NCBI Taxonomy: 2250722

Libocedrus chevalieri (ncbi_taxid: 2250722)

found 62 associated metabolites at species taxonomy rank level.

Ancestor: Libocedrus

Child Taxonomies: none taxonomy data.

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.0899928)


Amentoflavone is a biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. It has a role as a cathepsin B inhibitor, an antiviral agent, an angiogenesis inhibitor, a P450 inhibitor and a plant metabolite. It is a biflavonoid, a hydroxyflavone and a ring assembly. Amentoflavone is a natural product found in Podocarpus elongatus, Austrocedrus chilensis, and other organisms with data available. A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-3 of the hydroxyphenyl ring and C-8 of the chromene ring. A natural product found particularly in Ginkgo biloba and Hypericum perforatum. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Amentoflavone is found in fruits. Amentoflavone is obtained from Viburnum prunifolium (black haw Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Hypolaetin

2-(3,4-dihydroxyphenyl)-5,7,8-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


A pentahydroxyflavone that consists of luteolin substituted by an additional hydroxy group at position 8.

   

Isoscutellarein

5,7,8-Trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.047736)


   

Podophyllotoxin glucoside

16-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C28H32O13 (576.1842822)


   

Myricetin 3-glucoside

5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one

C21H20O13 (480.090387)


Myricetin 3-glucoside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Myricetin 3-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Myricetin 3-glucoside can be found in a number of food items such as blackcurrant, common grape, highbush blueberry, and tea, which makes myricetin 3-glucoside a potential biomarker for the consumption of these food products.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Sequoiaflavone

7-O-methylamentoflavone

C31H20O10 (552.105642)


   

Isoscutellarein

5,7,8-Trihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H10O6 (286.047736)


A tetrahydroxyflavone that is apigenin with an extra hydroxy group at position 8.

   

Amentoflavone

4H-1-Benzopyran-4-one, 8-(5-(5,7-dihydroxy-4-oxo-4H-1-benzopyran-2-yl)-2-hydroxyphenyl)-5,7-dihydroxy-2-(4-hydroxyphenyl)-

C30H18O10 (538.0899928)


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 4341; CONFIDENCE confident structure Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4]. Amentoflavone (Didemethyl-ginkgetin) is a potent and orally active GABA(A) negative modulator. Amentoflavone also shows anti-inflammatory, antioxidative, anti-viral, anti-tumor, anti-radiation, anti-fungal, antibacterial activity. Amentoflavone induces apoptosis and cell cycle arrest at sub-G1 phase[1][2][3][4].

   

(3as,5r,7r,8ar)-7-(3-hydroxyprop-1-en-2-yl)-1-methyl-4-methylidene-3a,5,6,7,8,8a-hexahydro-3h-azulen-5-ol

(3as,5r,7r,8ar)-7-(3-hydroxyprop-1-en-2-yl)-1-methyl-4-methylidene-3a,5,6,7,8,8a-hexahydro-3h-azulen-5-ol

C15H22O2 (234.1619712)


   

2-[(3ar,5s,8as)-3-methyl-8-methylidene-3a,4,5,6,7,8a-hexahydro-1h-azulen-5-yl]prop-2-en-1-ol

2-[(3ar,5s,8as)-3-methyl-8-methylidene-3a,4,5,6,7,8a-hexahydro-1h-azulen-5-yl]prop-2-en-1-ol

C15H22O (218.1670562)


   

(1s,4ar,5r,8ar)-1,4a-dimethyl-6-methylidene-5-(3-methylpenta-2,4-dien-1-yl)-hexahydro-2h-naphthalene-1-carboxylic acid

(1s,4ar,5r,8ar)-1,4a-dimethyl-6-methylidene-5-(3-methylpenta-2,4-dien-1-yl)-hexahydro-2h-naphthalene-1-carboxylic acid

C20H30O2 (302.224568)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.09547200000003)


   

(10r,11r,15r,16r)-16-hydroxy-2-methoxy-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

(10r,11r,15r,16r)-16-hydroxy-2-methoxy-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C23H24O9 (444.14202539999997)


   

(3as,4s,7s,8ar)-7-(3-hydroxyprop-1-en-2-yl)-1,4-dimethyl-3a,5,6,7,8,8a-hexahydro-3h-azulen-4-ol

(3as,4s,7s,8ar)-7-(3-hydroxyprop-1-en-2-yl)-1,4-dimethyl-3a,5,6,7,8,8a-hexahydro-3h-azulen-4-ol

C15H24O2 (236.1776204)


   

(10r,11r,15r,16r)-2-methoxy-16-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

(10r,11r,15r,16r)-2-methoxy-16-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C29H34O14 (606.1948464)


   

(1s,2s,4as,7r,8ar)-7-(3-hydroxyprop-1-en-2-yl)-1,4a-dimethyl-octahydronaphthalene-1,2-diol

(1s,2s,4as,7r,8ar)-7-(3-hydroxyprop-1-en-2-yl)-1,4a-dimethyl-octahydronaphthalene-1,2-diol

C15H26O3 (254.1881846)


   

16-hydroxy-2-methoxy-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

16-hydroxy-2-methoxy-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C23H24O9 (444.14202539999997)


   

(10r,11r,15r,16s)-16-hydroxy-2-methoxy-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

(10r,11r,15r,16s)-16-hydroxy-2-methoxy-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C23H24O9 (444.14202539999997)


   

(1s,4ar,5r,8ar)-1,4a-dimethyl-6-methylidene-5-[(2e)-3-methylpenta-2,4-dien-1-yl]-hexahydro-2h-naphthalene-1-carboxylic acid

(1s,4ar,5r,8ar)-1,4a-dimethyl-6-methylidene-5-[(2e)-3-methylpenta-2,4-dien-1-yl]-hexahydro-2h-naphthalene-1-carboxylic acid

C20H30O2 (302.224568)


   

2-methoxy-16-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

2-methoxy-16-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C29H34O14 (606.1948464)


   

(10r,11r,15r,16r)-16-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

(10r,11r,15r,16r)-16-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C28H32O13 (576.1842822)