E-isomer has been isolated from tea and is a constituent of many fruits (e.g. apples, grapes). It is also present in asparagus (cooked or raw), cooked potato, cooked beef, beer, cognac, white wine, soybean and olives. The Z-isomer is found in cereals and cereal products, currants, and hops. The Z-isomer is also a food flavouring for baked goods and candies, producing a fresher note than the E-isomer.
Isolated from tea. Constituent of many fruits, e.g., apples, grapesand is also present in asparagus (cooked or raw), cooked potato, cooked beef, beer, cognac, white wine, soybean and olives. Flavouring agent. (E)-2-Hexen-1-ol is found in many foods, some of which are blackcurrant, pomes, alcoholic beverages, and sweet orange.
同义名列表
19 个代谢物同义名
trans-4-Ethyl-2-buten-1-ol; 1-Hydroxy-2-trans-hexene; n-Hex-trans-2-en-1-ol; 3-Propylallyl alcohol; trans-Hex-2-en-1-ol; trans-2-Hexene-1-ol; trans-2-Hexen-1-ol; (2E)-hex-2-en-1-ol; (2E)-2-Hexen-1-ol; 2-Hexenyl alcohol; (E)-2-Hexene-1-ol; (e)-2-Hexen-1-ol; trans-2-Hexenol; (E)-2-HEXENOL; Hex-2-en-1-ol; 2-(e)-Hexenol; 2-Hexen-1-ol; FEMA 2562; 2-Hexenol
数据库引用编号
15 个数据库交叉引用编号
- ChEBI: CHEBI:144070
- ChEBI: CHEBI:141205
- PubChem: 5318042
- PubChem: 13577
- HMDB: HMDB0030952
- ChEMBL: CHEMBL2228463
- MetaCyc: TRANS-2-HEXENOL
- KNApSAcK: C00000354
- foodb: FDB008090
- chemspider: 4476685
- CAS: 2305-21-7
- CAS: 928-95-0
- PMhub: MS000088172
- LOTUS: LTS0046040
- wikidata: Q1622275
分类词条
相关代谢途径
Reactome(0)
代谢反应
241 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(5)
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(Z)-hex-3-en-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(236)
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- superpathway of lipoxygenase:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- superpathway of lipoxygenase:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(E)-2-hexenol + NADP+ ⟶ (E)-2-hexenal + H+ + NADPH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
(Z)-hex-3-en-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- superpathway of lipoxygenase:
9(S)-HPOTE ⟶ (2E,6Z)-non-2,6-dienal + 9-oxononanoate
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
(Z)-but-2-enal + H+ + NADPH ⟶ NADP+ + butan-1-al
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + acetyl-CoA ⟶ (3Z)-hex-3-en-1-yl acetate + coenzyme A
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
O2 + linoleate ⟶ (13S)-HPODE
- detoxification of reactive carbonyls in chloroplasts:
H+ + NADPH + pent-1-en-3-one ⟶ 1-pentan-3-one + NADP+
- detoxification of reactive carbonyls in chloroplasts:
NADP+ + allyl alcohol ⟶ H+ + NADPH + acrolein
- superpathway of lipoxygenase:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (Z)-3-hexanal + H+ + NADH
- traumatin and (Z)-3-hexen-1-yl acetate biosynthesis:
(3Z)-hex-3-en-1-ol + NAD+ ⟶ (3Z)-hexenal + H+ + NADH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
11 个相关的物种来源信息
- 2910975 - Cantinoa americana: 10.1080/10412905.1993.9698206
- 79829 - Capillipedium parviflorum: 10.1016/J.PHYTOCHEM.2004.04.003
- 9606 - Homo sapiens: -
- 4146 - Olea europaea: 10.1016/S0031-9422(97)00730-9
- 179837 - Perilla frutescens var. crispa: 10.1021/JF902669D
- 97693 - Quercus agrifolia: 10.1016/S0031-9422(00)84047-9
- 88149 - Saccharina japonica: 10.3390/MOLECULES200712093
- 38869 - Salvia sclarea: 10.1076/PHBI.35.3.218.13295
- 59297 - Solidago canadensis: 10.1016/S0031-9422(02)00006-7
- 103349 - Vitis rotundifolia:
- 29760 - Vitis vinifera: 10.1186/S12870-016-0760-1
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Andre F Cruz, Chantal Hamel, Chao Yang, Tomoko Matsubara, Yantai Gan, Asheesh K Singh, Kousaku Kuwada, Takaaki Ishii. Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation.
