Gene Association: RRM1

UniProt Search: RRM1 (PROTEIN_CODING)
Function Description: ribonucleotide reductase catalytic subunit M1

found 21 associated metabolites with current gene based on the text mining result from the pubmed database.

Guanosine

2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

C10H13N5O5 (283.0917)


Guanosine (G), also known as 2-amino-inosine, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl sugar moiety. Guanosine consists of a guanine base attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine is a white, crystalline powder with no odor and mild saline taste. It is very soluble in acetic acid, and slightly soluble in water, but insoluble in ethanol, diethyl ether, benzene, and chloroform. Guanosine exists in all living species, ranging from bacteria to plants to humans. High levels of guanosine can be found in clovers, coffee plants, and the pollen of pines. It has been detected, but not quantified in, several different foods, such as leeks, garlic, chicory roots, green bell peppers, and black-eyed peas. Guanosine plays an important role in various biochemical processes including the synthesis of nucleic acids such as RNA and intracellular signal transduction (cGMP). The antiviral drug acyclovir, often used in herpes treatment, and the anti-HIV drug abacavir, are both structurally similar to guanosine. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). In humans, guanosine is involved in intracellular signalling through the adenosine receptors A1R and A2AR (PMID: 31847113). Evidence from rodent and cell models has shown a number of important neurotrophic and neuroprotective effects of guanosine. In particular, it is effective in preventing deleterious consequences of seizures, spinal cord injury, pain, mood disorders and aging-related diseases, such as ischemia, Parkinson‚Äôs and Alzheimer‚Äôs diseases (PMID: 27699087). Studies with rodent models of Parkinson‚Äôs disease have shown that guanosine decreases neuronal apoptotic cell death and increases dopaminergic neurons at substantia nigra pars compacta, accompanied by an improvement of motor symptoms in Parkinson‚Äôs disease (i.e. a reduction of bradykinesia). Guanosine promotes neurite arborization, outgrowth, proliferation and differentiation. Systemic administration of guanosine for eight weeks (8 mg/kg) has been shown to stimulate neuroprogenitors proliferation in the subventricular zone (SVZ) in a mouse model of Parkinsonism (PMID: 27699087). The effect of guanosine treatment is accompanied by an increased number of fibroblast growth factor (FGF-2)-positive cells which is an important regulator of neuroprogenitor/stem cell proliferation, survival and differentiation (PMID: 27699087). Guanosine prevents reactive oxygen species (ROS) generation and cell death in hippocampal slices subjected to the oxygen/glucose deprivation (PMID: 31847113). Guanosine is a purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a fundamental metabolite. It is a purines D-ribonucleoside and a member of guanosines. It is functionally related to a guanine. Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate) which are factors in signal transduction pathways. Guanosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Guanosine is a natural product found in Ulva australis, Allium chinense, and other organisms with data available. Guanosine is a purine nucleoside formed from a beta-N9-glycosidic bond between guanine and a ribose ring and is essential for metabolism. Guanosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has guanine linked by its N9 nitrogen to the C1 carbon of ribose. It is a component of ribonucleic acid and its nucleotides play important roles in metabolism. (From Dorland, 28th ed) Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a beta-N9-glycosidic bond. Guanosine can be phosphorylated to become GMP (guanosine monophosphate), cGMP (cyclic guanosine monophosphate), GDP (guanosine diphosphate) and GTP (guanosine triphosphate). ; The nucleoside guanosine exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. Guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally. (PMID: 16325434); Guanosine is a nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a ?-N9-glycosidic bond. Guanosine is found in many foods, some of which are elderberry, malus (crab apple), acerola, and arrowhead. A purine nucleoside in which guanine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Guanosine (exact mass = 283.09167) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Glutathione disulfide (exact mass = 612.15196) and AMP (exact mass = 347.06308) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Guanosine (exact mass = 283.09167) and Guanine (exact mass = 151.04941) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.125 CONFIDENCE standard compound; INTERNAL_ID 317 KEIO_ID G015; [MS2] KO008966 Annotation level-2 KEIO_ID G015 Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity. Guanosine (DL-Guanosine) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine possesses anti-HSV activity.

   

Cucurbitacin D

17-[(E)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-dione

C30H44O7 (516.3087)


Cucurbitacin D is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin D is a natural product found in Elaeocarpus chinensis, Elaeocarpus hainanensis, and other organisms with data available. Cucurbitacin D is found in calabash. Cucurbitacin D is isolated from plants of the Cucurbitacea Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].

