Exact Mass: 933.263119

Exact Mass Matches: 933.263119

Found 83 metabolites which its exact mass value is equals to given mass value 933.263119, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Petunidin-3-(p-coumaroyl)-rutinoside-5-glucoside

Petunidin-3-O-(6-O-(4-O-E-coum)-alpha-rhamnopyranosyl-beta-glucopyranosyl)-5-O-beta-glucopyranoside trifluoroacetate salt

[C43H49O23]+ (933.2664504)


Acquisition and generation of the data is financially supported in part by CREST/JST.

   

3-Oxoheptanoyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-({2-[(2-{[(3S)-6-oxo-3-(prop-1-en-2-yl)heptanoyl]sulfanyl}ethyl)carbamoyl]ethyl}carbamoyl)propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

C31H50N7O18P3S (933.2145790000001)


3-Oxoheptanoyl-CoA is also known as (3S)-3-Isopropenyl-6-oxoenanthoyl-CoA. 3-Oxoheptanoyl-CoA is considered to be slightly soluble (in water) and acidic. 3-Oxoheptanoyl-CoA is a fatty ester lipid molecule

   

c0893

2-Hydroxy-4-isopropenylcyclohexane-1-carboxyl-CoA

C31H50N7O18P3S (933.2145790000001)


   

2,6-Dimethyl-5-methylene-3-oxo-heptanoyl-CoA

2,6-Dimethyl-5-methylene-3-oxo-heptanoyl-CoA

C31H50N7O18P3S (933.2145790000001)


   

cobalt(2+);3-[(2S,3S,7S,8S)-7,13,17-tris(2-carboxyethyl)-3,8,12,18-tetrakis(carboxymethyl)-3,8,10-trimethyl-2,7-dihydroporphyrin-21,23-diid-2-yl]propanoic acid

cobalt(2+);3-[(2S,3S,7S,8S)-7,13,17-tris(2-carboxyethyl)-3,8,12,18-tetrakis(carboxymethyl)-3,8,10-trimethyl-2,7-dihydroporphyrin-21,23-diid-2-yl]propanoic acid

C43H46CoN4O16 (933.2240655999999)


   

Petanin

2-(3,4-dihydroxy-5-methoxyphenyl)-3-[(6-{[(3,4-dihydroxy-5-{[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-6-methyloxan-2-yl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl)oxy]-7-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

C43H49O23 (933.2664504)


Petanin is found in garden tomato (var.). Petanin is isolated from Solanum species.

   

Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside

3-{[4,5-dihydroxy-6-({[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxyphenyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

C43H49O23 (933.2664504)


Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside is found in brassicas. Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside is a constituent of radish (Raphanus sativus) Constituent of radish (Raphanus sativus). Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside is found in brassicas and radish.

   

α-D-GlcNAc3S-(1→4)-β-D-GlcA(1→3)-β-D-Gal(1→3)-β-D-Gal(1→4)-D-Xyl

(2S,3S,4R,5R,6R)-6-{[(2S,3R,4S,5S,6R)-2-{[(2R,3S,4S,5R,6S)-3,5-dihydroxy-2-(hydroxymethyl)-6-{[(3R,4R,5R)-4,5,6-trihydroxyoxan-3-yl]oxy}oxan-4-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy}-4,5-dihydroxy-3-{[(2R,3R,4R,5R,6R)-5-hydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)-4-(sulphooxy)oxan-2-yl]oxy}oxane-2-carboxylic acid

C31H51NO29S (933.2267356000001)


GlcNAc3S(alpha1-4)GlcA(beta1-3)Gal(beta1-3)Gal(beta1-4)Xyl is a pentasaccharide comprised of an N-acetylated galactosamine residue sulfated on O-3, a glucuronic acid residue, and two galactose residues linked to a xylose residue at the reducing end.

   

(4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(3-hydroxydeca-4,6-dienoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C31H50N7O18P3S (933.2145790000001)


(4e,6z)-3-hydroxydeca-4,6-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (4E_6Z)-3-hydroxydeca-4_6-dienoic acid thioester of coenzyme A. (4e,6z)-3-hydroxydeca-4,6-dienoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (4e,6z)-3-hydroxydeca-4,6-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (4e,6z)-3-hydroxydeca-4,6-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA into (4E_6Z)-3-Hydroxydeca-4_6-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (4E_6Z)-3-Hydroxydeca-4_6-dienoylcarnitine is converted back to (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA occurs in four steps. First, since (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (4E,6Z)-3-Hydroxydeca-4,6-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD ...