Phytochemistry.
2012 Jun; 78(?):72-80. doi:
10.1016/j.phytochem.2012.03.003
. [PMID: 22520499] - Benjamin Fürstenau, Gloria Rosell, Angel Guerrero, Carmen Quero. Electrophysiological and behavioral responses of the black-banded oak borer, Coroebus florentinus, to conspecific and host-plant volatiles.
Journal of chemical ecology.
2012 Apr; 38(4):378-88. doi:
10.1007/s10886-012-0110-1
. [PMID: 22477026] - Eric G Dennis, Robert A Keyzers, Curtis M Kalua, Suzanne M Maffei, Emily L Nicholson, Paul K Boss. Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must.
Journal of agricultural and food chemistry.
2012 Mar; 60(10):2638-46. doi:
10.1021/jf2042517
. [PMID: 22332880] - Robert W H M Van Tol, Denny J Bruck, Frans C Griepink, Willem Jan De Kogel. Field attraction of the vine weevil Otiorhynchus sulcatus to kairomones.
Journal of economic entomology.
2012 Feb; 105(1):169-75. doi:
10.1603/ec11248
. [PMID: 22420269] - Rahele Ghanbari, Farooq Anwar, Khalid M Alkharfy, Anwarul-Hassan Gilani, Nazamid Saari. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-a review.
International journal of molecular sciences.
2012; 13(3):3291-3340. doi:
10.3390/ijms13033291
. [PMID: 22489153] - Innocenzo Muzzalupo, Barbara Macchione, Cristina Bucci, Francesca Stefanizzi, Enzo Perri, Adriana Chiappetta, Antonio Tagarelli, Giovanni Sindona. LOX Gene transcript accumulation in olive (Olea europaea L.) fruits at different stages of maturation: relationship between volatile compounds, environmental factors, and technological treatments for oil extraction.
TheScientificWorldJournal.
2012; 2012(?):532179. doi:
10.1100/2012/532179
. [PMID: 22645430] - Dariusz Piesik, Grzegorz Lemńczyk, Agata Skoczek, Robert Lamparski, Jan Bocianowski, Karol Kotwica, Kevin J Delaney. Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus.
Journal of plant physiology.
2011 Sep; 168(13):1534-42. doi:
10.1016/j.jplph.2011.01.032
. [PMID: 21492953] - Alessandra Bertoli, Marco Fambrini, Silvia Doveri, Michele Leonardi, Claudio Pugliesi, Luisa Pistelli. Pollen aroma fingerprint of two sunflower (Helianthus annuus L.) genotypes characterized by different pollen colors.
Chemistry & biodiversity.
2011 Sep; 8(9):1766-75. doi:
10.1002/cbdv.201100045
. [PMID: 21922665] - Nora C Lawo, Georg J F Weingart, Rainer Schuhmacher, Astrid Forneck. The volatile metabolome of grapevine roots: first insights into the metabolic response upon phylloxera attack.
Plant physiology and biochemistry : PPB.
2011 Sep; 49(9):1059-63. doi:
10.1016/j.plaphy.2011.06.008
. [PMID: 21764593] - Dariusz Piesik, Dariusz Pańka, Kevin J Delaney, Agata Skoczek, Robert Lamparski, David K Weaver. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.).
Journal of plant physiology.
2011 Jun; 168(9):878-86. doi:
10.1016/j.jplph.2010.11.010
. [PMID: 21208684] - V F Furletti, I P Teixeira, G Obando-Pereda, R C Mardegan, A Sartoratto, G M Figueira, R M T Duarte, V L G Rehder, M C T Duarte, J F Höfling. Action of Coriandrum sativum L. Essential Oil upon Oral Candida albicans Biofilm Formation.
Evidence-based complementary and alternative medicine : eCAM.
