Gene Association: TIGIT

UniProt Search: TIGIT (PROTEIN_CODING)
Function Description: T cell immunoreceptor with Ig and ITIM domains

found 8 associated metabolites with current gene based on the text mining result from the pubmed database.

justicidins

NAPHTHO(2,3-C)FURAN-1(3H)-ONE, 6,7-DIMETHOXY-9-(3,4-(METHYLENEDIOXY)PHENYL)-

C21H16O6 (364.0947)


Justicidin B is a lignan. Justicidin B is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available.

   

1-Methyladenosine

(2R,3S,4R,5R)-2-(hydroxymethyl)-5-(6-imino-1-methyl-6,9-dihydro-1H-purin-9-yl)oxolane-3,4-diol

C11H15N5O4 (281.1124)


1-Methyladenosine, also known as M1A, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Precise m6A mapping by m6A-CLIP/IP (briefly m6A-CLIP) revealed that a majority of m6A locates in the last exon of mRNAs in multiple tissues/cultured cells of mouse and human, and the m6A enrichment around stop codons is a coincidence that many stop codons locate round the start of last exons where m6A is truly enriched. The methylation of adenosine is directed by a large m6A methyltransferase complex containing METTL3 as the SAM-binding sub-unit. Insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1-3) are reported as a novel class of m6A readers. 1-Methyladenosine is an RNA modification originating essentially from two different reaction types, one catalyzed by enzymes and the other the result of the reaction of RNA with certain alkylating agents. 1-Methyladenosine is an RNA modification originating essentially from two different reaction types, one catalyzed by enzymes and the other the result of the reaction of RNA with certain alkylating agents.

   

Zanamivir

(2R,3R,4S)-4-[(diaminomethylidene)amino]-3-acetamido-2-[(1R,2R)-1,2,3-trihydroxypropyl]-3,4-dihydro-2H-pyran-6-carboxylic acid

C12H20N4O7 (332.1332)


Zanamivir is only found in individuals that have used or taken this drug. It is a guanido-neuraminic acid that is used to inhibit neuraminidase. [PubChem]The proposed mechanism of action of zanamivir is via inhibition of influenza virus neuraminidase with the possibility of alteration of virus particle aggregation and release. By binding and inhibiting the neuraminidase protein, the drug renders the influenza virus unable to escape its host cell and infect others. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors

   

justicidin A

justicidin A

C22H18O7 (394.1052)


   

halichondrin B

halichondrin B

C60H86O19 (1110.5763)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Justicidin B

Justicidin B

C21H16O6 (364.0947)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.212 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.209

   

CID 10079877

CID 10079877

C60H86O19 (1110.5763)


D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents

   

Zanamivir

Zanamivir

C12H20N4O7 (332.1332)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AH - Neuraminidase inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents C254 - Anti-Infective Agent > C281 - Antiviral Agent D004791 - Enzyme Inhibitors