   

(6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(3-hydroxydeca-6,8-dienoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C31H50N7O18P3S (933.2145790000001)


(6z,8e)-3-hydroxydeca-6,8-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (6Z_8E)-3-hydroxydeca-6_8-dienoic acid thioester of coenzyme A. (6z,8e)-3-hydroxydeca-6,8-dienoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (6z,8e)-3-hydroxydeca-6,8-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (6z,8e)-3-hydroxydeca-6,8-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA into (6Z_8E)-3-Hydroxydeca-6_8-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (6Z_8E)-3-Hydroxydeca-6_8-dienoylcarnitine is converted back to (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA occurs in four steps. First, since (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (6Z,8E)-3-Hydroxydeca-6,8-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD ...

   

(4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(3-hydroxydeca-4,7-dienoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C31H50N7O18P3S (933.2145790000001)


(4e,7e)-3-hydroxydeca-4,7-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (4E_7E)-3-hydroxydeca-4_7-dienoic acid thioester of coenzyme A. (4e,7e)-3-hydroxydeca-4,7-dienoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (4e,7e)-3-hydroxydeca-4,7-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (4e,7e)-3-hydroxydeca-4,7-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA into (4E_7E)-3-Hydroxydeca-4_7-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (4E_7E)-3-Hydroxydeca-4_7-dienoylcarnitine is converted back to (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA occurs in four steps. First, since (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (4E,7E)-3-Hydroxydeca-4,7-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD ...

   

(5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(3-hydroxydeca-5,7-dienoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acid

C31H50N7O18P3S (933.2145790000001)


(5z,7e)-3-hydroxydeca-5,7-dienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5Z_7E)-3-hydroxydeca-5_7-dienoic acid thioester of coenzyme A. (5z,7e)-3-hydroxydeca-5,7-dienoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5z,7e)-3-hydroxydeca-5,7-dienoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5z,7e)-3-hydroxydeca-5,7-dienoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA into (5Z_7E)-3-Hydroxydeca-5_7-dienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5Z_7E)-3-Hydroxydeca-5_7-dienoylcarnitine is converted back to (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA occurs in four steps. First, since (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (5Z,7E)-3-Hydroxydeca-5,7-dienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD ...

   

(6E)-Undec-6-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(undec-6-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C32H54N7O17P3S (933.2509624)


(6e)-undec-6-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (6E)-undec-6-enoic acid thioester of coenzyme A. (6e)-undec-6-enoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (6e)-undec-6-enoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (6e)-undec-6-enoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (6E)-Undec-6-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (6E)-Undec-6-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (6E)-Undec-6-enoyl-CoA into (6E)-Undec-6-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (6E)-Undec-6-enoylcarnitine is converted back to (6E)-Undec-6-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (6E)-Undec-6-enoyl-CoA occurs in four steps. First, since (6E)-Undec-6-enoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (6E)-Undec-6-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol ...

   

(2E)-Undec-2-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(undec-2-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C32H54N7O17P3S (933.2509624)


(2e)-undec-2-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2E)-undec-2-enoic acid thioester of coenzyme A. (2e)-undec-2-enoyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2e)-undec-2-enoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2e)-undec-2-enoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2E)-Undec-2-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2E)-Undec-2-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2E)-Undec-2-enoyl-CoA into (2E)-Undec-2-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2E)-Undec-2-enoylcarnitine is converted back to (2E)-Undec-2-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2E)-Undec-2-enoyl-CoA occurs in four steps. First, since (2E)-Undec-2-enoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2E)-Undec-2-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the al...

   

(5E)-Undec-5-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(undec-5-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C32H54N7O17P3S (933.2509624)


(5e)-undec-5-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (5E)-undec-5-enoic acid thioester of coenzyme A. (5e)-undec-5-enoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (5e)-undec-5-enoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (5e)-undec-5-enoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (5E)-Undec-5-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (5E)-Undec-5-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (5E)-Undec-5-enoyl-CoA into (5E)-Undec-5-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (5E)-Undec-5-enoylcarnitine is converted back to (5E)-Undec-5-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (5E)-Undec-5-enoyl-CoA occurs in four steps. First, since (5E)-Undec-5-enoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (5E)-Undec-5-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol ...

