Gene Association: HSPB6

UniProt Search: HSPB6 (PROTEIN_CODING)
Function Description: heat shock protein family B (small) member 6

found 16 associated metabolites with current gene based on the text mining result from the pubmed database.

Aurantio-obtusin

1,3,7-TRIHYDROXY-2,8-DIMETHOXY-6-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

C17H14O7 (330.0739)


Aurantio-obtusin is a trihydroxyanthraquinone that is 1,3,7-trihydroxy-9,10-anthraquinone which is by methoxy groups at positions 2 and 8, and by a methyl group at position 6. Aurantio-obtusin is a natural product found in Senna obtusifolia and Senna tora with data available. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3]. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3].

   

Obtusifolin

2,8-DIHYDROXY-1-METHOXY-3-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

C16H12O5 (284.0685)


Obtusifolin is a dihydroxyanthraquinone. Obtusifolin is a natural product found in Senna obtusifolia and Senna tora with data available. Obtusifolin, isolated from the seeds of Cassia obtusifolia, regulates the gene expression and production of MUC5AC mucin in airway epithelial cells via inhibiting NF-kB pathway[1]. Obtusifolin suppresses phthalate esters-induced breast cancer bone metastasis by targeting parathyroid hormone-related protein[2]. Obtusifolin, isolated from the seeds of Cassia obtusifolia, regulates the gene expression and production of MUC5AC mucin in airway epithelial cells via inhibiting NF-kB pathway[1]. Obtusifolin suppresses phthalate esters-induced breast cancer bone metastasis by targeting parathyroid hormone-related protein[2].

   

Undecanoic acid

1-Decanecarboxylic acid

C11H22O2 (186.162)


Undecanoic acid, also known as N-undecylic acid or N-undecanoate, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecanoic acid is a potentially toxic compound. Undecylic acid (systematically named undecanoic acid) is a flavouring ingredient. It is a naturally-occurring carboxylic acid with chemical formula CH3(CH2)9COOH (Wikipedia). Undecanoic acid is found in many foods, some of which are coconut, fruits, fats and oils, and rice. C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Moexipril

[3S-[2[R*(R*)],3R*]]-2-[2-[[1-(ethoxycarbonyl)-3-phenylpropyl]amino]-1-oxopropyl]-1,2,3,4tetrahydro-6,7-dimethoxy-3-isoquinolinecarboxylic acid, monohydrochloride;[3S-[2[R*(R*)],3R*]]-2-[2-[[1-(ethoxycarbonyl)-3-phenylpropyl]amino]-1-oxopropyl]-1,2,3,4tetrahydro-6,7-dimethoxy-3-isoquinolinecarboxylic acid, monohydrochloride

C27H34N2O7 (498.2366)


Moexipril is a non-sulfhydryl containing precursor of the active angiotensin-converting enzyme (ACE) inhibitor moexiprilat. It is used to treat high blood pressure (hypertension). It works by relaxing blood vessels, causing them to widen. Lowering high blood pressure helps prevent strokes, heart attacks and kidney problems. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Vaccenic acid

11-Octadecenoic acid, (e)-isomer

C18H34O2 (282.2559)


Vaccenic acid is a naturally occurring trans fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food. Its IUPAC name is (11E)-11-octadecenoic acid, and its lipid shorthand name is 18:1 trans-11. The name was derived from the Latin vacca (cow). Vaccenic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Vaccenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

2-Hydroxybutyric acid

DL-alpha-Hydroxybutyric acid barium salt

C4H8O3 (104.0473)


2-Hydroxybutyric acid (CAS: 600-15-7), also known as alpha-hydroxybutyrate, is an organic acid derived from alpha-ketobutyrate. alpha-Ketobutyrate is produced by amino acid catabolism (threonine and methionine) and glutathione anabolism (cysteine formation pathway) and is metabolized into propionyl-CoA and carbon dioxide (PMID: 20526369). 2-Hydroxybutyric acid is formed as a byproduct from the formation of alpha-ketobutyrate via a reaction catalyzed by lactate dehydrogenase (LDH) or alpha-hydroxybutyrate dehydrogenase (alphaHBDH). alpha-Hydroxybutyric acid is primarily produced in mammalian hepatic tissues that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification of xenobiotics in the liver can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway (which forms methionine) into the transsulfuration pathway (which forms cystathionine). alpha-Ketobutyrate is released as a byproduct when cystathionine is cleaved into cysteine that is incorporated into glutathione. Chronic shifts in the rate of glutathione synthesis may be reflected by urinary excretion of 2-hydroxybutyrate. 2-Hydroxybutyrate is an early marker for both insulin resistance and impaired glucose regulation that appears to arise due to increased lipid oxidation and oxidative stress (PMID: 20526369). 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g. birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early-stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid-1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydroxybutyric acid (PMID: 168632). 2-Hydroxybutyric acid is an organic acid that is involved in propanoate metabolism. It is produced in mammalian tissues (principaly hepatic) that catabolize L-threonine or synthesize glutathione. Oxidative stress or detoxification demands can dramatically increase the rate of hepatic glutathione synthesis. Under such metabolic stress conditions, supplies of L-cysteine for glutathione synthesis become limiting, so homocysteine is diverted from the transmethylation pathway forming methionine into the transsulfuration pathway forming cystathionine. 2-Hydroxybutyrate is released as a by-product when cystathionine is cleaved to cysteine that is incorporated into glutathione. 2-Hydroxybutyric acid is often found in the urine of patients suffering from lactic acidosis and ketoacidosis. 2-Hydroxybutyric acid generally appears at high concentrations in situations related to deficient energy metabolism (e.g., birth asphyxia) and also in inherited metabolic diseases affecting the central nervous system during neonatal development, such as "cerebral" lactic acidosis, glutaric aciduria type II, dihydrolipoyl dehydrogenase (E3) deficiency, and propionic acidemia. More recently it has been noted that elevated levels of alpha-hydroxybutyrate in the plasma is a good marker for early stage type II diabetes (PMID: 19166731). It was concluded from studies done in the mid 1970s that an increased NADH2/NAD ratio was the most important factor for the production of 2-hydorxybutyric acid (PMID: 168632) [HMDB] 2-Hydroxybutyric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=565-70-8 (retrieved 2024-07-16) (CAS RN: 600-15-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

