Gene Association: SLC35A3

UniProt Search: SLC35A3 (PROTEIN_CODING)
Function Description: solute carrier family 35 member A3

found 6 associated metabolites with current gene based on the text mining result from the pubmed database.

griffonin

(Z)-2-((4R,5S,6S)-4,5-Dihydroxy-6-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)cyclohex-2-en-1-ylidene)acetonitrile

C14H19NO8 (329.1111)


Lithospermoside is a glycoside. Lithospermoside is a natural product found in Tylosema fassoglense, Semiaquilegia adoxoides, and other organisms with data available. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1]. Lithospermoside (Griffonin) is a nature product isolated from the stem bark of Semiaquilegia adoxoides [1].

   

UDP-α-D-N-Acetylglucosamine disodium

(2R,3R,4R,5S,6R)-3-(Acetylamino)-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl [(2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl dihydrogen diphosphoric acid (non-preferred name)

C17H27N3O17P2 (607.0816)


Uridine diphosphate-N-acetylglucosamine (uridine 5-diphosphate-GlcNAc, or UDP-Glc-NAc) is an acetylated aminosugar nucleotide. UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc). Nutrient sensing in mammals is done through the hexosamine biosynthetic pathway (HSP), which produces uridine 5-diphospho-N-acetylglucosamine (UDP-Glc-NAc) as its end product. Mammals respond to nutrient excess by activating O-GlcNAcylation (addition of O-linked N-acetylglucosamine). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Due to the chemical makeup of UDP-GlcNAc, it is well positioned to serve as a glucose sensor in that it is a high-energy compound that requires and/or responds to glucose, amino acid, fatty acid and nucleotide metabolism for synthesis. Elevated levels of O-GlcNAc have an effect on insulin-stimulated glucose uptake. (PMID: 12678487). Uridine 5-diphosphate-GlcNAc (UDP-Glc-NAc )respond to nutrient excess to activate O-GlcNAcylation (addition of O-linked N-acetylglucosamine) in the hexosamine signaling pathway (HSP). O-GlcNAc addition (and removal) is key to histone remodeling, transcription, proliferation, apoptosis, and proteasomal degradation. This nutrient-responsive signaling pathway also modulates important cellular pathways, including the insulin signaling cascade in. Alterations in O-GlcNAc metabolism are associated with various human diseases including diabetes mellitus and neurodegeneration. (PMID: 16317114) Acquisition and generation of the data is financially supported in part by CREST/JST.

   

UDP Xylose

{[(2R,3S,4R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[hydroxy({[(3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy})phosphoryl]oxy})phosphinic acid

C14H22N2O16P2 (536.0445)


Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

G-418

(2R,3R,4R,5R)-2-[(1S,2S,3R,4S,6R)-4,6-diamino-3-[(2S,3R,4R,5S,6R)-3-amino-4,5-dihydroxy-6-[(1R)-1-hydroxyethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol

C20H40N4O10 (496.2744)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins

   

UDP-D-Xylose

[({[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[(2R,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxy})phosphinic acid

C14H22N2O16P2 (536.0445)


Uridine diphosphate xylose is important intermediate in the Nucleotide sugars metabolism and chondroitin sulfate biosynthesis (KEGG); The decarboxylation product of UDPglucuronic acid, which is used for formation of the xylosides of seryl hydroxyl groups in mucoprotein synthesis.; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Udp-xylose is found in soy bean. Uridine diphosphate xylose is important intermediate in the Nucleotide sugars metabolism and chondroitin sulfate biosynthesis (KEGG). The decarboxylation product of UDPglucuronic acid, which is used for formation of the xylosides of seryl hydroxyl groups in mucoprotein synthesis. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

URIDINE-diphosphATE-N-acetylglucosamine

URIDINE-diphosphATE-N-acetylglucosamine

C17H27N3O17P2 (607.0816)


A UDP-amino sugar having N-acetyl-alpha-D-glucosamine as the amino sugar component.