   

Rescinnamine

methyl (1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-{[3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy}-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4(9),5,7-tetraene-19-carboxylate

C35H42N2O9 (634.289)


Rescinnamine is only found in individuals that have used or taken this drug. It is an angiotensin-converting enzyme inhibitor used as an antihypertensive drug. It is an alkaloid obtained from Rauwolfia serpentina and other species of Rauwolfia. [Wikipedia]Rescinnamine Binds to and inhibits the angiotensin converting enzyme. Rescinnamine competes with angiotensin I for binding at the angiotensin-converting enzyme, blocking the conversion of angiotensin I to angiotensin II. Inhibition of ACE results in decreased plasma angiotensin II. As angiotensin II is a vasoconstrictor and a negative-feedback mediator for renin activity, lower concentrations result in a decrease in blood pressure and stimulation of baroreceptor reflex mechanisms, which leads to decreased vasopressor activity and to decreased aldosterone secretion. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent Rescinnamine is an odorless white to cream colored crystalline powder. (NTP, 1992) Rescinnamine is a methyl ester, an organic heteropentacyclic compound and an indole alkaloid. It has a role as an antihypertensive agent. It derives from a hydride of a yohimban. Rescinnamine is a natural product found in Vinca major, Aspidosperma excelsum, and other organisms with data available.

   

2',4',6'-Trihydroxyacetophenone

2 inverted exclamation mark ,4 inverted exclamation mark ,6 inverted exclamation mark -Trihydroxyacetophenone

C8H8O4 (168.0423)


2,4,6-trihydroxyacetophenone is a benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. It has a role as a MALDI matrix material and a plant metabolite. It is a methyl ketone, a benzenetriol and an aromatic ketone. 2,4,6-Trihydroxyacetophenone is a natural product found in Artemisia gypsacea, Daldinia eschscholtzii, and other organisms with data available. A benzenetriol that is acetophenone in which the hydrogens at positions 2, 4, and 6 on the phenyl group are replaced by hydroxy groups. It is used as a matrix in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of acidic glycans and glycopeptides. 2,4,6-Trihydroxyacetophenone is found in fruits. 2,4,6-Trihydroxyacetophenone is isolated from bark of Prunus domestica (plum Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].

   

Deoxycytidine

4-Amino-1-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidin-2(1H)-one

C9H13N3O4 (227.0906)


Deoxycytidine, also known as dC, belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleosides. Pyrimidine 2-deoxyribonucleosides are compounds consisting of a pyrimidine linked to a ribose which lacks a hydroxyl group at position 2. Deoxycytidine is also classified as a deoxyribonucleoside, a component of deoxyribonucleic acid (DNA). Deoxycytidine is similar to the ribonucleoside cytidine, but with one hydroxyl group removed from the 2 position. Deoxycytidine exists in all living species, ranging from bacteria to plants to humans. Degradation of DNA through apoptosis or cell death produces deoxycytidine. Within humans, deoxycytidine participates in a number of enzymatic reactions. In particular, deoxycytidine can be biosynthesized from dCMP through the action of the enzyme cytosolic purine 5-nucleotidase. In addition, deoxycytidine can be converted into dCMP; which is mediated by the enzyme uridine-cytidine kinase-like 1. Deoxycytidine can be phosphorylated at the C-5 position by the enzyme deoxycytidine kinase to produce deoxycytidine monophosphate (dCMP), and to a lesser extent, deoxycytidine diphosphate (dCDP), and deoxycytidine triphosphate (dCTP). Deoxycytidine can also be phosphorylated by thymidine kinase 2 (TK2). Deoxycytidine can potentially be used for the treatment of the metabolic disorder known as thymidine kinase 2 deficiency (TK2 deficiency). TK2 deficiency has three disease subtypes: i) infantile-onset myopathy with rapid progression to early death ii) childhood-onset myopathy, which resembles spinal muscular atrophy (SMA) type III, begins between ages 1 and 12 years with progression to loss of ambulation within few years and iii) late-onset myopathy starting at age 12 year or later with moderate to severe myopathy manifesting as either isolated chronic progressive external ophthalmoplegia (CPEO) or a generalized myopathy with CPEO plus facial and limb weakness, gradual progression, and, in some cases, respiratory failure and loss of ability to walk in adulthood (PMID: 28318037). In mouse models of TK2, dC was shown to delay disease onset, prolong life span and restore mtDNA copy number as well as respiratory chain enzyme activities (PMID: 28318037). One of the principal nucleosides of DNA composed of cytosine and deoxyribose. A nucleoside consists of only a pentose sugar linked to a purine or pyrimidine base, without a phosphate group. When N1 is linked to the C1 of deoxyribose, deoxynucleosides and nucleotides are formed from cytosine and deoxyribose; deoxycytidine monophosphate (dCMP), deoxycytidine diphosphate (dCDP), deoxycytidine triphosphate (dCTP). CTP is the source of the cytidine in RNA (ribonucleic acid) and deoxycytidine triphosphate (dCTP) is the source of the deoxycytidine in DNA (deoxyribonucleic acid). [HMDB]. Deoxycytidine is found in many foods, some of which are japanese pumpkin, turmeric, prairie turnip, and kai-lan. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map KEIO_ID D055; [MS2] KO008940 Corona-virus KEIO_ID D055 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).

