Exact Mass: 842.5602572

Exact Mass Matches: 842.5602572

Found 464 metabolites which its exact mass value is equals to given mass value 842.5602572, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Formacidine

2-[6-({5-[(4,5-dihydroxy-4,6-dimethyloxan-2-yl)oxy]-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl}oxy)-10-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


   

PA(22:2(13Z,16Z)/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphonic acid

C45H79O12P (842.5308864)


PA(22:2(13Z,16Z)/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/22:2(13Z,16Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphonic acid

C45H79O12P (842.5308864)


PA(6 keto-PGF1alpha/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/22:2(13Z,16Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:2(13Z,16Z)/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphonic acid

C45H79O12P (842.5308864)


PA(22:2(13Z,16Z)/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:2(13Z,16Z)/TXB2), in particular, consists of one chain of one 13Z,16Z-docosadienoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/22:2(13Z,16Z))

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(13Z,16Z)-docosa-13,16-dienoyloxy]propoxy]phosphonic acid

C45H79O12P (842.5308864)


PA(TXB2/22:2(13Z,16Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/22:2(13Z,16Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 13Z,16Z-docosadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphonic acid

C47H87O10P (842.6036531999999)


PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphonic acid

C47H87O10P (842.6036531999999)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphonic acid

C47H87O10P (842.6036531999999)


PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphonic acid

C47H87O10P (842.6036531999999)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:1(11Z)/20:3(6,8,11)-OH(5))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:1(11Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(6,8,11)-OH(5)/20:1(11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(6,8,11)-OH(5)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(6,8,11)-OH(5)/20:1(11Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-19:0/PGJ2)

PG(i-19:0/PGJ2)

C45H79O12P (842.5308864)


PG(i-19:0/PGJ2) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-19:0/PGJ2), in particular, consists of one chain of one 17-methyloctadecanoyl at the C-1 position and one chain of Prostaglandin J2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(PGJ2/i-19:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z)-7-[(1S,5R)-5-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-4-oxocyclopent-2-en-1-yl]hept-5-enoyl]oxy}-2-[(17-methyloctadecanoyl)oxy]propoxy]phosphinic acid

C45H79O12P (842.5308864)


PG(PGJ2/i-19:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(PGJ2/i-19:0), in particular, consists of one chain of one Prostaglandin J2 at the C-1 position and one chain of 17-methyloctadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   
   
   

Spiramycin I

Spiramycin I

C43H74N2O14 (842.5139784)


A macrolide antibiotic produced by various Streptomyces species that is used to treat toxoplasmosis and various other infections of soft tissues.

   

PEG Diethylhexanoate n13

PEG Diethylhexanoate n13

C42H82O16 (842.5602572)


   

Spiramycin

2-[(4S,5R,6R,7S,9S,10S,11E,13E,16S)-6-[5-(4,5-dihydroxy-4,6-dimethyloxan-2-yl)oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01F - Macrolides, lincosamides and streptogramins > J01FA - Macrolides D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007933 - Leucomycins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.737 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.736 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3077 Spiramycin (Rovamycin) is a macrolide antibiotic produced by Streptomyces ambofaciens with against bacteria and Toxoplasma gondii activities, and also has antiparasitic effect. Spiramycin is composed of a 16-member lactone ring, on which three sugars (mycaminose, forosamine, and mycarose) are attached[1][2]. Spiramycin I is a macrolide antibiotic and antiparasitic[1].

   
   
   
   

PG(19:1(9Z)/22:2(13Z,16Z))

1-(9Z-nonadecenoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PG(20:3(8Z,11Z,14Z)/21:0)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-heneicosanoyl-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PG(21:0/20:3(8Z,11Z,14Z))

1-heneicosanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PG(22:2(13Z,16Z)/19:1(9Z))

1-(13Z,16Z-docosadienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PI(O-16:0/20:5(5Z,8Z,11Z,14Z,17Z))

1-hexadecyl-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H79O12P (842.5308864)


   

PI(P-18:0/18:4(6Z,9Z,12Z,15Z))

1-(1Z-octadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H79O12P (842.5308864)


   

PI(P-16:0/20:4(5Z,8Z,11Z,14Z))

1-(1Z-hexadecenyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H79O12P (842.5308864)


   

PG 41:3

1-(13Z,16Z-docosadienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PI O-36:5

