Exact Mass: 842.6036531999999

Exact Mass Matches: 842.6036531999999

Found 500 metabolites which its exact mass value is equals to given mass value 842.6036531999999, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

TG(14:1(9Z)/18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


TG(14:1(9Z)/18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a monoeicosapentaenoic acid triglyceride. Triglycerides (TGs or TAGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid trimesters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(14:1(9Z)/18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of myristoleic acid at the C-1 position, one chain of stearidonic acid at the C-2 position and one chain of eicosapentaenoic acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (www.cyberlipid.org, www.wikipedia.org)
TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols.

   

TG(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/18:4(6Z,9Z,12Z,15Z))

(2S)-1-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propan-2-yl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


TG(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/18:4(6Z,9Z,12Z,15Z)) is a monoeicosapentaenoic acid triglyceride. Triglycerides (TGs or TAGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid trimesters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of myristoleic acid at the C-1 position, one chain of eicosapentaenoic acid at the C-2 position and one chain of stearidonic acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (www.cyberlipid.org, www.wikipedia.org)
TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols.

   

TG(18:4(6Z,9Z,12Z,15Z)/14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z))

(2S)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


TG(18:4(6Z,9Z,12Z,15Z)/14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)) is a monoeicosapentaenoic acid triglyceride. Triglycerides (TGs or TAGs) are also known as triacylglycerols or triacylglycerides, meaning that they are glycerides in which the glycerol is esterified with three fatty acid groups (i.e. fatty acid trimesters of glycerol). TGs may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TG(18:4(6Z,9Z,12Z,15Z)/14:1(9Z)/20:5(5Z,8Z,11Z,14Z,17Z)), in particular, consists of one chain of stearidonic acid at the C-1 position, one chain of myristoleic acid at the C-2 position and one chain of eicosapentaenoic acid at the C-3 position. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) with the help of lipases and bile secretions, which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. (www.cyberlipid.org, www.wikipedia.org)
TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols.

   

PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-(tetracosanoyloxy)propoxy]phosphonic acid

C47H87O10P (842.6036531999999)


PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one tetracosanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-(tetracosanoyloxy)propoxy]phosphonic acid

C47H87O10P (842.6036531999999)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of tetracosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

[(2R)-2-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-3-[(22-methyltricosanoyl)oxy]propoxy]phosphonic acid

C47H87O10P (842.6036531999999)


PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6)), in particular, consists of one chain of one 22-methyltricosanoyl at the C-1 position and one chain of 5,6-dihydroxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0)

[(2R)-3-{[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy}-2-[(22-methyltricosanoyl)oxy]propoxy]phosphonic acid

C47H87O10P (842.6036531999999)


PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0), in particular, consists of one chain of one 5,6-dihydroxyeicosatrienoyl at the C-1 position and one chain of 22-methyltricosanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:1(11Z)/20:3(6,8,11)-OH(5))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-3-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:1(11Z)/20:3(6,8,11)-OH(5)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:1(11Z)/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one 11Z-eicosenoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(6,8,11)-OH(5)/20:1(11Z))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(6E,8E,11E)-5-hydroxyicosa-6,8,11-trienoyl]oxy}-2-[(11Z)-icos-11-enoyloxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(6,8,11)-OH(5)/20:1(11Z)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(6,8,11)-OH(5)/20:1(11Z)), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of 11Z-eicosenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2S)-2,3-dihydroxypropoxy][(2R)-3-[(18-methylnonadecanoyl)oxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-[(18-methylnonadecanoyl)oxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2S)-2,3-dihydroxypropoxy][(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 18-methylnonadecanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphinic acid

C46H83O11P (842.5672698)


PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0) is an oxidized phosphatidylglycerol (PG). Oxidized phosphatidylglycerols are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 18-methylnonadecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGs can be synthesized via three different routes. In one route, the oxidized PG is synthetized de novo following the same mechanisms as for PGs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PG backbone, mainly through the action of LOX (PMID: 33329396).

