Gene Association: CARNS1
UniProt Search:
CARNS1 (PROTEIN_CODING)
Function Description: carnosine synthase 1
found 12 associated metabolites with current gene based on the text mining result from the pubmed database.
Argininosuccinic acid disodium
Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the argininosuccinate lyase enzyme can lead to argininosuccinate lyase deficiency, which is an inborn error of metabolism. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (argininosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. Arginosuccinic acid is a basic amino acid. Some cells synthesize it from citrulline, aspartic acid and use it as a precursor for arginine in the urea cycle or Citrulline-NO cycle. The enzyme that catalyzes the reaction is argininosuccinate synthetase. Argininosuccinic acid is a precursor to fumarate in the citric acid cycle via argininosuccinate lyase. Defects in the arginosuccinate lyase enzyme can lead to arginosuccinate lyase deficiency. Argininosuccinate (ASA) lyase deficiency results in defective cleavage of ASA. This leads to an accumulation of ASA in cells and an excessive excretion of ASA in urine (arginosuccinic aciduria). In virtually all respects, this disorder shares the characteristics of other urea cycle defects. The most important characteristic of ASA lyase deficiency is its propensity to cause hyperammonemia in affected individuals. ASA in affected individuals is excreted by the kidney at a rate practically equivalent to the glomerular filtration rate (GFR). Whether ASA itself causes a degree of toxicity due to hepatocellular accumulation is unknown; such an effect could help explain hyperammonemia development in affected individuals. Regardless, the name of the disease is derived from the rapid clearance of ASA in urine, although elevated levels of ASA can be found in plasma. ASA lyase deficiency is associated with high mortality and morbidity rates. Symptoms of ASA lyase deficiency include anorexia, irritability rapid breathing, lethargy and vomiting. Extreme symptoms include coma and cerebral edema. [HMDB] KEIO_ID A039; [MS2] KO008844 KEIO_ID A039
Carnosine
Carnosine, which is also known as beta-alanyl-L-histidine) is a dipeptide consisting of the amino acids beta-alanine and histidine. It is found exclusively in animal tissues and is naturally produced in the body by the liver. Carnosine has a pKa value of 6.83, making it a good buffer for the pH range of animal muscles. Since beta-alanine is a non-proteogenic amino acid and is not incorporated into proteins, carnosine can be stored at relatively high concentrations (millimolar) in muscles, with concentrations as high as 17–25 mmol/kg (dry muscle). Carnosine is also highly concentrated in brain tissues. Carnosine has been shown to scavenge reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes formed from peroxidation of fatty acids during oxidative stress. The antioxidant mechanism of carnosine is attributed to its chelating effect against divalent metal ions, superoxide dismutase (SOD)-like activity, as well as its ROS and free radicals scavenging ability (PMID: 16406688). Carnosine also buffers muscle cells, and acts as a neurotransmitter in the brain. Carnosine has the potential to suppress many of the biochemical changes that accompany ageing (e.g. protein oxidation, glycation, AGE formation, and cross-linking) and associated pathologies (PMID: 16804013). Some autistic patients take carnosine as a dietary supplement and attribute an improvement in their condition to it. Supplemental carnosine may increase corticosterone levels. This may explain the "hyperactivity" seen in autistic subjects at higher doses. A positive association between muscle tissue carnosine concentration and exercise performance has been found. β-Alanine supplementation is thought increase exercise performance by promoting carnosine production in muscle. Exercise has conversely been found to increase muscle carnosine concentrations, and muscle carnosine content is higher in athletes engaging in anaerobic exercise. Carnosine is also a biomarker for the consumption of meat. Elevated levels of urinary and plasma carnosine are associated with carnosinuria (also known as carnosinemia), which is an inborn error of metabolism. caused by a deficiency of the enzyme carnosinase. Carnosinas cleaves carnosine into its constituent amino acids: β-Alanine and histidine. Carnonsinemia results in an excess of carnosine in the urine, cerebrospinal fluid, blood, and nervous tissue. A variety of neurological symptoms have been associated with carnosinemia. They include: hypotonia, developmental delay, mental retardation, degeneration of axons, sensory neuropathy, tremors, demyelinization, gray matter anomalies, myoclonic seizures, and loss of purkinje fibers. [Spectral] Carnosine (exact mass = 226.10659) and L-Lysine (exact mass = 146.10553) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. L-Carnosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=305-84-0 (retrieved 2024-07-02) (CAS RN: 305-84-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging.
