Exact Mass: 909.1570672000001
Exact Mass Matches: 909.1570672000001
Found 34 metabolites which its exact mass value is equals to given mass value 909.1570672000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
pimeloyl-CoA
C28H46N7O19P3S (909.1781956000001)
Pimeloyl-coa, also known as pimeloyl-coenzyme a or 6-carboxyhexanoyl-coa, is a member of the class of compounds known as 2,3,4-saturated fatty acyl coas. 2,3,4-saturated fatty acyl coas are acyl-CoAs carrying a 2,3,4-saturated fatty acyl chain. Thus, pimeloyl-coa is considered to be a fatty ester lipid molecule. Pimeloyl-coa is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Pimeloyl-coa can be synthesized from pimelic acid and coenzyme A. Pimeloyl-coa is also a parent compound for other transformation products, including but not limited to, 3-hydroxypimeloyl-CoA, 3-oxopimeloyl-CoA, and 2,3-didehydropimeloyl-CoA. Pimeloyl-coa can be found in a number of food items such as german camomile, rose hip, chinese chestnut, and star anise, which makes pimeloyl-coa a potential biomarker for the consumption of these food products. Pimeloyl-coa may be a unique S.cerevisiae (yeast) metabolite.
3-Oxoadipyl-CoA
C27H42N7O20P3S (909.1418122000001)
This compound belongs to the family of 3-Oxo-acyl CoAs. These are organic compounds containing a 3-oxo acylated coenzyme A derivative.
2,6-dihydroxycyclohexane-1-carbonyl-CoA
C28H46N7O19P3S (909.1781956000001)
An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 2,6-dihydroxycyclohexane-1-carboxylic acid.
2,2-dimethylpentanedioyl-CoA
C28H46N7O19P3S (909.1781956000001)
2,2-dimethylpentanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 2_2-dimethylpentanedioic acid thioester of coenzyme A. 2,2-dimethylpentanedioyl-coa is an acyl-CoA with 6 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 2,2-dimethylpentanedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 2,2-dimethylpentanedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 2,2-dimethylpentanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 2,2-dimethylpentanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 2,2-dimethylpentanedioyl-CoA into 2_2-dimethylpentanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 2_2-dimethylpentanedioylcarnitine is converted back to 2,2-dimethylpentanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 2,2-dimethylpentanedioyl-CoA occurs in four steps. First, since 2,2-dimethylpentanedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 2,2-dimethylpentanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed dou...
(2E)-4-hydroxy-3-methylpent-2-enedioyl-CoA
C27H42N7O20P3S (909.1418122000001)
(2e)-4-hydroxy-3-methylpent-2-enedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2E)-4-hydroxy-3-methylpent-2-enedioic acid thioester of coenzyme A. (2e)-4-hydroxy-3-methylpent-2-enedioyl-coa is an acyl-CoA with 6 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2e)-4-hydroxy-3-methylpent-2-enedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2e)-4-hydroxy-3-methylpent-2-enedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2E)-4-hydroxy-3-methylpent-2-enedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2E)-4-hydroxy-3-methylpent-2-enedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2E)-4-hydroxy-3-methylpent-2-enedioyl-CoA into (2E)-4-hydroxy-3-methylpent-2-enedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2E)-4-hydroxy-3-methylpent-2-enedioylcarnitine is converted back to (2E)-4-hydroxy-3-methylpent-2-enedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2E)-4-hydroxy-3-methylpent-2-enedioyl-CoA occurs in four steps. First, since (2E)-4-hydroxy-3-methylpent-2-enedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2E)-4-hydroxy-3-methylpent-2-enedioyl...
2-ethylpentanedioyl-CoA
C28H46N7O19P3S (909.1781956000001)
2-ethylpentanedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a 2-ethylpentanedioic acid thioester of coenzyme A. 2-ethylpentanedioyl-coa is an acyl-CoA with 7 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. 2-ethylpentanedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. 2-ethylpentanedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, 2-ethylpentanedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of 2-ethylpentanedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts 2-ethylpentanedioyl-CoA into 2-ethylpentanedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, 2-ethylpentanedioylcarnitine is converted back to 2-ethylpentanedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of 2-ethylpentanedioyl-CoA occurs in four steps. First, since 2-ethylpentanedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of 2-ethylpentanedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase ox...
CoA 7:1;O2
C28H46N7O19P3S (909.1781956000001)
CoA 6:2;O3
C27H42N7O20P3S (909.1418122000001)
pimeloyl-CoA
C28H46N7O19P3S (909.1781956000001)
An omega carboxyacyl-CoA that is the S-pimeloyl derivative of coenzyme A.
2,6-Dihydroxycyclohexanecarbonyl-CoA
C28H46N7O19P3S (909.1781956000001)
(e)-4-Coumaroyl-CoA
C30H38N7O18P3S-4 (909.1206838)
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[[[(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-[[3-oxo-3-[2-(4-phenylbutanoylsulfanyl)ethylamino]propyl]amino]butoxy]-oxidophosphoryl]oxy-oxidophosphoryl]oxymethyl]oxolan-3-yl] phosphate
C31H42N7O17P3S-4 (909.1570672000001)
(2E)-4-hydroxy-3-methylpent-2-enedioyl-CoA
C27H42N7O20P3S (909.1418122000001)
3-dehydrocarnityl CoA
C28H48N8O18P3S+ (909.2020037999999)
An acyl-CoA that results from the formal condensation of the thiol group of coenzyme A with the carboxy group of 3-dehydrocarnitine.
3-oxoadipyl-CoA; (Acyl-CoA); [M+H]+
C27H42N7O20P3S (909.1418122000001)
2,6-Dihydroxycyclohexane-1-carboxyl-CoA
C28H46N7O19P3S (909.1781956000001)
pimeloyl-CoA; (Acyl-CoA); [M+H]+
C28H46N7O19P3S (909.1781956000001)
5-Hydroxyamino-3-Methyl-Pyrrolidine-2-Carboxylic Acid-CoA; (Acyl-CoA); [M+H]+
2,6-Anhydro-3-Deoxy-D-Erythro-Hex-2-Enonic Acid-CoA; (Acyl-CoA); [M+H]+
C27H42N7O20P3S (909.1418122000001)
S-[2-[3-[[(2R)-4-[[[(2R,3R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] (3S)-3-hydroxy-3-methyl-5-oxohexanethioate
C28H46N7O19P3S (909.1781956000001)
3-oxoadipyl-CoA
C27H42N7O20P3S (909.1418122000001)
The S-(3-oxoadipyl) derivative of coenzyme A.
4-coumaroyl-CoA(4-)
Tetraanion of 4-coumaroyl-CoA arising from deprotonation of phosphate and diphosphate functions.
trans-4-coumaroyl-CoA(4-)
An acyl-CoA(4-) oxoanion arising from deprotonation of the phosphate and diphosphate OH groups of trans-4-coumaroyl-CoA; major species at pH 7.3.
7-({2-[(3-{[(2r)-4-[({[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxy]-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulfanyl)-7-oxoheptanoic acid
C28H46N7O19P3S (909.1781956000001)
7-[(2-{[3-({4-[({[5-(6-aminopurin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy(hydroxy)phosphoryl}oxy(hydroxy)phosphoryl)oxy]-1,2-dihydroxy-3,3-dimethylbutylidene}amino)-1-hydroxypropylidene]amino}ethyl)sulfanyl]-7-oxoheptanoic acid
C28H46N7O19P3S (909.1781956000001)