   

TG(14:1(9Z)/18:4(6Z,9Z,12Z,15Z)/20:5(5Z,8Z,11Z,14Z,17Z))[iso6]

1-(9Z-tetradecenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

C55H86O6 (842.6424056000001)


   

PG(19:1(9Z)/22:2(13Z,16Z))

1-(9Z-nonadecenoyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PG(20:3(8Z,11Z,14Z)/21:0)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-heneicosanoyl-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PG(21:0/20:3(8Z,11Z,14Z))

1-heneicosanoyl-2-(8Z,11Z,14Z-eicosatrienoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PG(22:2(13Z,16Z)/19:1(9Z))

1-(13Z,16Z-docosadienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PG(P-20:0/22:2(13Z,16Z))

1-(1Z-eicosenyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H91O9P (842.6400366)


   

1-dodecanoyl-2,3-di-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

1-dodecanoyl-2,3-di-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

C55H86O6 (842.6424056000001)


   

TG(12:0/18:4(6Z,9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))[iso6]

1-dodecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C55H86O6 (842.6424056000001)


   

TG 52:10

1-(9Z-tetradecenoyl)-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-3-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

C55H86O6 (842.6424056000001)


   

PG 41:3

1-(13Z,16Z-docosadienoyl)-2-(9Z-nonadecenoyl)-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

PG O-42:3

1-(1Z-eicosenyl)-2-(13Z,16Z-docosadienoyl)-glycero-3-phospho-(1-sn-glycerol)

C48H91O9P (842.6400366)


   

Myxoquinone-843

2-hydroxy-2-methyl-3-[(2E,6E,7R,11R)-3,7,11,15,19,23,27,31-octamethyl-11,15,19,23,27,31-hexahydroxy-dotriaconta-2,6-dien-1-yl]-2,3-dihydro-1,4-naphthoquinone

C51H86O9 (842.6271506)


   

1-docosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoserine

1-docosanoyl-2-(9Z,12Z-octadecadienoyl)-sn-glycero-3-phosphoserine

C46H85NO10P- (842.5910779999999)


   

1-Myristoleoyl-2-eicosapentaenoyl-3-stearidonoyl-glycerol

1-Myristoleoyl-2-eicosapentaenoyl-3-stearidonoyl-glycerol

C55H86O6 (842.6424056000001)


   

PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C47H87O10P (842.6036531999999)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/24:0)

C47H87O10P (842.6036531999999)


   

PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

PA(i-24:0/20:3(8Z,11Z,14Z)-2OH(5,6))

C47H87O10P (842.6036531999999)


   

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0)

PA(20:3(8Z,11Z,14Z)-2OH(5,6)/i-24:0)

C47H87O10P (842.6036531999999)


   

PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PG(i-20:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C46H83O11P (842.5672698)


   

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0)

PG(20:3(5Z,8Z,11Z)-O(14R,15S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PG(i-20:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C46H83O11P (842.5672698)


   

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0)

PG(20:3(5Z,8Z,14Z)-O(11S,12R)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9))

PG(i-20:0/20:3(5Z,11Z,14Z)-O(8,9))

C46H83O11P (842.5672698)


   

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0)

PG(20:3(5Z,11Z,14Z)-O(8,9)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6))

PG(i-20:0/20:3(8Z,11Z,14Z)-O(5,6))

C46H83O11P (842.5672698)


   

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0)

PG(20:3(8Z,11Z,14Z)-O(5,6)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PG(i-20:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C46H83O11P (842.5672698)


   

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0)

PG(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PG(i-20:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0)

PG(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PG(i-20:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0)

PG(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PG(i-20:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0)

PG(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PG(i-20:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C46H83O11P (842.5672698)


   

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0)

PG(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-20:0)

C46H83O11P (842.5672698)


   

PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PG(i-20:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C46H83O11P (842.5672698)


   

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0)

PG(20:4(5Z,7E,11Z,14Z)-OH(9)/i-20:0)

C46H83O11P (842.5672698)


   

PG(20:1(11Z)/20:3(6,8,11)-OH(5))

PG(20:1(11Z)/20:3(6,8,11)-OH(5))

C46H83O11P (842.5672698)


   

PG(20:3(6,8,11)-OH(5)/20:1(11Z))

PG(20:3(6,8,11)-OH(5)/20:1(11Z))

C46H83O11P (842.5672698)


   

