Gene Association: BMAL2

UniProt Search: BMAL2 (PROTEIN_CODING)
Function Description: basic helix-loop-helix ARNT like 2

found 8 associated metabolites with current gene based on the text mining result from the pubmed database.

Melatonin

N-[2-(5-methoxy-1H-indol-3-yl)ethyl]acetamide

C13H16N2O2 (232.1212)


Melatonin is a member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. It has a role as a hormone, an anticonvulsant, an immunological adjuvant, a radical scavenger, a central nervous system depressant, a human metabolite, a mouse metabolite and a geroprotector. It is a member of acetamides and a member of tryptamines. It is functionally related to a tryptamine. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin is a hormone produced by the pineal gland that has multiple effects including somnolence, and is believed to play a role in regulation of the sleep-wake cycle. Melatonin is available over-the-counter and is reported to have beneficial effects on wellbeing and sleep. Melatonin has not been implicated in causing serum enzyme elevations or clinically apparent liver injury. Melatonin is a natural product found in Mesocricetus auratus, Ophiopogon japonicus, and other organisms with data available. Therapeutic Melatonin is a therapeutic chemically synthesized form of the pineal indole melatonin with antioxidant properties. The pineal synthesis and secretion of melatonin, a serotonin-derived neurohormone, is dependent on beta-adrenergic receptor function. Melatonin is involved in numerous biological functions including circadian rhythm, sleep, the stress response, aging, and immunity. Melatonin is a hormone involved in sleep regulatory activity, and a tryptophan-derived neurotransmitter, which inhibits the synthesis and secretion of other neurotransmitters such as dopamine and GABA. Melatonin is synthesized from serotonin intermediate in the pineal gland and the retina where the enzyme 5-hydroxyindole-O-methyltransferase, that catalyzes the last step of synthesis, is found. This hormone binds to and activates melatonin receptors and is involved in regulating the sleep and wake cycles. In addition, melatonin possesses antioxidative and immunoregulatory properties via regulating other neurotransmitters. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is l... Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and. lowering the body temperature. Melatonin is also implicated in the regulation of mood,learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders(ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits. were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. A member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. Melatonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-31-4 (retrieved 2024-07-01) (CAS RN: 73-31-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].

   

Bilirubin

3-(2-{[3-(2-carboxyethyl)-5-{[(2Z)-4-ethenyl-3-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-2-yl]methyl}-5-{[(2Z)-3-ethenyl-4-methyl-5-oxo-2,5-dihydro-1H-pyrrol-2-ylidene]methyl}-4-methyl-1H-pyrrol-3-yl)propanoic acid

C33H36N4O6 (584.2635)