   

(4E)-Undec-4-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(undec-4-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C32H54N7O17P3S (933.2509624)


(4e)-undec-4-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (4E)-undec-4-enoic acid thioester of coenzyme A. (4e)-undec-4-enoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (4e)-undec-4-enoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (4e)-undec-4-enoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (4E)-Undec-4-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (4E)-Undec-4-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (4E)-Undec-4-enoyl-CoA into (4E)-Undec-4-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (4E)-Undec-4-enoylcarnitine is converted back to (4E)-Undec-4-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (4E)-Undec-4-enoyl-CoA occurs in four steps. First, since (4E)-Undec-4-enoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (4E)-Undec-4-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol ...

   

(7E)-Undec-7-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(undec-7-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C32H54N7O17P3S (933.2509624)


(7e)-undec-7-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (7E)-undec-7-enoic acid thioester of coenzyme A. (7e)-undec-7-enoyl-coa is an acyl-CoA with 1 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (7e)-undec-7-enoyl-coa is therefore classified as a short chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (7e)-undec-7-enoyl-coa, being a short chain acyl-CoA is a substrate for short chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (7E)-Undec-7-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (7E)-Undec-7-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (7E)-Undec-7-enoyl-CoA into (7E)-Undec-7-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (7E)-Undec-7-enoylcarnitine is converted back to (7E)-Undec-7-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (7E)-Undec-7-enoyl-CoA occurs in four steps. First, since (7E)-Undec-7-enoyl-CoA is a short chain acyl-CoA it is the substrate for a short chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (7E)-Undec-7-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol ...

   

Undec-3-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(undec-3-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C32H54N7O17P3S (933.2509624)


Undec-3-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an undec-3-enoic acid thioester of coenzyme A. Undec-3-enoyl-coa is an acyl-CoA with 11 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Undec-3-enoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Undec-3-enoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Undec-3-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Undec-3-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Undec-3-enoyl-CoA into Undec-3-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Undec-3-enoylcarnitine is converted back to Undec-3-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Undec-3-enoyl-CoA occurs in four steps. First, since Undec-3-enoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Undec-3-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thio...

   

Undec-9-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(undec-9-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C32H54N7O17P3S (933.2509624)


Undec-9-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an undec-9-enoic acid thioester of coenzyme A. Undec-9-enoyl-coa is an acyl-CoA with 11 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Undec-9-enoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Undec-9-enoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Undec-9-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Undec-9-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Undec-9-enoyl-CoA into Undec-9-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Undec-9-enoylcarnitine is converted back to Undec-9-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Undec-9-enoyl-CoA occurs in four steps. First, since Undec-9-enoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Undec-9-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thio...

   

Undec-8-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(undec-8-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C32H54N7O17P3S (933.2509624)


Undec-8-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an undec-8-enoic acid thioester of coenzyme A. Undec-8-enoyl-coa is an acyl-CoA with 11 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Undec-8-enoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Undec-8-enoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, Undec-8-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of Undec-8-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts Undec-8-enoyl-CoA into Undec-8-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, Undec-8-enoylcarnitine is converted back to Undec-8-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of Undec-8-enoyl-CoA occurs in four steps. First, since Undec-8-enoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of Undec-8-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thio...

   

undec-10-enoyl-CoA

4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-3,3-dimethyl-N-(2-{[2-(undec-10-enoylsulphanyl)ethyl]-C-hydroxycarbonimidoyl}ethyl)butanimidic acid

C32H54N7O17P3S (933.2509624)


Undec-10-enoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is an undec-10-enoic acid thioester of coenzyme A. Undec-10-enoyl-coa is an acyl-CoA with 11 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. Undec-10-enoyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. Undec-10-enoyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, undec-10-enoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of undec-10-enoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts undec-10-enoyl-CoA into undec-10-enoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, undec-10-enoylcarnitine is converted back to undec-10-enoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of undec-10-enoyl-CoA occurs in four steps. First, since undec-10-enoyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of undec-10-enoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+....