   

2'-Deoxycytidine-5'-monophosphoric acid

{[(2R,3S,5R)-5-(4-amino-2-oxo-1,2-dihydropyrimidin-1-yl)-3-hydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H14N3O7P (307.0569)


Deoxycytidine monophosphate (dCMP), also known as deoxycytidylic acid or deoxycytidylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide, and one of the four monomers that make up DNA. In a DNA double helix, it will base pair with deoxyguanosine monophosphate. dCMP belongs to the class of organic compounds known as pyrimidine 2-deoxyribonucleoside monophosphates. These are pyrimidine nucleotides with a monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. Deficiency of the enzyme deoxycytidine kinase (EC2.7.1.74) is associated with resistance to antiviral and anticancer chemotherapeutic agents, whereas increased enzyme activity is associated with increased activation of these compounds to cytotoxic nucleoside triphosphate derivatives. dCMP exists in all living species, ranging from bacteria to humans. Within humans, dCMP participates in a number of enzymatic reactions. In particular, dCMP can be converted to dCDP by the enzyme UMP-CMP kinase 2. In addition, dCMP can be converted into deoxycytidine, which is catalyzed by the enzyme cytosolic purine 5-nucleotidase. In humans, dCMP is involved in the metabolic disorder called ump synthase deficiency (orotic aciduria). Outside of the human body, dCMP has been detected, but not quantified in several different foods, such as turnips, garlics, agaves, garden onions, and italian sweet red peppers. dCMP is a deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2-,3- or 5- positions. Deoxycytidine (dihydrogen phosphate). A deoxycytosine nucleotide containing one phosphate group esterified to the deoxyribose moiety in the 2-,3- or 5- positions. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite.

   

Deoxyadenosine triphosphate

({[({[(2R,3S,5R)-5-(6-amino-9H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H16N5O12P3 (491.0008)


Deoxyadenosine triphosphate (dATP) is a purine nucleoside triphosphate used in cells for DNA synthesis. A nucleoside triphosphate is a molecule type that contains a nucleoside with three phosphates bound to it. dATP contains the sugar deoxyribose, a precursor to DNA synthesis whereby the two existing phosphate groups are cleaved with the remaining deoxyadenosine monophosphate being incorporated into DNA during replication. Due to its enzymatic incorporation into DNA, photoreactive dATP analogs such as N6-[4-azidobenzoyl–(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (AB-dATP) and N6-[4-[3-(trifluoromethyl)-diazirin-3-yl]benzoyl-(2-aminoethyl)]-2′-deoxyadenosine-5′-triphosphate (DB-dATP) have been used for DNA photoaffinity labeling. When present in sufficiently high levels, dATP can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of deoxyadenosine triphosphate are associated with adenosine deaminase (ADA) deficiency, an inborn error of metabolism. ADA deficiency damages the immune system and causes severe combined immunodeficiency (SCID). People with SCID lack virtually all immune protection from bacteria, viruses, and fungi. They are prone to repeated and persistent infections that can be very serious or life-threatening. These infections are often caused by "opportunistic" organisms that ordinarily do not cause illness in people with a normal immune system. The main symptoms of ADA deficiency are pneumonia, chronic diarrhea, and widespread skin rashes. The mechanism by which dATP functions as an immunotoxin is as follows: a buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. Animals obtain their energy by oxidation of foods, plants do so by trapping the sunlight using chlorophyll. However, before the energy can be used, it is first transformed into a form which the organism can handle easily. This special carrier of energy is the molecule adenosine triphosphate, or ATP. The ATP molecule is composed of three components. At the centre is a sugar molecule, [[ribose] (the same sugar that forms the basis of DNA). Attached to one side of this is a base (a group consisting of linked rings of carbon and nitrogen atoms); in this case the base is adenine. The other side of the sugar is attached to a string of phosphate groups. These phosphates are the key to the activity of ATP. ATP consists of a base, in this case adenine (red), a ribose (magenta) and a phosphate chain (blue). ATP works by losing the endmost phosphate group when instructed to do so by an enzyme. This reaction releases a lot of energy, which the organism can then use to build proteins, contact muscles, etc. [HMDB]. dATP is found in many foods, some of which are pepper (c. chinense), squashberry, safflower, and brussel sprouts. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Uridine 5'-monophosphate