Bilirubin is a yellow bile pigment that is a degradation product of heme. It occurs in the normal catabolic pathway that breaks down heme in vertebrates. This catabolism is a necessary process in the bodys clearance of waste products that arise from the destruction of aged or abnormal red blood cells. Bilirubin has been found in all vertebrates and in certain plants including Strelitzia nicolai (PMID: 28573242). Bilirubin levels in humans are elevated in certain diseases such as jaundice and liver disease and it is responsible for the yellow color of bruises and the yellow discoloration in jaundice. Bilirubin breakdown products, such as stercobilin, cause the brown color of feces. A different breakdown product, urobilin, is the main component of the straw-yellow color in urine. Bilirubin consists of an open chain of four pyrroles (tetrapyrrole). It is formed by oxidative cleavage of a porphyrin in heme, which leads to biliverdin, a green tetrapyrrolic bile pigment that is also a product of heme catabolism. Biliverdin is then reduced to bilirubin via biliverdin reductase. After conjugation with glucuronic acid, bilirubin can be excreted in the urine. Bilirubin is structurally similar to the pigment phycobilin used by certain algae to capture light energy, and to the pigment phytochrome used by plants to sense light. Elevated bilirubin levels in humans are associated with Crigler-Najjar syndrome type I, which is an inborn error of metabolism. Crigler-Najjar syndrome is a rare genetic disorder characterized by an inability to properly convert and clear bilirubin from the body. Affected individuals cannot convert unconjugated bilirubin to the conjugated form because they lack a specific liver enzyme required to break down (metabolize) bilirubin. Since they cannot convert bilirubin, they develop abnormally high levels of unconjugated bilirubin in the blood (hyperbilirubinemia). Crigler-Najjar syndrome is caused by mutations in the UGT1A1 gene. The hallmark finding of Crigler-Najjar syndrome is a persistent yellowing of the skin, mucous membranes and whites of the eyes (jaundice). Elevation of both alanine aminotransferase and bilirubin levels in serum or plasma can be indicative of serious liver injury. High levels of bilirubin are indicative of jaundice, which is easily recognizable due to a yellowing of the skin and eyes. Bilirubin is also an antioxidant. Bilirubins antioxidant activity may be particularly important in the brain, where it prevents excitotoxicity and neuronal death by scavenging superoxide during N-methyl-D-aspartic acid neurotransmission (PMID: 31353321). Bilirubin is a bile pigment that is a degradation product of heme. In particular, bilirubin is a yellow breakdown product of normal heme catabolism. Its levels are elevated in certain diseases and it is responsible for the yellow color of bruises. Bilirubin is an excretion product, and the body does not control levels. Bilirubin levels reflect the balance between production and excretion. Thus, there is no "normal" level of bilirubin. Bilirubin consists of an open chain of four pyrroles (tetrapyrrole); by contrast, the heme molecule is a closed ring of four pyrroles, called porphyrin. -- Wikipedia [HMDB]. Bilirubin is found in many foods, some of which are barley, mustard spinach, other bread, and sesbania flower. Bilirubin (BR) (from the Latin for "red bile") is a red-orange compound that occurs in the normal catabolic pathway that breaks down heme in vertebrates. This catabolism is a necessary process in the body's clearance of waste products that arise from the destruction of aged or abnormal red blood cells.[3] In the first step of bilirubin synthesis, the heme molecule is stripped from the hemoglobin molecule. Heme then passes through various processes of porphyrin catabolism, which varies according to the region of the body in which the breakdown occurs. For example, the molecules excreted in the urine differ from those in the feces.[4] The production of biliverdin from heme is the first major step in the catabolic pathway, after which the enzyme biliverdin reductase performs the second step, producing bilirubin from biliverdin.[5][6] Ultimately, bilirubin is broken down within the body, and its metabolites excreted through bile and urine; elevated levels may indicate certain diseases.[7] It is responsible for the yellow color of healing bruises and the yellow discoloration in jaundice. The bacterial enzyme bilirubin reductase is responsible for the breakdown of bilirubin in the gut.[8] One breakdown product, urobilin, is the main component of the straw-yellow color in urine.[9] Another breakdown product, stercobilin, causes the brown color of feces. Although bilirubin is usually found in animals rather than plants, at least one plant species, Strelitzia nicolai, is known to contain the pigment.[10] Bilirubin is created by the activity of biliverdin reductase on biliverdin, a green tetrapyrrolic bile pigment that is also a product of heme catabolism. Bilirubin, when oxidized, reverts to become biliverdin once again. This cycle, in addition to the demonstration of the potent antioxidant activity of bilirubin,[14] has led to the hypothesis that bilirubin's main physiologic role is as a cellular antioxidant.[15][16] Consistent with this, animal studies suggest that eliminating bilirubin results in endogenous oxidative stress.[17] Bilirubin's antioxidant activity may be particularly important in the brain, where it prevents excitotoxicity and neuronal death by scavenging superoxide during N-methyl-D-aspartic acid neurotransmission.[18] Bilirubin in plasma is mostly produced by the destruction of erythrocytes. Heme is metabolized into biliverdin (via heme oxygenase) and then into bilirubin (via biliverdin reductase) inside the macrophages. [11] Bilirubin is then released into the plasma and transported to the liver bound by albumin, since it is insoluble in water in this state. In this state, bilirubin is called unconjugated (despite being bound by albumin). [11] In the liver, unconjugated bilirubin is up-taken by the hepatocytes and subsequently conjugated with glucuronic acid (via the enzyme uridine diphosphate–glucuronyl transferase). In this state, bilirubin is soluble in water and it is called conjugated bilirubin. [11] Conjugated bilirubin is excreted into the bile ducts and enters the duodenum. During its transport to the colon, it is converted into urobilinogen by the bacterial enzyme bilirubin reductase.[8] Most of the urobilinogen is further reduced into stercobilinogen and is excreted through feces (air oxidizes stercobilinogen to stercobilin, which gives feces their characteristic brown color). [11] A lesser amount of urobilinogen is re-absorbed into portal circulation and transferred to the liver. For the most part, this urobilinogen is recycled to conjugated bilirubin and this process closes the enterohepatic circle. There is also an amount of urobilinogen which is not recycled, but rather enters the systemic circulation and subsequently the kidneys, where it is excreted. Air oxidizes urobilinogen into urobilin, which gives urine its characteristic color.[11][19] In parallel, a small amount of conjugated billirubin can also enter the systemic circulation and get excreted through urine. This is exaggerated in various pathological situations.[19]