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6Z,8E,10E,12S,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5S,6E,8Z,11Z,13E,15R)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5R,6E,8Z,11Z,13E,15S)-5,15-dihydroxyicosa-6,8,11,13-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5R,6R,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(5S,6S,8Z,11Z,14Z,17Z)-5,6-dihydroxyicosa-8,11,14,17-tetraenoyl]oxy-2-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(8Z,11Z,14Z)-5,6-dihydroxyicosa-8,11,14-trienoyl]oxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(5Z,8Z,11Z)-icosa-5,8,11-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]oxy-3-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(Z,9R,10R)-9,10-dihydroxyoctadec-12-enoyl]oxy-2-[(8Z,11Z,14Z)-icosa-8,11,14-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-[(E)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-3-[(E)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-[(Z)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoyl]oxy-2-[(Z)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-[(E)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-3-[(E)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-[(Z)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(Z)-7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]hept-5-enoyl]oxy-2-[(Z)-octadec-1-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[(E)-octadec-1-enoxy]-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(E)-octadec-1-enoxy]-2-[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[(E)-octadec-1-enoxy]-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(E)-octadec-1-enoxy]-3-[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(1E,11Z)-octadeca-1,11-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-[(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoyl]oxy-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]heptanoyloxy]-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-3-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[7-[(1R,2R,5S)-5-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-3-oxocyclopentyl]heptanoyloxy]-2-[(1E,9Z)-octadeca-1,9-dienoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[(2R)-2-[(5Z,8Z,11Z,13E)-15-hydroperoxyicosa-5,8,11,13-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(5Z,8Z,11Z,13E)-15-hydroperoxyicosa-5,8,11,13-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(E)-2-[[(15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoyl]amino]-3-hydroxynon-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-15,18,21,24,27,30,33-heptaenoyl]amino]-3-hydroxynon-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-docosoxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-tetracos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] (Z)-tetracos-13-enoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexacos-15-enoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-icosoxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-docos-13-enoxy]propan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-henicos-11-enoxy]propan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] hexadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propan-2-yl] hexadecanoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-hexacos-15-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] (Z)-hexacos-15-enoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoxy]propan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] hexacosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propan-2-yl] hexacosanoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octadecoxypropan-2-yl] (10Z,13Z,16Z)-tetracosa-10,13,16-trienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(15Z,18Z)-hexacosa-15,18-dienoxy]propan-2-yl] (Z)-hexadec-9-enoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] octadecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propan-2-yl] octadecanoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexadecoxypropan-2-yl] (12Z,15Z,18Z)-hexacosa-12,15,18-trienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tetracosoxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] icosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]propan-2-yl] icosanoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (Z)-henicos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-henicosa-11,14-dienoxy]propan-2-yl] (Z)-henicos-11-enoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (Z)-icos-11-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-docosa-13,16-dienoxy]propan-2-yl] (Z)-icos-11-enoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] tetracosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] tetracosanoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] docosanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propan-2-yl] docosanoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (Z)-octadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(13Z,16Z)-tetracosa-13,16-dienoxy]propan-2-yl] (Z)-octadec-9-enoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexacosoxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-octadec-9-enoxy]propan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetracos-13-enoxy]propan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C48H91O9P (842.6400366)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-docos-13-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(11Z,14Z)-icosa-11,14-dienoxy]propan-2-yl] (Z)-docos-13-enoate

C48H91O9P (842.6400366)


   

[(4E,8E)-2-[[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-14,17,20,23,26,29-hexaenoyl]amino]-3-hydroxytrideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E,12E)-3-hydroxy-2-[[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(15Z,18Z,21Z,24Z,27Z)-triaconta-15,18,21,24,27-pentaenoyl]amino]pentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]henicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]pentacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]pentacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxynonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]amino]-3-hydroxynonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-9,12,15,18,21,24,27-heptaenoyl]amino]pentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]heptacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]heptacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-12,15,18,21,24,27-hexaenoyl]amino]pentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytricosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxytricosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z)-triaconta-6,9,12,15,18,21,24,27-octaenoyl]amino]pentadecyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-8,11,14,17,20,23,26,29-octaenoyl]amino]-3-hydroxytridecyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxynonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxynonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytricosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxytricosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]henicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]henicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z)-octacosa-13,16,19,22,25-pentaenoyl]amino]heptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-10,13,16,19,22,25,28,31-octaenoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxynonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxynonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-11,14,17,20,23,26,29-heptaenoyl]amino]-3-hydroxytridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(13Z,16Z,19Z,22Z,25Z,28Z,31Z)-tetratriaconta-13,16,19,22,25,28,31-heptaenoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octanoyloxypropyl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-octanoyloxypropyl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-octanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-octanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropyl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropyl] (11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoate

C55H86O6 (842.6424056000001)


   

2,3-di(octanoyloxy)propyl (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoate

2,3-di(octanoyloxy)propyl (6Z,9Z,12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-6,9,12,15,18,21,24,27,30,33-decaenoate

C55H86O6 (842.6424056000001)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-octanoyloxypropyl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-octanoyloxypropyl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-octanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octanoyloxypropyl] (10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoate

C55H86O6 (842.6424056000001)


   

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[1-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-octanoyloxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octanoyloxypropyl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octanoyloxypropyl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-decanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C55H86O6 (842.6424056000001)