{[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C9H13N2O9P (324.0359)


Uridine 5-monophosphate (UMP), also known as uridylic acid or uridylate, belongs to the class of organic compounds known as pyrimidine ribonucleoside monophosphates. These are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. UMP consists of a phosphate group, a pentose sugar ribose, and the nucleobase uracil; hence, it is a ribonucleotide monophosphate. Uridine 5-monophosphate exists in all living species, ranging from bacteria to plants to humans. UMP is a nucleotide that is primarily used as a monomer in RNA biosynthesis. Uridine monophosphate is formed from Orotidine 5-monophosphate (orotidylic acid) in a decarboxylation reaction catalyzed by the enzyme orotidylate decarboxylase. Within humans, uridine 5-monophosphate participates in a number of enzymatic reactions. In particular, uridine 5-monophosphate can be converted into uridine 5-diphosphate through the action of the enzyme UMP-CMP kinase. In addition, uridine 5-monophosphate can be biosynthesized from uridine 5-diphosphate through its interaction with the enzyme soluble calcium-activated nucleotidase 1. In brain research studies, uridine monophosphate has been used as a convenient delivery compound for uridine. Uridine is present in many foods, mainly in the form of RNA. Non-phosphorylated uridine is not bioavailable beyond first-pass metabolism. In a study, gerbils fed a combination of uridine monophosphate, choline, and docosahexaenoic acid (DHA) were found to have significantly improved performance in running mazes over those not fed the supplements, implying an increase in cognitive function (PMID: 18606862). 5′-UMP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-97-9 (retrieved 2024-07-02) (CAS RN: 58-97-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1].

   

Gemcitabine

4-Amino-1-((2R,4R,5R)-3,3-difluoro-4-hydroxy-5-(hydroxymethyl)-tetrahydrofuran-2-yl)pyrimidin-2(1H)-one

C9H11F2N3O4 (263.0718)


Gemcitabine is a nucleoside analog used as chemotherapy. It is marketed as Gemzar by Eli Lilly and Company. As with fluorouracil and other analogues of pyrimidines, the drug replaces one of the building blocks of nucleic acids, in this case cytidine, during DNA replication. The process arrests tumor growth, as new nucleosides cannot be attached to the faulty nucleoside, resulting in apoptosis (cellular suicide). L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2150 - Ribonucleotide Reductase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 2603 CONFIDENCE standard compound; INTERNAL_ID 2106 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Gemcitabine (LY 188011) is a pyrimidine nucleoside analog antimetabolite and an antineoplastic agent. Gemcitabine inhibits DNA synthesis and repair, resulting in autophagyand apoptosis[1][2].

   

Capecitabine

pentyl N-{1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-methyloxolan-2-yl]-5-fluoro-2-oxo-1,2-dihydropyrimidin-4-yl}carbamate

C15H22FN3O6 (359.1493)


Capecitabine is an orally-administered chemotherapeutic agent used in the treatment of metastatic breast and colorectal cancers. Capecitabine is a prodrug, that is enzymatically converted to fluorouracil (antimetabolite) in the tumor, where it inhibits DNA synthesis and slows growth of tumor tissue. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite CONFIDENCE standard compound; EAWAG_UCHEM_ID 2845 D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Capecitabine is an oral proagent that is converted to its active metabolite, 5-FU, by thymidine phosphorylase.

   

Glycineamideribotide

{[(2R,3S,4R,5R)-5-(2-aminoacetamido)-3,4-dihydroxyoxolan-2-yl]methoxy}phosphonic acid

C7H15N2O8P (286.0566)


Glycinamidoribotide conversion to N-formylglycinamide ribonucleotide is the third reaction of the de novo purine biosynthesis, a reaction catalyzed by the enzyme Glycinamide ribonucleotide transformylase (EC 2.1.2.2), with concomitant conversion of 10-formyltetrahydrofolate to tetrahydrofolate. (PMID: 9143358). Glycineamideribotide formation is stimulated by Luteinizing hormone (LH) and Chorionic gonadotropin (HCG) via activation of Glc-6-P-dehydrogenase (EC 1.1.1.49). (PMID: 4366083) [HMDB] Glycinamidoribotide conversion to N-formylglycinamide ribonucleotide is the third reaction of the de novo purine biosynthesis, a reaction catalyzed by the enzyme Glycinamide ribonucleotide transformylase (EC 2.1.2.2), with concomitant conversion of 10-formyltetrahydrofolate to tetrahydrofolate. (PMID: 9143358). Glycineamideribotide formation is stimulated by Luteinizing hormone (LH) and Chorionic gonadotropin (HCG) via activation of Glc-6-P-dehydrogenase (EC 1.1.1.49). (PMID: 4366083).