   

Cytisine

Cytisine

C11H14N2O (190.1106)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

bilirubin

bilirubin

C33H36N4O6 (584.2635)


D020011 - Protective Agents > D000975 - Antioxidants COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cytisinicline

(1R,5S)-1,2,3,4,5,6-HEXAHYDRO-8H-1,5-METHANOPYRIDO(1,2-A)(1,5)DIAZOCIN-8-ONE (CYTISINE)

C11H14N2O (190.1106)


Cytisine is an organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. It has a role as a nicotinic acetylcholine receptor agonist, a phytotoxin and a plant metabolite. It is an alkaloid, an organic heterotricyclic compound, a secondary amino compound, a lactam and a bridged compound. Cytisine is an alkaloid naturally derived from the Fabaceae family of plants including the genera Laburnum and Cytisus. Recent studies have shown it to be a more effective and significantly more affordable smoking cessation treatment than nicotine replacement therapy. Also known as baptitoxine or sophorine, cytisine has been used as a smoking cessation treatment since 1964, and is relatively unknown in regions outside of central and Eastern Europe. Cytisine is a partial nicotinic acetylcholine agonist with a half-life of 4.8 hours. Recent Phase III clinical trials using Tabex (a brand of Cytisine marketed by Sopharma AD) have shown similar efficacy to varenicline, but at a fraction of the cost. Cytisine is a natural product found in Viscum cruciatum, Thermopsis chinensis, and other organisms with data available. See also: Cytisus scoparius flowering top (part of); Thermopsis lanceolata whole (part of). An organic heterotricyclic compound that is the toxic principle in Laburnum seeds and is found in many members of the Fabaceae (legume, pea or bean) family. An acetylcholine agonist, it is widely used throughout Eastern Europe as an aid to giving up smoking. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].

   

Melatonin

N-[2-(5-Methoxy-1H-indol-3-yl)ethyl]acetamide

C13H16N2O2 (232.1212)


N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CH - Melatonin receptor agonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS ORIGINAL_PRECURSOR_SCAN_NO 3385; CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3387; ORIGINAL_PRECURSOR_SCAN_NO 3385 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3400; ORIGINAL_PRECURSOR_SCAN_NO 3398 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3376; ORIGINAL_PRECURSOR_SCAN_NO 3375 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3184; ORIGINAL_PRECURSOR_SCAN_NO 3183 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3391; ORIGINAL_PRECURSOR_SCAN_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3198; ORIGINAL_PRECURSOR_SCAN_NO 3196 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7086; ORIGINAL_PRECURSOR_SCAN_NO 7084 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7064; ORIGINAL_PRECURSOR_SCAN_NO 7062 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7062; ORIGINAL_PRECURSOR_SCAN_NO 7059 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7093; ORIGINAL_PRECURSOR_SCAN_NO 7090 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7098; ORIGINAL_PRECURSOR_SCAN_NO 7096 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7084; ORIGINAL_PRECURSOR_SCAN_NO 7082 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.685 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.686 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.679 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.682 Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].

   

bilirubin

Haematoidin

C33H36N4O6 (584.2635)


D020011 - Protective Agents > D000975 - Antioxidants COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Origin: Plant; Formula(Parent): C33H36N4O6; Bottle Name:Bilirubin from Porcine / Bilirubin ,Mixed isomers; PRIME Parent Name:Bilirubin; PRIME in-house No.:?0043 V0105, (?0043: Bilirubin, ?V0105: Bilirubin)

   

Cytisin

Cytisine

C11H14N2O (190.1106)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2241 Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3]. Cytisinicline (Cytisine) is an alkaloid. Cytisinicline (Cytisine) is a partial agonist of α4β2 nAChRs[1], and partial to full agonist at β4 containing receptors and α7 receptors[2]. Has been used medically to help with smoking cessation[3].