2011; 2011(?):985832. doi:
10.1155/2011/985832
. [PMID: 21660258] - Ivica Blazević, Ani Radonić, Josip Mastelić, Marina Zekić, Mirjana Skocibusić, Ana Maravić. Hedge mustard (Sisymbrium officinale): chemical diversity of volatiles and their antimicrobial activity.
Chemistry & biodiversity.
2010 Aug; 7(8):2023-34. doi:
10.1002/cbdv.200900234
. [PMID: 20730965] - M M Iyer, G L Sacks, O I Padilla-Zakour. Impact of harvesting and processing conditions on green leaf volatile development and phenolics in Concord grape juice.
Journal of food science.
2010 Apr; 75(3):C297-304. doi:
10.1111/j.1750-3841.2010.01559.x
. [PMID: 20492283] - Yuwen Wu, Qiuhong Pan, Wenjun Qu, Changqing Duan. Comparison of volatile profiles of nine litchi (Litchi chinensis Sonn.) cultivars from Southern China.
Journal of agricultural and food chemistry.
2009 Oct; 57(20):9676-81. doi:
10.1021/jf902144c
. [PMID: 19803519] - Niko Radulović, Polina Blagojević, Radosav Palić. Fatty acid derived compounds--the dominant volatile class of the essential oil poor Sonchus arvensis subsp. uliginosus (Bieb.) Nyman.
Natural product communications.
2009 Mar; 4(3):405-10. doi:
"
. [PMID: 19413122] - Laila H Ribeiro, Ana M Costa Freitas, Marco D R Gomes da Silva. The use of headspace solid phase microextraction for the characterization of volatile compounds in olive oil matrices.
Talanta.
2008 Oct; 77(1):110-7. doi:
10.1016/j.talanta.2008.05.051
. [PMID: 18804607] - Curtis M Kalua, Danny R Bedgood, Andrea G Bishop, Paul D Prenzler. Changes in virgin olive oil quality during low-temperature fruit storage.
Journal of agricultural and food chemistry.
2008 Apr; 56(7):2415-22. doi:
10.1021/jf073027b
. [PMID: 18321051] - Francois J Verheggen, Ludovic Arnaud, Stefan Bartram, Marie Gohy, Eric Haubruge. Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly.
Journal of chemical ecology.
2008 Mar; 34(3):301-7. doi:
10.1007/s10886-008-9434-2
. [PMID: 18253796] - S Ulland, E Ian, R Mozuraitis, A-K Borg-Karlson, R Meadow, H Mustaparta. Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, noctuidae).
Chemical senses.
2008 Jan; 33(1):35-46. doi:
10.1093/chemse/bjm061
. [PMID: 17846100] - Francisco T Arroyo, Javier Moreno, Paula Daza, Lidiya Boianova, Fernando Romero. Antifungal activity of strawberry fruit volatile compounds against Colletotrichum acutatum.
Journal of agricultural and food chemistry.
2007 Jul; 55(14):5701-7. doi:
10.1021/jf0703957
. [PMID: 17567029] - Christian Pfrang, Robert S Martin, Carlos E Canosa-Mas, Richard P Wayne. Gas-phase reactions of NO3 and N2O5 with (Z)-hex-4-en-1-ol, (Z)-hex-3-en-1-ol ('leaf alcohol'), (E)-hex-3-en-1-ol, (Z)-hex-2-en-1-ol and (E)-hex-2-en-1-ol.
Physical chemistry chemical physics : PCCP.
2006 Jan; 8(3):354-63. doi:
10.1039/b510835g
. [PMID: 16482278] - E Thibout, D Pierre, N Mondy, C Lecomte, J C Biémont, J Auger. Host-plant finding by the asparagus fly, Plioreocepta poeciloptera (Diptera: Tephritidae), a monophagous, monovoltine tephritid.
Bulletin of entomological research.
2005 Oct; 95(5):393-9. doi:
10.1079/ber2005370
. [PMID: 16197559] - Ming Wei, Xiaojun Deng, Jiawei Du. [Analysis and identification of Liriomyza sativae-attractants from cowpea and kidney bean volatiles].
Ying yong sheng tai xue bao = The journal of applied ecology.