   

Capecitabine

Capecitabine

C15H22FN3O6 (359.1493)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 2353 INTERNAL_ID 2353; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 2140 CONFIDENCE standard compound; INTERNAL_ID 8343 CONFIDENCE standard compound; INTERNAL_ID 4129 Capecitabine is an oral proagent that is converted to its active metabolite, 5-FU, by thymidine phosphorylase.

   

2-Deoxycytidine

2-Deoxycytidine monohydrate

C9H13N3O4 (227.0906)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite A pyrimidine 2-deoxyribonucleoside having cytosine as the nucleobase. C26170 - Protective Agent > C2459 - Chemoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 2'-Deoxycytidine, a deoxyribonucleoside, can inhibit biological effects of Bromodeoxyuridine (Brdu). 2'-Deoxycytidine is essential for the synthesis of nucleic acids, that can be used for the research of cancer[1][2]. 2'-Deoxycytidine, a deoxyribonucleoside, could inhibit biological effects of Bromodeoxyuridine (Brdu).

   

Uridine monophosphate

Uridine 5_-monophosphate

C9H13N2O9P (324.0359)


A pyrimidine ribonucleoside 5-monophosphate having uracil as the nucleobase. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1].

   

Rescinnamine

methyl (1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-{[3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]oxy}-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4(9),5,7-tetraene-19-carboxylate

C35H42N2O9 (634.289)


Rescinnamine is an odorless white to cream colored crystalline powder. (NTP, 1992) Rescinnamine is a methyl ester, an organic heteropentacyclic compound and an indole alkaloid. It has a role as an antihypertensive agent. It derives from a hydride of a yohimban. Rescinnamine is a natural product found in Vinca major, Aspidosperma excelsum, and other organisms with data available. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent

   

2-Deoxyadenosine 5-triphosphate

2-Deoxyadenosine 5-triphosphate

C10H16N5O12P3 (491.0008)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

elatericin A

(2S,8S,9R,10R,13R,14S,16R,17R)-17-[(E,1R)-1,5-dihydroxy-2-keto-1,5-dimethyl-hex-3-enyl]-2,16-dihydroxy-4,4,9,13,14-pentamethyl-2,7,8,10,12,15,16,17-octahydro-1H-cyclopenta[a]phenanthrene-3,11-quinone

C30H44O7 (516.3087)


Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].

   

480-66-0

InChI=1\C8H8O4\c1-4(9)8-6(11)2-5(10)3-7(8)12\h2-3,10-12H,1H

C8H8O4 (168.0423)


Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2]. Phloracetophenone (2,4,6-trihydroxyacetophenone) is the aglycone part of acetophenone glycoside obtained from Curcuma comosa Roxb, with cholesterol-lowering activity. Phloracetophenone enhances cholesterol 7α-hydroxylase (CYP7A1) activity[1]. Phloracetophenone stimulats bile secretion mediated through Mrp2[2].

   

Cucurbitacin_D

(2S,4R,23E)-2,16,20,25-tetrahydroxy-9beta,10,14-trimethyl-4,9-cyclo-9,10-seco-16alpha-cholesta-5,23-diene-1,11,22-trione

C30H44O7 (516.3087)


Cucurbitacin D is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin D is a natural product found in Elaeocarpus chinensis, Elaeocarpus hainanensis, and other organisms with data available. A cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1]. Cucurbitacin D is an active component in Trichosanthes kirilowii, disrupts interactions between Hsp90 and two co-chaperones, Cdc37 and p23. Cucurbitacin D prevents Hsp90 client (Her2, Raf, Cdk6, pAkt) maturation without induction of the heat shock response. Anti-cancer activity[1].

   

Gemcitabine

Gemcitabine

C9H11F2N3O4 (263.0718)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite C471 - Enzyme Inhibitor > C2150 - Ribonucleotide Reductase Inhibitor D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Gemcitabine (LY 188011) is a pyrimidine nucleoside analog antimetabolite and an antineoplastic agent. Gemcitabine inhibits DNA synthesis and repair, resulting in autophagyand apoptosis[1][2].

   

Deoxycytidine 5-monophosphate

2-Deoxycytidine-5-monophosphoric acid

C9H14N3O7P (307.0569)


A pyrimidine 2-deoxyribonucleoside 5-monophosphate having cytosine as the nucleobase. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite. 2'-Deoxycytidine-5'-monophosphoric acid is an endogenous metabolite.