Gene Association: HINT2
UniProt Search:
HINT2 (PROTEIN_CODING)
Function Description: histidine triad nucleotide binding protein 2
found 8 associated metabolites with current gene based on the text mining result from the pubmed database.
Fucitol
L-fucitol is the L-enantiomer of fucitol. It is found in nutmeg. It has a role as a plant metabolite and an antibacterial agent. It is an enantiomer of a D-fucitol. L-Fucitol is a natural product found in Carum carvi with data available. The L-enantiomer of fucitol. It is found in nutmeg. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1]. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1].
2'-Deoxyguanosine 5'-monophosphate
2-Deoxyguanosine 5-monophosphate, also known as deoxyguanylic acid or 2-deoxy-GMP, belongs to the class of organic compounds known as purine 2-deoxyribonucleoside monophosphates. These are purine nucleotides with monophosphate group linked to the ribose moiety lacking a hydroxyl group at position 2. 2-Deoxyguanosine 5-monophosphate is a purine 2-deoxyribonucleoside 5-monophosphate having guanine as the nucleobase. It exists in all living species, ranging from bacteria to humans. Within humans, 2-deoxyguanosine 5-monophosphate participates in a number of enzymatic reactions. In particular, 2-deoxyguanosine 5-monophosphate can be converted into dGDP which is mediated by the enzyme guanylate kinase. In addition, 2-deoxyguanosine 5-monophosphate can be converted into deoxyguanosine through its interaction with the enzyme cytosolic purine 5-nucleotidase. In humans, 2-deoxyguanosine 5-monophosphate is involved in the metabolic disorder called the gout or kelley-seegmiller syndrome pathway. 2-Deoxyguanosine 5-monophosphate is a derivative of the common nucleic acid GTP, or guanosine triphosphate, in which the -OH (hydroxyl) group on the 2 carbon on the nucleotides pentose has been removed (hence the deoxy- part of the name). Additionally, the diphosphate of the name indicates that two of the phosphoryl groups of GTP have been removed, most likely by hydrolysis . [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Adenosine phosphosulfate
Adenosine phosphosulfate, also known as adenylylsulfate or adenosine sulfatophosphate, belongs to the class of organic compounds known as purine ribonucleoside monophosphates. These are nucleotides consisting of a purine base linked to a ribose to which one monophosphate group is attached. Adenosine phosphosulfate exists in all living species, ranging from bacteria to humans. Within humans, adenosine phosphosulfate participates in a number of enzymatic reactions. In particular, adenosine phosphosulfate can be biosynthesized from sulfate through the action of the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In addition, adenosine phosphosulfate can be converted into phosphoadenosine phosphosulfate; which is catalyzed by the enzyme bifunctional 3-phosphoadenosine 5-phosphosulfate synthase 2. In humans, adenosine phosphosulfate is involved in sulfate/sulfite metabolism. Outside of the human body, Adenosine phosphosulfate has been detected, but not quantified in several different foods, such as chia, yardlong beans, swiss chards, sapodilla, and chicory leaves. This could make adenosine phosphosulfate a potential biomarker for the consumption of these foods. An adenosine 5-phosphate having a sulfo group attached to one the phosphate OH groups. Adenosine phosphosulfate (also known as APS) is the initial compound formed by the action of ATP sulfurylase (or PAPS synthetase) on sulfate ions after sulfate uptake. PAPS synthetase 1 is a bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3-phosphoadenylylsulfate (PAPS). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway. [HMDB]. Adenosine phosphosulfate is found in many foods, some of which are muskmelon, garlic, caraway, and peach (variety).
Diadenosine tetraphosphate
Diadenosine tetraphosphate (AP4A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n=3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP4A is the only APnA that can induce a considerable increase in [Ca2+] in endothelial cells, indicating that its vasoactive effects are comparable to the known effects of arginine vasopressin, Angiotensin II, and ATP. AP4A is a ubiquitous ApnA is a signal molecule for DNA replication in mammalian cells. AP4A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP4A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 9187362, 16401072, 9694344, 9351706, 1953194). Diadenosine tetraphosphate (AP4A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n=3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors
2-Deoxy-5-Guanylic Acid
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
Diadenosine tetraphosphate
A diadenosyl tetraphosphate compound having the two 5-adenosyl residues attached at the P(1)- and P(4)-positions. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors