NCBI Taxonomy: 1745002

Austrobrickellia patens (ncbi_taxid: 1745002)

found 106 associated metabolites at species taxonomy rank level.

Ancestor: Austrobrickellia

Child Taxonomies: none taxonomy data.

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Lupeyl acetate

[(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-1-isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-yl] acetate

C32H52O2 (468.3967092)


Lupeol acetate is an organic molecular entity. It has a role as a metabolite. Lupeol acetate is a natural product found in Euphorbia dracunculoides, Euphorbia larica, and other organisms with data available. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].

   

Caryophyllene alpha-oxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.18270539999997)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). Caryophyllene alpha-oxide is a minor produced of epoxidn. of KGV69-V. Minor production of epoxidn. of KGV69-V Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.18779039999998)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Germacrene D

(1E,6E,8S)-1-methyl-8-(1-methylethyl)-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.

   

Bicyclogermacrene

(2Z,6Z)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.18779039999998)


Constituent of the peel oil of Citrus junos (yuzu). Bicyclogermacrene is found in many foods, some of which are common oregano, lemon balm, hyssop, and orange mint. Bicyclogermacrene is found in citrus. Bicyclogermacrene is a constituent of the peel oil of Citrus junos (yuzu).

   

Spathulenol

1H-Cycloprop(e)azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, (1aR-(1aalpha,4aalpha,7beta,7abeta,7balpha))-

C15H24O (220.18270539999997)


Spathulenol is a tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. It has a role as a volatile oil component, a plant metabolite, an anaesthetic and a vasodilator agent. It is a sesquiterpenoid, a carbotricyclic compound, a tertiary alcohol and an olefinic compound. Spathulenol is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. See also: Chamomile (part of). A tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. Spathulenol is found in alcoholic beverages. Spathulenol is a constituent of Salvia sclarea (clary sage).

   

beta-Amyrin

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Beta-amryin, also known as B-amryin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amryin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amryin can be found in pigeon pea, which makes beta-amryin a potential biomarker for the consumption of this food product.

   

Lupeol acetate

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-yl acetate

C32H52O2 (468.3967092)


   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Lupeol acetate

Acetic acid (1R,3aR,4S,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-1-isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-yl ester

C32H52O2 (468.3967092)


Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].

   

Stigmasterol

Stigmasterol

C29H48O (412.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

Germacrene D

1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-, [s-(E,E)]-

C15H24 (204.18779039999998)


(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).

   

Spathulenol

Spathulenol

C15H24O (220.18270539999997)


Constituent of Salvia sclarea (clary sage). Spathulenol is found in many foods, some of which are tarragon, spearmint, common sage, and tea.

   

bicyclogermacrene

bicyclogermacrene

C15H24 (204.18779039999998)


A sesquiterpene derived from germacrane by dehydrogenation across the C(1)-C(10) and C(4)-C(5) bonds and cyclisation across the C(8)-C(9) bond.

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.18779039999998)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Lupeol acetate

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-yl acetate

C32H52O2 (468.3967092)


Lupeyl acetate, also known as lupeyl acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Lupeyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Lupeyl acetate can be found in burdock, date, and fig, which makes lupeyl acetate a potential biomarker for the consumption of these food products. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].

   

Caryophyllene oxide

Caryophyllene alpha-oxide

C15H24O (220.18270539999997)


Constituent of oil of cloves (Eugenia caryophyllata)and is) also in oils of Betula alba, Mentha piperita (peppermint) and others. Caryophyllene alpha-oxide is found in many foods, some of which are spearmint, cloves, ceylon cinnamon, and herbs and spices. Caryophyllene beta-oxide is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Caryophyllene beta-oxide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, caryophyllene beta-oxide is primarily located in the membrane (predicted from logP). It can also be found in the extracellular space. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.18779039999998)


   

epoxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.18270539999997)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). A natural product found in Cupania cinerea. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.18779039999998)


   

(1as,4ar,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(1as,4ar,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.18270539999997)


   

(4ar,8s,8as)-4-[(3s)-3-hydroxy-3-methylpent-4-en-1-yl]-8-(hydroxymethyl)-3,4a,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-2-one

(4ar,8s,8as)-4-[(3s)-3-hydroxy-3-methylpent-4-en-1-yl]-8-(hydroxymethyl)-3,4a,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-2-one

C20H32O3 (320.23513219999995)


   

4-(3-hydroxy-3-methylpent-4-en-1-yl)-8-(hydroxymethyl)-3,4a,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-2-one

4-(3-hydroxy-3-methylpent-4-en-1-yl)-8-(hydroxymethyl)-3,4a,8-trimethyl-5,6,7,8a-tetrahydro-1h-naphthalen-2-one

C20H32O3 (320.23513219999995)


   

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.18270539999997)


   

4-isopropyl-1,7-dimethylcyclodeca-2,7-dien-1-ol

4-isopropyl-1,7-dimethylcyclodeca-2,7-dien-1-ol

C15H26O (222.1983546)


   

(3s,4ar,6ar,6bs,8ar,12as,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

(3s,4ar,6ar,6bs,8ar,12as,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

C30H50O (426.386145)


   

methyl 4,12-dimethyl-9-methylidene-5-oxatricyclo[8.2.0.0⁴,⁶]dodecane-12-carboxylate

methyl 4,12-dimethyl-9-methylidene-5-oxatricyclo[8.2.0.0⁴,⁶]dodecane-12-carboxylate

C16H24O3 (264.1725354)