Anserine
Anserine (beta-alanyl-N-3-methylhistidine) is a dipeptide containing beta-alanine and 3-methylhistidine. It is a derivative of carnosine, which had been methylated. The methyl group of anserine is added to carnosine by the enzyme S-adenosylmethionine: carnosine N-methyltransferase (PMID: 29484990). The enzyme is closely related to histamine N-methyltransferase and appears to be present in a majority of anserine-producing species (PMID: 23705015). Anserine is a generally a more metabolically stable derivative of carnosine. Anserine can be found in the skeletal muscle and brain of certain mammals (rabbits, cattle), migratory fish and birds. This dipeptide is normally absent from human tissues and body fluids, and its appearance there is usually an artifact of diet. Anserine can also arise from serum carnosinase deficiency. (OMIM 212200). Anserine was first discovered in goose muscle in 1929, and was named after this extraction (anser is Latin for goose). Anserine, which is water-soluble, is found at high levels in the muscles of different non-human vertebrates, with poultry, rabbit, tuna, plaice, and salmon having generally higher contents than other marine foods, beef, or pork (PMID: 31908682). An increase of urinary anserine excretion has been found in humans after the consumption of chicken, rabbit, and tuna and has been associated with intake of chicken, salmon, and, to a lesser extent, beef (PMID: 31908682). Anserine can undergo cleavage to give rise to 3-methylhistidine.(3-MH). The dipeptide balenine, common in some whales, cleaves to form 1-methylhistidine (1-MH) (PMID: 31908682). There is considerable confusion with regard to the nomenclature of the methylated nitrogen atoms on the imidazole ring of histidine and other histidine-containing peptides such as anserine. In particular, older literature (mostly prior to the year 2000) designated anserine (N-pi methylated) as beta-alanyl-N1-methyl-histidine, whereas according to standard IUPAC nomenclature, anserine is correctly named as beta-alanyl-N3-methyl-histidine. As a result, many papers published prior to the year 2000 incorrectly identified 1MH as a specific marker for dietary consumption of certain foods or various pathophysiological effects when they really were referring to 3MH or vice versa (PMID: 24137022). In particular balenine (a whale or snake-specific dipeptide with 1MH) was often confused with anserine (the poultry dipeptide with 3MH). An animal model study of Alzheimers disease using mice found that treatment with anserine reduced memory loss (PMID: 28974740). Anserine reduced glial inflammatory activity (particularly of astrocyte). The study also found that anserine-treated mice had greater pericyte surface area. The greater area of pericytes was commensurate with improved memory. The anserine-treated mice overall performed better on a spatial memory test (Morris Water Maze) (PMID: 28974740). A human study on 84 elderly subjects showed that subjects who took anserine and carnosine supplements for one year showed increased blood flow in the prefrontal cortex on MRI (PMID: 29896423). Acquisition and generation of the data is financially supported in part by CREST/JST. C26170 - Protective Agent > C275 - Antioxidant KEIO_ID A140; [MS2] KO008819 KEIO_ID A140; [MS3] KO008820 KEIO_ID A140 Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2]. Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2].