   

Peonidin 3-caffeoyl-rutinoside 5-glucoside

3-{[(2S,3R,4S,5S,6R)-6-({[(2R,3R,4S,5R)-5-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

C43H49O23 (933.2664504)


Peonidin 3-caffeoyl-rutinoside 5-glucoside is a member of the class of compounds known as anthocyanidin-5-o-glycosides. Anthocyanidin-5-o-glycosides are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Peonidin 3-caffeoyl-rutinoside 5-glucoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Peonidin 3-caffeoyl-rutinoside 5-glucoside can be found in potato, which makes peonidin 3-caffeoyl-rutinoside 5-glucoside a potential biomarker for the consumption of this food product.

   

Pelargonidin 3-O-[2-O-(6-O-(E)-feruloyl-beta-D-glucopyranosyl)-beta-D-glucopyranoside] 5-O-(beta-D-glucopyranoside)

3-{[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxyphenyl)-5-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

C43H49O23+ (933.2664504)


Pelargonidin 3-o-[2-o-(6-o-(e)-feruloyl-beta-d-glucopyranosyl)-beta-d-glucopyranoside] 5-o-(beta-d-glucopyranoside) is a member of the class of compounds known as anthocyanidin-5-o-glycosides. Anthocyanidin-5-o-glycosides are phenolic compounds containing one anthocyanidin moiety which is O-glycosidically linked to a carbohydrate moiety at the C5-position. Pelargonidin 3-o-[2-o-(6-o-(e)-feruloyl-beta-d-glucopyranosyl)-beta-d-glucopyranoside] 5-o-(beta-d-glucopyranoside) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pelargonidin 3-o-[2-o-(6-o-(e)-feruloyl-beta-d-glucopyranosyl)-beta-d-glucopyranoside] 5-o-(beta-d-glucopyranoside) can be found in radish, which makes pelargonidin 3-o-[2-o-(6-o-(e)-feruloyl-beta-d-glucopyranosyl)-beta-d-glucopyranoside] 5-o-(beta-d-glucopyranoside) a potential biomarker for the consumption of this food product.

   

Petanin

3- [ [ 6-O- [ 4-O- [ 3- (4-Hydroxyphenyl) -1-oxo-2-propenyl ] -alpha-L-rhamnopyranosyl ] -beta-D-glucopyranosyl ] oxy ] -2- (3,4-dihydroxy-5-methoxyphenyl) -5- (beta-D-glucopyranosyloxy) -7-hydroxy-1-benzopyrylium

C43H49O23 (933.2664504)


   

Peonidin 3-p-coumarylsophoroside-5-glucoside

Peonidin 3-p-coumarylsophoroside-5-glucoside

C43H49O23 (933.2664504)


   

Peonidin 3-caffeylrutinoside-5-glucoside

3- [ 6-O- [ 4-O- [ (E) -3- (3,4-Dihydroxyphenyl) propenoyl ] -alpha-L-rhamnopyranosyl ] -beta-D-glucopyranosyloxy ] -5- (beta-D-glucopyranosyloxy) -7-hydroxy-2- (4-hydroxy-3-methoxyphenyl) -1-benzopyrylium

C43H49O23 (933.2664504)


   

Pelaronidin 3-(2-(6-ferulylglucosyl)glucoside)-5-glucoside

Pelargonidin 3-O- [ 2-O- (6-O- (E) -feruloyl-beta-D-glucopyranosyl) -beta-D-glucopyranoside ] -5-O- (beta-D-glucopyranoside)

C43H49O23 (933.2664504)


   

Pelargonidin 3-(6-ferulyl-2-glucosylglucoside)-5-glucoside

Pelargonidin 3-O- [ 6-O- (E) -feruloyl-2-O-beta-D-glucopyranosyl-beta-D-glucopyranoside ] -5-O- (beta-D-glucopyranoside)

C43H49O23 (933.2664504)


   

Anthocyanin [M+]|Coumaroylated Anthocyanidin Gloucoside|3-(Coum-Rha-Glc)-5-Glc-Petunidin