   

[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

[3-decanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tetradecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tetradecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O6 (842.6424056000001)


   

[3-decanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[3-decanoyloxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C55H86O6 (842.6424056000001)


   

[3-dodecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-dodecanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-dodecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O6 (842.6424056000001)


   

[3-decanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[3-decanoyloxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C55H86O6 (842.6424056000001)


   

[3-decanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-decanoyloxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C55H86O6 (842.6424056000001)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C55H86O6 (842.6424056000001)


   

2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

2,3-bis[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy]propyl (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C55H86O6 (842.6424056000001)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C55H86O6 (842.6424056000001)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C55H86O6 (842.6424056000001)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C55H86O6 (842.6424056000001)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C55H86O6 (842.6424056000001)


   

[3-hexadecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[3-hexadecanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C55H86O6 (842.6424056000001)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(Z)-hexadec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (Z)-octadec-9-enoate

C55H86O6 (842.6424056000001)


   

[1-[(Z)-hexadec-9-enoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(Z)-hexadec-9-enoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

2,3-bis[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy]propyl (11Z,14Z)-icosa-11,14-dienoate

2,3-bis[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy]propyl (11Z,14Z)-icosa-11,14-dienoate

C55H86O6 (842.6424056000001)


   
   
   
   

[1-[(Z)-nonadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[(Z)-nonadec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C50H82O10 (842.5907672000001)


   

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C50H82O10 (842.5907672000001)


   

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11Z,14Z)-henicosa-11,14-dienoate

C50H82O10 (842.5907672000001)


   

[2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(12Z,15Z,18Z,21Z,24Z,27Z,30Z,33Z)-hexatriaconta-12,15,18,21,24,27,30,33-octaenoyl]amino]-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate

C50H87N2O6P (842.6301412)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-nonadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-henicos-11-enoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] henicosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] henicosanoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C47H87O10P (842.6036531999999)


   

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

[1-[[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (Z)-tetracos-13-enoate

C47H87O10P (842.6036531999999)


   

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentacosanoate

[1-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentacosanoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonadecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-docos-13-enoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tricosanoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] tricosanoate

C47H87O10P (842.6036531999999)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-icos-11-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C47H87O10P (842.6036531999999)


   

[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hydroxypropoxy]-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] tricosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] tricosanoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (Z)-tetracos-13-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxypropyl] (Z)-tetracos-13-enoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonadecanoyloxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] (Z)-docos-13-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(9Z,12Z)-nonadeca-9,12-dienoyl]oxypropyl] (Z)-docos-13-enoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-nonadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-icos-11-enoyl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] pentacosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropyl] pentacosanoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] (Z)-henicos-11-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z)-icosa-11,14-dienoyl]oxypropyl] (Z)-henicos-11-enoate

C47H87O10P (842.6036531999999)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] henicosanoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropyl] henicosanoate

C47H87O10P (842.6036531999999)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-heptadec-9-enoyl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C47H87O10P (842.6036531999999)


   

[2-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[2-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropyl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C46H83O11P (842.5672698)


   

[1-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-dodecanoyloxy-3-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C46H83O11P (842.5672698)


   

[3-dodecanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-dodecanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[3-dodecanoyloxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-hexadecanoyloxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[3-hexadecanoyloxy-2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H86O6 (842.6424056000001)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O6 (842.6424056000001)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-hexadec-7-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-hexadec-7-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-tetradecanoyloxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-tetradecanoyloxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H86O6 (842.6424056000001)


   

[3-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (Z)-icos-11-enoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (Z)-icos-11-enoate

C55H86O6 (842.6424056000001)


   

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(10Z,13Z,16Z)-nonadeca-10,13,16-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(10Z,13Z,16Z)-nonadeca-10,13,16-trienoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-tetradecanoyloxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-tetradecanoyloxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H86O6 (842.6424056000001)


   

[3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[1-[(Z)-dodec-5-enoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[1-[(Z)-dodec-5-enoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C55H86O6 (842.6424056000001)


   

[1-dodecanoyloxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[1-dodecanoyloxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H86O6 (842.6424056000001)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyl]oxypropan-2-yl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C55H86O6 (842.6424056000001)


   

[3-hexadecanoyloxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

[3-hexadecanoyloxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z)-henicosa-9,11-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z)-henicosa-9,11-dienoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

C55H86O6 (842.6424056000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(Z)-octadec-11-enoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H86O6 (842.6424056000001)


   

[2-[(Z)-heptadec-7-enoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(Z)-heptadec-7-enoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H86O6 (842.6424056000001)


   