Beta-Alanine
beta-Alanine is the only naturally occurring beta-amino acid - an amino acid in which the amino group is at the beta-position from the carboxylate group. It is formed in vivo by the degradation of dihydrouracil and carnosine. It is a component of the naturally occurring peptides carnosine and anserine and also of pantothenic acid (vitamin B-5), which itself is a component of coenzyme A. Under normal conditions, beta-alanine is metabolized into acetic acid. beta-Alanine can undergo a transanimation reaction with pyruvate to form malonate-semialdehyde and L-alanine. The malonate semialdehyde can then be converted into malonate via malonate-semialdehyde dehydrogenase. Malonate is then converted into malonyl-CoA and enter fatty acid biosynthesis. Since neuronal uptake and neuronal receptor sensitivity to beta-alanine have been demonstrated, beta-alanine may act as a false transmitter replacing gamma-aminobutyric acid. When present in sufficiently high levels, beta-alanine can act as a neurotoxin, a mitochondrial toxin, and a metabotoxin. A neurotoxin is a compound that damages the brain or nerve tissue. A mitochondrial toxin is a compound that damages mitochondria and reduces cellular respiration as well as oxidative phosphorylation. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of beta-alanine are associated with at least three inborn errors of metabolism, including GABA-transaminase deficiency, hyper-beta-alaninemia, and methylmalonate semialdehyde dehydrogenase deficiency. beta-Alanine is a central nervous system (CNS) depressant and is an inhibitor of GABA transaminase. The associated inhibition of GABA transaminase and displacement of GABA from CNS binding sites can also lead to GABAuria (high levels of GABA in the urine) and convulsions. In addition to its neurotoxicity, beta-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function. Cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation, which damages mitochondria and increases oxidative stress (PMID: 27023909). Individuals suffering from mitochondrial defects or mitochondrial toxicity typically develop neurotoxicity, hypotonia, respiratory distress, and cardiac failure. beta-Alanine is a biomarker for the consumption of meat, especially red meat. Widely distributed in plants including algae, fungi and many higher plants. Flavouring ingredient β-Alanine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=107-95-9 (retrieved 2024-07-01) (CAS RN: 107-95-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Alanine is a non-essential amino acid that is shown to be metabolized into carnosine, which functions as an intracellular buffer. β-Alanine is a non-essential amino acid that is shown to be metabolized into carnosine, which functions as an intracellular buffer. β-Alanine is a non-essential amino acid that is shown to be metabolized into carnosine, which functions as an intracellular buffer.
Propanal
Propanal, also known as N-propionaldehyde or C2H5CHO, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Propanal exists in all living species, ranging from bacteria to humans. Propanal is an alcohol, cocoa, and earthy tasting compound. Outside of the human body, Propanal is found, on average, in the highest concentration within wild celeries and carrots. Propanal has also been detected, but not quantified in several different foods, such as purple lavers, black salsifies, strawberry guava, grapefruit/pummelo hybrids, and alaska wild rhubarbs. It is an aldehyde that consists of ethane bearing a formyl substituent. Isolated from various plant sources, e.g. hops, banana, sweet or sour cherry, blackcurrants, melon, pineapple, bread, chesses, coffee, cooked rice and strawberry or apple aroma. Flavouring agent
carnosine
A dipeptide that is the N-(beta-alanyl) derivative of L-histidine. C26170 - Protective Agent > C275 - Antioxidant L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging. L-Carnosine is a dipeptide of the amino acids beta-alanine and histidine and has the potential to suppress many of the biochemical changes that accompany aging.
β-alanine
A naturally-occurring beta-amino acid comprising propionic acid with the amino group in the 3-position. β-Alanine is a non-essential amino acid that is shown to be metabolized into carnosine, which functions as an intracellular buffer. β-Alanine is a non-essential amino acid that is shown to be metabolized into carnosine, which functions as an intracellular buffer. β-Alanine is a non-essential amino acid that is shown to be metabolized into carnosine, which functions as an intracellular buffer.
Anserine
A dipeptide comprising of beta-alanine and 3-methyl-L-histidine units. C26170 - Protective Agent > C275 - Antioxidant Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2]. Anserine, a methylated form of Carnosine, is an orally active, natural Histidine-containing dipeptide found in skeletal muscle of vertebrates. Anserine is not cleaved by serum carnosinase and act as biochemical buffers, chelators, antioxidants, and anti-glycation agents. Anserine improves memory functions in Alzheimer's disease (AD)-model mice[1][2].