1-(1Z-octadecenyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phospho-(1-myo-inositol)

C45H79O12P (842.5308864)


   

1-docosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoserine

1-docosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoserine

C46H85NO10P- (842.5910779999999)


   
   
   

PA(22:2(13Z,16Z)/TXB2)

PA(22:2(13Z,16Z)/TXB2)

C45H79O12P (842.5308864)


   

PA(TXB2/22:2(13Z,16Z))

PA(TXB2/22:2(13Z,16Z))

C45H79O12P (842.5308864)


   

PA(22:2(13Z,16Z)/6 keto-PGF1alpha)

PA(22:2(13Z,16Z)/6 keto-PGF1alpha)

C45H79O12P (842.5308864)


   

PA(6 keto-PGF1alpha/22:2(13Z,16Z))

PA(6 keto-PGF1alpha/22:2(13Z,16Z))

C45H79O12P (842.5308864)


   

PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C47H87O10P (842.6036531999999)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0)

C47H87O10P (842.6036531999999)


   

PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C47H87O10P (842.6036531999999)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0)

C47H87O10P (842.6036531999999)


   

PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C46H83O11P (842.5672698)


   

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0)

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C46H83O11P (842.5672698)


   

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0)

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9))

PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9))

C46H83O11P (842.5672698)


   

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0)

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6))

PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6))

C46H83O11P (842.5672698)


   

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0)

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C46H83O11P (842.5672698)


   

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0)

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0)

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0)

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C46H83O11P (842.5672698)


   

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0)

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0)

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0)

C46H83O11P (842.5672698)


   

PG(20:1(11Z)/20:3(6,8,11)-OH(5))

PG(20:1(11Z)/20:3(6,8,11)-OH(5))

C46H83O11P (842.5672698)


   

PG(20:3(6,8,11)-OH(5)/20:1(11Z))

PG(20:3(6,8,11)-OH(5)/20:1(11Z))

C46H83O11P (842.5672698)


   

2-[[(2R)-3-heptadecanoyloxy-2-[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-heptadecanoyloxy-2-[(5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C45H81NO11P+ (842.5546946)


   

2-[[(2R)-2-heptadecanoyloxy-3-[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-heptadecanoyloxy-3-[(5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C45H81NO11P+ (842.5546946)


   

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-2-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C48H77NO9P+ (842.5335662)


   

2-[[(2R)-2-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-3-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H77NO12P+ (842.5183112)


   

2-[[(2R)-3-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z)-5-[(1S,2R,3R,5S)-3,5-dihydroxy-2-[(E,3R)-3-hydroxyoct-1-enyl]cyclopentyl]pent-3-enoyl]oxy-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C44H77NO12P+ (842.5183112)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-[(E)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-[(E)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-[(Z)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-[(Z)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-[(E)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-[(E)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-[(Z)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-[(Z)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[(E)-octadec-1-enoxy]-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(E)-octadec-1-enoxy]-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[(E)-octadec-1-enoxy]-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(E)-octadec-1-enoxy]-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[(4R,5S,6S,7R,9R,10R,11E,13Z,16S)-6-[(2S,3R,4R,5S,6R)-5-[(2S,4R,5R,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2R,5S,6R)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

2-[(4R,5S,6S,7R,9R,10R,11E,13Z,16S)-6-[(2S,3R,4R,5S,6R)-5-[(2S,4R,5R,6S)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-10-[(2R,5S,6R)-5-(dimethylamino)-6-methyloxan-2-yl]oxy-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


   

2-[[(2R)-2-[(5Z,8Z,11Z,13E)-15-hydroperoxyicosa-5,8,11,13-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5Z,8Z,11Z,13E)-15-hydroperoxyicosa-5,8,11,13-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

[1-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C45H79O12P (842.5308864)


   

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] hexadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] hexadecanoate

C45H79O12P (842.5308864)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-icos-11-enoate

C45H79O12P (842.5308864)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C45H79O12P (842.5308864)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] octadecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] octadecanoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (Z)-octadec-9-enoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propan-2-yl] (Z)-hexadec-9-enoate

C45H79O12P (842.5308864)


   

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[(Z)-hexadec-9-enoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octadecoxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C45H79O12P (842.5308864)


   

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

[1-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tetradecanoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C45H79O12P (842.5308864)


   