   

methyl (1s,4r,6r,10s,12r)-4,12-dimethyl-9-methylidene-5-oxatricyclo[8.2.0.0⁴,⁶]dodecane-12-carboxylate

methyl (1s,4r,6r,10s,12r)-4,12-dimethyl-9-methylidene-5-oxatricyclo[8.2.0.0⁴,⁶]dodecane-12-carboxylate

C16H24O3 (264.1725354)


   

(1s,2s,4as,5s,5's,8ar)-5'-ethenyl-2,5,5',8a-tetramethyl-3-oxo-hexahydrospiro[naphthalene-1,2'-oxolane]-5-carbaldehyde

(1s,2s,4as,5s,5's,8ar)-5'-ethenyl-2,5,5',8a-tetramethyl-3-oxo-hexahydrospiro[naphthalene-1,2'-oxolane]-5-carbaldehyde

C20H30O3 (318.21948299999997)


   

3a,5a,5b,7,7,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

3a,5a,5b,7,7,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


   

5-(hydroxymethyl)-2,5,8a-trimethyl-1-(3-methylpenta-2,4-dien-1-yl)-hexahydro-1h-naphthalen-2-ol

5-(hydroxymethyl)-2,5,8a-trimethyl-1-(3-methylpenta-2,4-dien-1-yl)-hexahydro-1h-naphthalen-2-ol

C20H34O2 (306.2558664)


   
   

5'-ethenyl-5-(hydroxymethyl)-2,5,5',8a-tetramethyl-hexahydrospiro[naphthalene-1,2'-oxolan]-3-one

5'-ethenyl-5-(hydroxymethyl)-2,5,5',8a-tetramethyl-hexahydrospiro[naphthalene-1,2'-oxolan]-3-one

C20H32O3 (320.23513219999995)


   

(1s,3as,3br,7s,9ar,9br,11ar)-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

(1s,3as,3br,7s,9ar,9br,11ar)-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

C32H52O2 (468.3967092)


   

(1s,2s,4ar,5s,5's,8ar)-5'-ethenyl-5-(hydroxymethyl)-2,5,5',8a-tetramethyl-hexahydrospiro[naphthalene-1,2'-oxolan]-3-one

(1s,2s,4ar,5s,5's,8ar)-5'-ethenyl-5-(hydroxymethyl)-2,5,5',8a-tetramethyl-hexahydrospiro[naphthalene-1,2'-oxolan]-3-one

C20H32O3 (320.23513219999995)


   

5'-ethenyl-2,5,5',8a-tetramethyl-3-oxo-hexahydrospiro[naphthalene-1,2'-oxolane]-5-carbaldehyde

5'-ethenyl-2,5,5',8a-tetramethyl-3-oxo-hexahydrospiro[naphthalene-1,2'-oxolane]-5-carbaldehyde

C20H30O3 (318.21948299999997)


   

(4ar,6ar,6br,8ar,12as,12bs,14as,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-yl acetate

(4ar,6ar,6br,8ar,12as,12bs,14as,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-yl acetate

C32H52O2 (468.3967092)


   

5-methoxy-2,5,8a-trimethyl-1-(3-methylpenta-2,4-dien-1-yl)-hexahydro-1h-naphthalen-2-ol

5-methoxy-2,5,8a-trimethyl-1-(3-methylpenta-2,4-dien-1-yl)-hexahydro-1h-naphthalen-2-ol

C20H34O2 (306.2558664)


   

(1s,2s,4as,5s,8as)-5-methoxy-2,5,8a-trimethyl-1-[(2e)-3-methylpenta-2,4-dien-1-yl]-hexahydro-1h-naphthalen-2-ol

(1s,2s,4as,5s,8as)-5-methoxy-2,5,8a-trimethyl-1-[(2e)-3-methylpenta-2,4-dien-1-yl]-hexahydro-1h-naphthalen-2-ol

C20H34O2 (306.2558664)


   

(1r,3ar,5ar,5br,7as,9s,11as,11bs,13ar,13br)-3a,5a,5b,7,7,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5ar,5br,7as,9s,11as,11bs,13ar,13br)-3a,5a,5b,7,7,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


   

methyl (1s,2s,4as,5s,5's,8ar)-5'-ethenyl-2,5,5',8a-tetramethyl-3-oxo-hexahydrospiro[naphthalene-1,2'-oxolane]-5-carboxylate

methyl (1s,2s,4as,5s,5's,8ar)-5'-ethenyl-2,5,5',8a-tetramethyl-3-oxo-hexahydrospiro[naphthalene-1,2'-oxolane]-5-carboxylate

C21H32O4 (348.2300472)


   

(1s,2s,4as,5s,8ar)-5-(hydroxymethyl)-2,5,8a-trimethyl-1-[(2e)-3-methylpenta-2,4-dien-1-yl]-hexahydro-1h-naphthalen-2-ol

(1s,2s,4as,5s,8ar)-5-(hydroxymethyl)-2,5,8a-trimethyl-1-[(2e)-3-methylpenta-2,4-dien-1-yl]-hexahydro-1h-naphthalen-2-ol

C20H34O2 (306.2558664)


   

(1r,2e,4r,7e)-4-isopropyl-1,7-dimethylcyclodeca-2,7-dien-1-ol

(1r,2e,4r,7e)-4-isopropyl-1,7-dimethylcyclodeca-2,7-dien-1-ol

C15H26O (222.1983546)


   

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


   

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.18270539999997)


   

methyl 5'-ethenyl-2,5,5',8a-tetramethyl-3-oxo-hexahydrospiro[naphthalene-1,2'-oxolane]-5-carboxylate

methyl 5'-ethenyl-2,5,5',8a-tetramethyl-3-oxo-hexahydrospiro[naphthalene-1,2'-oxolane]-5-carboxylate

C21H32O4 (348.2300472)