NCBI Taxonomy: 58044

Retrophyllum (ncbi_taxid: 58044)

found 82 associated metabolites at genus taxonomy rank level.

Ancestor: Podocarpaceae

Child Taxonomies: Retrophyllum minus, Retrophyllum piresii, Retrophyllum vitiense, Retrophyllum comptonii, Retrophyllum rospigliosii

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.0899928)


Amentoflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. It has a role as a cathepsin B inhibitor, an antiviral agent, an angiogenesis inhibitor, a P450 inhibitor and a plant metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Amentoflavone is a natural product found in Podocarpus elongatus, Austrocedrus chilensis, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Amentoflavone is found in fruits. Amentoflavone is obtained from Viburnum prunifolium (black haw Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

Nagilactone F

Nagilactone F

C19H24O4 (316.1674504)


A diterpene lactone isolated from Podocarpus latifolius and has been shown to exhibit inhibitory activity against activator protein 1 (AP-1).

   

Sequoiaflavone

7-O-methylamentoflavone

C31H20O10 (552.105642)


   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.0899928)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 4341; CONFIDENCE confident structure Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

totarol

4bS-trans-8,8-Trimethyl-4b,5,6,7,8,8a,9,10-octahydro-1-isopropyl-phenanthren-2-ol

C20H30O (286.229653)


A natural product found in Biota orientalis.

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

7-hydroxy-8-isopropyl-1,4a-dimethyl-2,3,4,9,10,10a-hexahydrophenanthrene-1-carbaldehyde

7-hydroxy-8-isopropyl-1,4a-dimethyl-2,3,4,9,10,10a-hexahydrophenanthrene-1-carbaldehyde

C20H28O2 (300.2089188)


   

(1s,2r,4r,5r,10s,13s,14r)-13-hydroxy-5-isopropyl-10,14-dimethyl-3,6,16-trioxapentacyclo[8.6.1.0²,⁴.0⁴,⁹.0¹⁴,¹⁷]heptadec-8-ene-7,15-dione

(1s,2r,4r,5r,10s,13s,14r)-13-hydroxy-5-isopropyl-10,14-dimethyl-3,6,16-trioxapentacyclo[8.6.1.0²,⁴.0⁴,⁹.0¹⁴,¹⁷]heptadec-8-ene-7,15-dione

C19H24O6 (348.1572804)


   

(4bs,8s,8ar)-8-(hydroxymethyl)-1-isopropyl-4b,8-dimethyl-5,6,7,8a,9,10-hexahydrophenanthren-2-ol

(4bs,8s,8ar)-8-(hydroxymethyl)-1-isopropyl-4b,8-dimethyl-5,6,7,8a,9,10-hexahydrophenanthren-2-ol

C20H30O2 (302.224568)


   

5-hydroxy-8-[2-hydroxy-5-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)phenyl]-2-(4-hydroxyphenyl)-7-methoxychromen-4-one

5-hydroxy-8-[2-hydroxy-5-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)phenyl]-2-(4-hydroxyphenyl)-7-methoxychromen-4-one

C32H22O10 (566.1212912)


   

(1s,4as,10ar)-7-hydroxy-8-isopropyl-1,4a-dimethyl-2,3,4,9,10,10a-hexahydrophenanthrene-1-carbaldehyde

(1s,4as,10ar)-7-hydroxy-8-isopropyl-1,4a-dimethyl-2,3,4,9,10,10a-hexahydrophenanthrene-1-carbaldehyde

C20H28O2 (300.2089188)


   

5-isopropyl-10,14-dimethyl-3,6,16-trioxapentacyclo[8.6.1.0²,⁴.0⁴,⁹.0¹⁴,¹⁷]heptadec-8-ene-7,15-dione

5-isopropyl-10,14-dimethyl-3,6,16-trioxapentacyclo[8.6.1.0²,⁴.0⁴,⁹.0¹⁴,¹⁷]heptadec-8-ene-7,15-dione

C19H24O5 (332.1623654)


   

(1s,3ar,3br,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1s,3ar,3br,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.386145)


   

5,7-dihydroxy-8-[2-hydroxy-5-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)phenyl]-2-(4-methoxyphenyl)chromen-4-one

5,7-dihydroxy-8-[2-hydroxy-5-(5-hydroxy-7-methoxy-4-oxochromen-2-yl)phenyl]-2-(4-methoxyphenyl)chromen-4-one

C32H22O10 (566.1212912)


   

(2r,4r,5r,10s,13s)-13-hydroxy-5-isopropyl-10,14-dimethyl-3,6,16-trioxapentacyclo[8.6.1.0²,⁴.0⁴,⁹.0¹⁴,¹⁷]heptadec-8-ene-7,15-dione

(2r,4r,5r,10s,13s)-13-hydroxy-5-isopropyl-10,14-dimethyl-3,6,16-trioxapentacyclo[8.6.1.0²,⁴.0⁴,⁹.0¹⁴,¹⁷]heptadec-8-ene-7,15-dione

C19H24O6 (348.1572804)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

6-isopropyl-1,12-dimethyl-5,10-dioxatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2,7-diene-4,11-dione

6-isopropyl-1,12-dimethyl-5,10-dioxatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-2,7-diene-4,11-dione

C19H24O4 (316.1674504)


   

(1s,2r,4r,5r,10s,14s,17r)-5-isopropyl-10,14-dimethyl-3,6,16-trioxapentacyclo[8.6.1.0²,⁴.0⁴,⁹.0¹⁴,¹⁷]heptadec-8-ene-7,15-dione

(1s,2r,4r,5r,10s,14s,17r)-5-isopropyl-10,14-dimethyl-3,6,16-trioxapentacyclo[8.6.1.0²,⁴.0⁴,⁹.0¹⁴,¹⁷]heptadec-8-ene-7,15-dione

C19H24O5 (332.1623654)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

8-(hydroxymethyl)-1-isopropyl-4b,8-dimethyl-5,6,7,8a,9,10-hexahydrophenanthren-2-ol

8-(hydroxymethyl)-1-isopropyl-4b,8-dimethyl-5,6,7,8a,9,10-hexahydrophenanthren-2-ol

C20H30O2 (302.224568)