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-dodecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C45H79O12P (842.5308864)


   

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[1-decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] dodecanoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propan-2-yl] dodecanoate

C45H79O12P (842.5308864)


   

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-hexadecoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C45H79O12P (842.5308864)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-tetradecoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C45H79O12P (842.5308864)


   
   
   
   

[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[3,4,5-trihydroxy-6-[3-octadecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[3-octadecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C49H78O11 (842.5543838)


   

6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C49H78O11 (842.5543838)


   

[6-[2,3-bis[[(9Z,12Z)-octadeca-9,12-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2,3-bis[[(9Z,12Z)-octadeca-9,12-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-[(Z)-nonadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(Z)-nonadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C50H82O10 (842.5907672000001)


   

[6-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[3-dodecanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-dodecanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C50H82O10 (842.5907672000001)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

C50H82O10 (842.5907672000001)


   

6-[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C49H78O11 (842.5543838)


   

[6-[3-hexadecanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-hexadecanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-2-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C49H78O11 (842.5543838)


   

[3,4,5-trihydroxy-6-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[2-[(11Z,14Z)-icosa-11,14-dienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]oxane-2-carboxylic acid

C49H78O11 (842.5543838)


   

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

3,4,5-trihydroxy-6-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]oxane-2-carboxylic acid

3,4,5-trihydroxy-6-[3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]oxane-2-carboxylic acid

C49H78O11 (842.5543838)


   

6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C49H78O11 (842.5543838)


   

6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[2-[(13Z,16Z)-docosa-13,16-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C49H78O11 (842.5543838)


   

[6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] henicosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] henicosanoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C47H87O10P (842.6036531999999)


   

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

C47H87O10P (842.6036531999999)


   

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentacosanoate

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentacosanoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tricosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tricosanoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C47H87O10P (842.6036531999999)


   

[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] tricosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] tricosanoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (Z)-tetracos-13-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (Z)-tetracos-13-enoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] (Z)-docos-13-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] (Z)-docos-13-enoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] pentacosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] pentacosanoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] (Z)-henicos-11-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] (Z)-henicos-11-enoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] henicosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] henicosanoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C47H87O10P (842.6036531999999)


   

[2-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[2-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C46H83O11P (842.5672698)


   

[1-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C46H83O11P (842.5672698)


   

[(8E,12E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C49H83N2O7P (842.5937578)


   

[(8E,12E,16E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C49H83N2O7P (842.5937578)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] tricosanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] tricosanoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-dodecanoyloxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

C47H87O10P (842.6036531999999)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] tricosanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] tricosanoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-dodecanoyloxy-2-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,11E)-octadeca-9,11-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-icos-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H81NO8P+ (842.5699496)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-9-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-pentacosa-11,14-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-pentacosa-11,14-dienoate

C50H82O10 (842.5907672000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] henicosanoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-octadecanoyloxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-octadecanoyloxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-3-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (13E,16E,19E)-pentacosa-13,16,19-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (13E,16E,19E)-pentacosa-13,16,19-trienoate

C50H82O10 (842.5907672000001)


   

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H81NO8P+ (842.5699496)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E)-octadeca-6,9-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C53H80NO7+ (842.593447)


   
   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(9E,11E)-octadeca-9,11-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(9E,11E)-octadeca-9,11-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E)-octadeca-6,9-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(11E,14E)-icosa-11,14-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] pentacosanoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] pentacosanoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(9E,12E)-octadeca-9,12-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(9E,12E)-octadeca-9,12-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] tricosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] tricosanoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-icosanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H81NO8P+ (842.5699496)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-3-[(E)-octadec-6-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(2E,4E)-octadeca-2,4-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(2E,4E)-octadeca-2,4-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-pentacos-11-enoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-pentacos-11-enoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] henicosanoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(E)-hexadec-7-enoyl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-tetracos-15-enoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoate

C50H82O10 (842.5907672000001)


   

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(6E,9E)-octadeca-6,9-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2,3-bis[[(6E,9E)-octadeca-6,9-dienoyl]oxy]propoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] henicosanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] henicosanoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-octadec-17-enoyloxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C53H80NO7+ (842.593447)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C53H80NO7+ (842.593447)


   

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-hexadecanoyloxy-3-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(2E,4E)-octadeca-2,4-dienoyl]oxy-3-[(9E,11E)-octadeca-9,11-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] tricosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] tricosanoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoyl]oxy-2-tetradecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-hexadecanoyloxy-2-[(7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] henicosanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] henicosanoate