Anthocyanin [M+]|Coumaroylated Anthocyanidin Gloucoside|3-(Coum-Rha-Glc)-5-Glc-Petunidin

[C43H49O23]+ (933.2664504)


   

Petunidin-3-O-(6-O-(4-O-E-coum)-alpha-rhamnopyranosyl-beta-glucopyranosyl)-5-O-beta-glucopyranoside trifluoroacetate salt

Petunidin-3-O-(6-O-(4-O-E-coum)-alpha-rhamnopyranosyl-beta-glucopyranosyl)-5-O-beta-glucopyranoside trifluoroacetate salt

[C43H49O23]+ (933.2664504)


   

Carbamoyl-Beta-Methoxy-Asn-Albicidin

Carbamoyl-Beta-Methoxy-Asn-Albicidin

C46H43N7O15 (933.2817008)


   

Anthocyanidin base + 5O, 1MeO, O-Hex, O-Hex-coumaroylHex

Anthocyanidin base + 5O, 1MeO, O-Hex, O-Hex-coumaroylHex

[C43H49O23]+ (933.2664504)


Annotation level-2

   

3,4',5,7-Tetrahydroxyflavylium(1+), 8CI

3-{[4,5-dihydroxy-6-({[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxyphenyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1$l^{4}-chromen-1-ylium

C43H49O23 (933.2664504)


   

CoA 10:2;O

3-phosphoadenosine 5-{3-[(3R)-3-hydroxy-4-({3-[(2-{[2-hydroxy-4-(prop-1-en-2-yl)cyclohexane-1-carbonyl]sulfanyl}ethyl)amino]-3-oxopropyl}amino)-2,2-dimethyl-4-oxobutyl] dihydrogen diphosphate}

C31H50N7O18P3S (933.2145790000001)


An oxo-fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of (3S)-3-isopropenyl-6-oxoheptanoic acid. An unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxylic acid group of 3-isopropenyl-6-oxoheptanoic acid. A 3-hydroxyacyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 2-hydroxy-4-isopropenylcyclohexane-1-carboxylic acid.

   

Pelargonidin 3-O-[2-O-(6-O-(E)-feruloyl-beta-D-glucopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside)

Pelargonidin 3-O-[2-O-(6-O-(E)-feruloyl-beta-D-glucopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside)

C43H49O23 (933.2664504)


   

Pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-beta-D-glucopyranosyl-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside)

Pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-beta-D-glucopyranosyl-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside)

C43H49O23 (933.2664504)


   

l-carnitine magnesium citrate

l-carnitine magnesium citrate

C33H55Mg3N3O23 (933.27777)


   

ALUMINUM 2,9,16,23-TETRAPHENOXY-29 H ,31 H-PHTHALOCYANINE HYDROXIDE

ALUMINUM 2,9,16,23-TETRAPHENOXY-29 H ,31 H-PHTHALOCYANINE HYDROXIDE

C56H42AlN8O5 (933.3093412)


   

Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside

3-{[4,5-dihydroxy-6-({[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(4-hydroxyphenyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

C43H49O23+ (933.2664504)


Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside is found in brassicas. Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside is a constituent of radish (Raphanus sativus) Constituent of radish (Raphanus sativus). Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside is found in brassicas and radish.

   
   
   
   

trans-2-undecenoyl-CoA

trans-2-undecenoyl-CoA

C32H54N7O17P3S (933.2509624)


A medium-chain unsaturated fatty acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of trans-2-undecenoic acid.

   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (Z)-undec-4-enethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (Z)-undec-4-enethioate

C32H54N7O17P3S (933.2509624)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-undec-4-enethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-undec-4-enethioate

C32H54N7O17P3S (933.2509624)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-undec-3-enethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-undec-3-enethioate

C32H54N7O17P3S (933.2509624)


   

(2S)-2-[[(2S)-2-[[(2R,3S,4R,5S)-5-[(2R,3S,4S)-5-[4-[[(1R)-1-[(6S,7S)-2-amino-5-formyl-7-methyl-4-oxo-3,6,7,8-tetrahydropteridin-6-yl]ethyl]amino]phenyl]-2,3,4-trihydroxypentoxy]-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-4-carboxybutanoyl]amino]pentanedioic acid