2005 May; 16(5):907-10. doi:
. [PMID: 16110669]
- William N Setzer, Joseph A Noletto, Robert O Lawton, William A Haber. Leaf essential oil composition of five Zanthoxylum species from Monteverde, Costa Rica.
Molecular diversity.
2005; 9(1-3):3-13. doi:
10.1007/s11030-005-1298-6
. [PMID: 15789546] - Baoyu Han, Chengsong Zhou. [Attraction effect of main volatile components from tea shoots and flowers on Sphaerophoria menthastri (Diptera: Syrphidae) and Chrysopa septempunctata (Neuroptera: Chrysopidae)].
Ying yong sheng tai xue bao = The journal of applied ecology.
2004 Apr; 15(4):623-6. doi:
. [PMID: 15334958]
- Huhai Chen, Yunxian Zhao, Le Kang. Comparison of the olfactory sensitivity of two sympatric steppe grasshopper species (Orthoptera: Acrididae) to plant volatile compounds.
Science in China. Series C, Life sciences.
2004 Apr; 47(2):115-23. doi:
10.1360/02yc0258
. [PMID: 15379243] - Yong-Suk Kim, Dong-Hwa Shin. Volatile constituents from the leaves of Callicarpa japonica Thunb. and their antibacterial activities.
Journal of agricultural and food chemistry.
2004 Feb; 52(4):781-7. doi:
10.1021/jf034936d
. [PMID: 14969531] - Kenji Gomi, Yumiko Yamasaki, Hiroyuki Yamamoto, Kazuya Akimitsu. Characterization of a hydroperoxide lyase gene and effect of C6-volatiles on expression of genes of the oxylipin metabolism in Citrus.
Journal of plant physiology.
2003 Oct; 160(10):1219-31. doi:
10.1078/0176-1617-01177
. [PMID: 14610891] - Lukasz L Stelinski, James R Miller, Noah E Ressa, Larry J Gut. Increased EAG responses of tortricid moths after prolonged exposure to plant volatiles: evidence for octopamine-mediated sensitization.
Journal of insect physiology.
2003 Sep; 49(9):845-56. doi:
10.1016/s0022-1910(03)00136-7
. [PMID: 16256687] - Kenji Gomi, Hiroyuki Yamamato, Kazuya Akimitsu. Epoxide hydrolase: a mRNA induced by the fungal pathogen Alternaria alternata on rough lemon (Citrus jambhiri Lush).
Plant molecular biology.
2003 Sep; 53(1-2):189-99. doi:
10.1023/b:plan.0000009287.95682.24
. [PMID: 14756316] - A R Wardle, J H Borden, H D Pierce, R Gries. Volatile compounds released by disturbed and calm adults of the tarnished plant bug, Lygus lineolaris.
Journal of chemical ecology.
2003 Apr; 29(4):931-44. doi:
10.1023/a:1022987901330
. [PMID: 12775153] - Nicola Wiethölter, Susanne Horn, Katrin Reisige, Ursula Beike, Bruno M Moerschbacher. In vitro differentiation of haustorial mother cells of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, triggered by the synergistic action of chemical and physical signals.
Fungal genetics and biology : FG & B.
2003 Apr; 38(3):320-6. doi:
10.1016/s1087-1845(02)00539-x
. [PMID: 12684021] - Fikri E L Yahyaoui, Chalermchai Wongs-Aree, Alain Latché, Rachel Hackett, Don Grierson, Jean-Claude Pech. Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening.
European journal of biochemistry.
2002 May; 269(9):2359-66. doi:
10.1046/j.1432-1033.2002.02892.x
. [PMID: 11985619] - Joseph K Staples, Bryan S Krall, Robert J Bartelt, Douglas W Whitman. Chemical defense in the plant bug Lopidea robiniae (Uhler).
Journal of chemical ecology.
2002 Mar; 28(3):601-15. doi:
10.1023/a:1014552414580
. [PMID: 11944836] - Q H Zhang, G T Liu, F Schlyter, G Birgersson, P Anderson, P Valeur. Olfactory responses of Ips duplicatus from inner Mongolia, China to nonhost leaf and bark volatiles.
Journal of chemical ecology.
2001 May; 27(5):995-1009. doi:
10.1023/a:1010395221953
. [PMID: 11471951]