C47H87O10P (842.6036531999999)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-13-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(2E,4E)-octadeca-2,4-dienoyl]oxy-2-[(6E,9E)-octadeca-6,9-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C53H80NO7+ (842.593447)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

C50H82O10 (842.5907672000001)


   

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxy-2-[(E)-octadec-4-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxy-3-[(E)-octadec-7-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(9E,11E)-octadeca-9,11-dienoyl]oxy-2-[(9E,12E)-octadeca-9,12-dienoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C45H78O12S (842.5213708)


   
   

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[3-octadecoxy-2-[(6E,8Z,10E,14Z,16E)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-octadecoxy-2-[(6E,8Z,10E,14Z,16E)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[2-[(5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[2-[(Z)-7-[6-[(1E,5Z)-3-hydroxyocta-1,5-dienyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-octadecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-7-[6-[(1E,5Z)-3-hydroxyocta-1,5-dienyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-octadecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[2-[(5E,9Z)-8-hydroxy-10-[3-[(E)-oct-2-enyl]oxiran-2-yl]deca-5,9-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5E,9Z)-8-hydroxy-10-[3-[(E)-oct-2-enyl]oxiran-2-yl]deca-5,9-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-[(7Z,9Z,11E,13Z)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-[(7Z,9Z,11E,13Z)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[2-[(6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[2-[(Z)-7-[6-[(E)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-7-[6-[(E)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[3-[(15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-15,18,21,24,27,30,33,36,39-nonaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-15,18,21,24,27,30,33,36,39-nonaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H81NO8P+ (842.5699496)


   

2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

1-(8Z,11Z,14Z-eicosatrienoyl)-2-heneicosanoyl-glycero-3-phospho-(1-sn-glycerol)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-heneicosanoyl-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

phosphatidylserine 40:2(1-)

phosphatidylserine 40:2(1-)

C46H85NO10P (842.5910779999999)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 40 carbons in total and 2 double bonds.

   

MGDG(41:7)

MGDG(20:3_21:4)

C50H82O10 (842.5907672000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

SQDG(36:4)

SQDG(18:1_18:3)

C45H78O12S (842.5213708)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PI P-14:0/22:4 or PI O-14:1/22:4

PI P-14:0/22:4 or PI O-14:1/22:4

C45H79O12P (842.5308864)


   
   

PI P-16:0/20:4 or PI O-16:1/20:4

PI P-16:0/20:4 or PI O-16:1/20:4

C45H79O12P (842.5308864)


   
   

PI P-16:1/20:3 or PI O-16:2/20:3

PI P-16:1/20:3 or PI O-16:2/20:3

C45H79O12P (842.5308864)


   
   

PI P-18:0/18:4 or PI O-18:1/18:4

PI P-18:0/18:4 or PI O-18:1/18:4

C45H79O12P (842.5308864)


   
   

PI P-18:1/18:3 or PI O-18:2/18:3

PI P-18:1/18:3 or PI O-18:2/18:3

C45H79O12P (842.5308864)


   
   

PI P-36:4 or PI O-36:5

PI P-36:4 or PI O-36:5

C45H79O12P (842.5308864)


   
   
   
   
   

(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl 3-[(22s,23r)-17-ethenyl-12-ethyl-13,18,22,27-tetramethyl-3,5-dioxo-4-oxa-8,24,25,26-tetraazahexacyclo[19.2.1.1⁶,⁹.1¹¹,¹⁴.1¹⁶,¹⁹.0²,⁷]heptacosa-1(24),2(7),6(27),9,11(26),12,14,16,18,20-decaen-23-yl]propanoate

(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl 3-[(22s,23r)-17-ethenyl-12-ethyl-13,18,22,27-tetramethyl-3,5-dioxo-4-oxa-8,24,25,26-tetraazahexacyclo[19.2.1.1⁶,⁹.1¹¹,¹⁴.1¹⁶,¹⁹.0²,⁷]heptacosa-1(24),2(7),6(27),9,11(26),12,14,16,18,20-decaen-23-yl]propanoate

C53H70N4O5 (842.534593)


   

2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-{[(2s,3r,4r,5s,6r)-5-{[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-10-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