isochorismate

(5S,6S)-5-[(1-carboxyeth-1-en-1-yl)oxy]-6-hydroxycyclohexa-1,3-diene-1-carboxylic acid

C10H10O6 (226.0477)


Isochorismate, also known as isochorismic acid, belongs to beta hydroxy acids and derivatives class of compounds. Those are compounds containing a carboxylic acid substituted with a hydroxyl group on the C3 carbon atom. Isochorismate is soluble (in water) and a weakly acidic compound (based on its pKa). Isochorismate can be found in a number of food items such as cucurbita (gourd), cherry tomato, chinese chestnut, and chinese water chestnut, which makes isochorismate a potential biomarker for the consumption of these food products. Isochorismate may be a unique E.coli metabolite.

   

C11:0

Hendecanoic acid

C11H22O2 (186.162)


C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

2-Hydroxybutyric acid

(±)-2-hydroxybutyric acid

C4H8O3 (104.0473)


A hydroxybutyric acid having a single hydroxyl group located at position 2; urinary secretion of 2-hydroxybutyric acid is increased with alcohol ingestion or vigorous physical exercise and is associated with lactic acidosis and ketoacidosis in humans and diabetes in animals. (S)-2-Hydroxybutanoic acid is the S-enantiomer of?2-Hydroxybutanoic acid. 2-Hydroxybutanoic acid, a coproduct of protein metabolism, is an insulin resistance (IR) biomarker[1].

   

Obtusifolin

2,8-DIHYDROXY-1-METHOXY-3-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

C16H12O5 (284.0685)


Obtusifolin is a dihydroxyanthraquinone. Obtusifolin is a natural product found in Senna obtusifolia and Senna tora with data available. Obtusifolin, isolated from the seeds of Cassia obtusifolia, regulates the gene expression and production of MUC5AC mucin in airway epithelial cells via inhibiting NF-kB pathway[1]. Obtusifolin suppresses phthalate esters-induced breast cancer bone metastasis by targeting parathyroid hormone-related protein[2]. Obtusifolin, isolated from the seeds of Cassia obtusifolia, regulates the gene expression and production of MUC5AC mucin in airway epithelial cells via inhibiting NF-kB pathway[1]. Obtusifolin suppresses phthalate esters-induced breast cancer bone metastasis by targeting parathyroid hormone-related protein[2].

   

UNDECANOIC ACID

UNDECANOIC ACID

C11H22O2 (186.162)


A straight-chain, eleven-carbon saturated medium-chain fatty acid found in body fluids; the most fungitoxic of the C7:0 - C18:0 fatty acid series. C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

AI3-02280

4-02-00-01068 (Beilstein Handbook Reference)

C11H22O2 (186.162)


C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

CHEBI:37386

9,10-Anthracenedione, 1,3,7-trihydroxy-2,8-dimethoxy-6-methyl-

C17H14O7 (330.0739)


Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3]. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3].

   

Aurantio-obtusin

1,3,7-TRIHYDROXY-2,8-DIMETHOXY-6-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

C17H14O7 (330.0739)


Aurantio-obtusin is a trihydroxyanthraquinone that is 1,3,7-trihydroxy-9,10-anthraquinone which is by methoxy groups at positions 2 and 8, and by a methyl group at position 6. Aurantio-obtusin is a natural product found in Senna obtusifolia and Senna tora with data available. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3]. Aurantio-obtusin is an anthraquinone isolated from Semen Cassiae, with anti-Inflammatory, anti-oxidative, anti-coagulating and anti-hypertension activities[1][2][3]. Aurantio-obtusin relaxes systemic arteries through endothelial PI3K/AKT/eNOS-dependent signaling pathway in rats, thus acts as a new potential vasodilator[2]. Aurantio-obtusin inhibits allergic responses in IgE-mediated mast cells and anaphylactic models and is potential for treatment for allergy-related diseases[3].

   

Moexipril

Moexipril

C27H34N2O7 (498.2366)


C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09A - Ace inhibitors, plain > C09AA - Ace inhibitors, plain D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D000806 - Angiotensin-Converting Enzyme Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C247 - ACE Inhibitor D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

Isochorismic acid

Isochorismic acid

C10H10O6 (226.0477)