(2S)-2-[[(2S)-2-[[(2R,3S,4R,5S)-5-[(2R,3S,4S)-5-[4-[[(1R)-1-[(6S,7S)-2-amino-5-formyl-7-methyl-4-oxo-3,6,7,8-tetrahydropteridin-6-yl]ethyl]amino]phenyl]-2,3,4-trihydroxypentoxy]-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-4-carboxybutanoyl]amino]pentanedioic acid

C36H52N7O20P (933.3004601999999)


   

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-9-methyldec-7-enethioate

S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (E)-9-methyldec-7-enethioate

C32H54N7O17P3S (933.2509624)


   
   
   

Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside

Pelargonidin 3-O-[b-D-Glucopyranosyl-(1->2)-[4-hydroxy-3-methoxy-(E)-cinnamoyl-(->6)]-b-D-glucopyranoside] 5-O-b-D-glucopyranoside

C43H49O23+ (933.2664504)


   
   
   
   
   
   
   
   
   

Peonidin 3-caffeoyl-rutinoside 5-glucoside

Peonidin 3-caffeoyl-rutinoside 5-glucoside

C43H49O23+ (933.2664504)


   
   
   
   
   

alpha-D-GlcNAc3S-(1-->4)-beta-D-GlcA(1-->3)-beta-D-Gal(1-->3)-beta-D-Gal(1-->4)-D-Xyl

alpha-D-GlcNAc3S-(1-->4)-beta-D-GlcA(1-->3)-beta-D-Gal(1-->3)-beta-D-Gal(1-->4)-D-Xyl

C31H51NO29S (933.2267356000001)


   

Petunidin-3-(p-coumaroyl)-rutinoside-5-glucoside

Petunidin-3-(p-coumaroyl)-rutinoside-5-glucoside

C43H49O23+ (933.2664504)


   
   
   
   

3-sulfated Le(a) pentasaccharide

3-sulfated Le(a) pentasaccharide

C32H55NO28S (933.263119)


   
   

Petunidin-3-O-(6-O-(4-O-E-coum)-alpha-rhamnopyranosyl-beta-glucopyranosyl)-5-O-beta-glucopyranoside

Petunidin-3-O-(6-O-(4-O-E-coum)-alpha-rhamnopyranosyl-beta-glucopyranosyl)-5-O-beta-glucopyranoside

C43H49O23+ (933.2664504)


   
   

(3R)-3-Isopropenyl-6-oxoheptanoyl-CoA; (Acyl-CoA); [M+H]+

(3R)-3-Isopropenyl-6-oxoheptanoyl-CoA; (Acyl-CoA); [M+H]+

C31H50N7O18P3S (933.2145790000001)


   

(R)-3-hydroxydecanoyl-CoA(4-)

(R)-3-hydroxydecanoyl-CoA(4-)

C31H50N7O18P3S (933.2145790000001)


A 3-hydroxy fatty acyl-CoA(4-) obtained by deprotonation of the phosphate and diphosphate OH groups of (R)-3-hydroxydecanoyl-CoA.

   

3-hydroxydecanoyl-CoA(4-)

3-hydroxydecanoyl-CoA(4-)

C31H50N7O18P3S (933.2145790000001)


A 3-hydroxy fatty acyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate OH groups of 3-hydroxydecanoyl-CoA; major species at pH 7.3.

   

[3,4-Dihydroxy-6-[7-hydroxy-2-(4-hydroxyphenyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromenylium-3-yl]oxy-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[3,4-Dihydroxy-6-[7-hydroxy-2-(4-hydroxyphenyl)-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromenylium-3-yl]oxy-5-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C43H49O23+ (933.2664504)


   

(S)-3-hydroxydecanoyl-CoA(4-)

(S)-3-hydroxydecanoyl-CoA(4-)

C31H50N7O18P3S (933.2145790000001)


An (S)-3-hydroxyacyl-CoA(4-) arising from deprotonation of the phosphate and diphosphate OH groups of (S)-3-hydroxydecanoyl-CoA; major species at pH 7.3.

   
   
   

Peonidin 3-caffeoyl-rutinoside-5-glucoside

Peonidin 3-caffeoyl-rutinoside-5-glucoside

C43H49O23 (933.2664504)