2-[(4r,5s,6s,7r,9r,10r,11e,13e,16r)-6-{[(2s,3r,4r,5s,6r)-5-{[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-10-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


   

2-[(4r,5s,6s,7r,9r,11e,13e,16r)-6-{[(2r,3r,4r,5s,6r)-5-{[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-10-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

2-[(4r,5s,6s,7r,9r,11e,13e,16r)-6-{[(2r,3r,4r,5s,6r)-5-{[(2s,4r,5s,6s)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-10-{[(2r,5s,6r)-5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl]acetaldehyde

C43H74N2O14 (842.5139784)


   

2-{6-[(5-{[(4r)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl)oxy]-10-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl}acetaldehyde

2-{6-[(5-{[(4r)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl)oxy]-10-{[5-(dimethylamino)-6-methyloxan-2-yl]oxy}-4-hydroxy-5-methoxy-9,16-dimethyl-2-oxo-1-oxacyclohexadeca-11,13-dien-7-yl}acetaldehyde

C43H74N2O14 (842.5139784)


   

(2s)-n-[(1s)-1-{[(1s)-1-{[(1s)-1-{[(1s)-1-{[(1s)-1-{[(1s)-1-(c-hydroxycarbonimidoyl)-2-methylpropyl](methyl)carbamoyl}-2-phenylethyl](methyl)carbamoyl}-2-methylpropyl](methyl)carbamoyl}-2-methylpropyl](methyl)carbamoyl}-2-methylpropyl](methyl)carbamoyl}-2-methylpropyl]-3-methyl-2-(methylamino)butanimidic acid

(2s)-n-[(1s)-1-{[(1s)-1-{[(1s)-1-{[(1s)-1-{[(1s)-1-{[(1s)-1-(c-hydroxycarbonimidoyl)-2-methylpropyl](methyl)carbamoyl}-2-phenylethyl](methyl)carbamoyl}-2-methylpropyl](methyl)carbamoyl}-2-methylpropyl](methyl)carbamoyl}-2-methylpropyl](methyl)carbamoyl}-2-methylpropyl]-3-methyl-2-(methylamino)butanimidic acid

C45H78N8O7 (842.5993157999999)


   

(2s,3s,4s)-4-[(2s,5s,7r,8s,9s,10r)-2-[(2s,2'r,3'r,4r,5s,5's)-5'-[(2r,3r,5r)-2-hydroxy-5-[(1s)-1-hydroxypropyl]-3,5-dimethyloxolan-2-yl]-4-{[(2r,5s,6r)-5-methoxy-6-methyloxan-2-yl]oxy}-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-9-methoxy-2,8,10-trimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-3-methoxy-2-methylpentanoic acid

(2s,3s,4s)-4-[(2s,5s,7r,8s,9s,10r)-2-[(2s,2'r,3'r,4r,5s,5's)-5'-[(2r,3r,5r)-2-hydroxy-5-[(1s)-1-hydroxypropyl]-3,5-dimethyloxolan-2-yl]-4-{[(2r,5s,6r)-5-methoxy-6-methyloxan-2-yl]oxy}-2,3'-dimethyl-[2,2'-bioxolan]-5-yl]-9-methoxy-2,8,10-trimethyl-1,6-dioxaspiro[4.5]decan-7-yl]-3-methoxy-2-methylpentanoic acid

C45H78O14 (842.5391288)


   

n-{1-[(1-{[1-({1-[(1-{[1-(c-hydroxycarbonimidoyl)-2-methylpropyl](methyl)carbamoyl}-2-phenylethyl)(methyl)carbamoyl]-2-methylpropyl}(methyl)carbamoyl)-2-methylpropyl](methyl)carbamoyl}-2-methylpropyl)(methyl)carbamoyl]-2-methylpropyl}-3-methyl-2-(methylamino)butanimidic acid

n-{1-[(1-{[1-({1-[(1-{[1-(c-hydroxycarbonimidoyl)-2-methylpropyl](methyl)carbamoyl}-2-phenylethyl)(methyl)carbamoyl]-2-methylpropyl}(methyl)carbamoyl)-2-methylpropyl](methyl)carbamoyl}-2-methylpropyl)(methyl)carbamoyl]-2-methylpropyl}-3-methyl-2-(methylamino)butanimidic acid

C45H78N8O7 (842.5993157999999)