5-Dodecanoyloxy-6-(2-dodecanoyloxy-3-tetradecanoyloxypropoxy)-3,4-dihydroxyoxane-2-carboxylic acid

5-Dodecanoyloxy-6-(2-dodecanoyloxy-3-tetradecanoyloxypropoxy)-3,4-dihydroxyoxane-2-carboxylic acid

C47H86O12 (842.6118956)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H86O6 (842.6424056000001)


   

[3-dodecanoyloxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-dodecanoyloxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[1-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

[1-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

C55H86O6 (842.6424056000001)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H86O6 (842.6424056000001)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7Z,9Z)-nonadeca-7,9-dienoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7Z,9Z)-nonadeca-7,9-dienoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(Z)-hexadec-7-enoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(Z)-hexadec-7-enoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H86O6 (842.6424056000001)


   

[1-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (10Z,12Z)-octadeca-10,12-dienoate

[1-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (10Z,12Z)-octadeca-10,12-dienoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-pentadecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-pentadecanoyloxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(10Z,13Z,16Z)-nonadeca-10,13,16-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(10Z,13Z,16Z)-nonadeca-10,13,16-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(Z)-hexadec-7-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(Z)-hexadec-7-enoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-tridecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-tridecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(Z)-heptadec-7-enoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[2-[(Z)-heptadec-7-enoyl]oxy-3-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C55H86O6 (842.6424056000001)


   

[3-hexadecanoyloxy-2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[3-hexadecanoyloxy-2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H86O6 (842.6424056000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(Z)-hexadec-7-enoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[2-[(Z)-hexadec-7-enoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O6 (842.6424056000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate

C55H86O6 (842.6424056000001)


   

[3-dodecanoyloxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-dodecanoyloxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O6 (842.6424056000001)


   

2,3-bis[[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (11Z,14Z)-icosa-11,14-dienoate

2,3-bis[[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy]propyl (11Z,14Z)-icosa-11,14-dienoate

C55H86O6 (842.6424056000001)


   

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (Z)-icos-11-enoate

[1-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-3-[(7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoyl]oxypropan-2-yl] (Z)-icos-11-enoate

C55H86O6 (842.6424056000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(10Z,13Z,16Z)-nonadeca-10,13,16-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(10Z,13Z,16Z)-nonadeca-10,13,16-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-tridecanoyloxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-tridecanoyloxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] octadecanoate

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] octadecanoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(11Z,14Z)-heptadeca-11,14-dienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[1-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[1-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C55H86O6 (842.6424056000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropyl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C55H86O6 (842.6424056000001)


   

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[(Z)-dodec-5-enoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

2,3-bis[[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy]propyl (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

2,3-bis[[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy]propyl (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H86O6 (842.6424056000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O6 (842.6424056000001)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C55H86O6 (842.6424056000001)


   

[1-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

[1-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (11Z,13Z,15Z)-octadeca-11,13,15-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-tetradecanoyloxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

2,3-bis[[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl icosanoate

2,3-bis[[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy]propyl icosanoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate

[2-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H86O6 (842.6424056000001)


   

2,3-bis[[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

2,3-bis[[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy]propyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

[2-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H86O6 (842.6424056000001)


   

[1-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (10Z,12Z)-octadeca-10,12-dienoate

[1-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (10Z,12Z)-octadeca-10,12-dienoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H86O6 (842.6424056000001)


   

[3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-hexadecanoyloxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-hexadecanoyloxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H86O6 (842.6424056000001)


   

[2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(10Z,12Z)-octadeca-10,12-dienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate

C55H86O6 (842.6424056000001)


   

[1-[(Z)-hexadec-7-enoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

[1-[(Z)-hexadec-7-enoyl]oxy-3-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropan-2-yl] (9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[1-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[1-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (9Z,11Z,13Z)-henicosa-9,11,13-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[2-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropyl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (14Z,16Z)-docosa-14,16-dienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxypropyl] (14Z,16Z)-docosa-14,16-dienoate

C55H86O6 (842.6424056000001)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-tridecanoyloxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-tridecanoyloxypropyl] (7Z,9Z,11E,13Z,15Z,17Z,19Z)-docosa-7,9,11,13,15,17,19-heptaenoate

C55H86O6 (842.6424056000001)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (7Z,9E,11Z,13Z,15Z,17Z)-icosa-7,9,11,13,15,17-hexaenoate

C55H86O6 (842.6424056000001)


   

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(Z)-tridec-8-enoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-pentadecanoyloxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[2-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-pentadecanoyloxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[1-[(6Z,9Z)-dodeca-6,9-dienoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C55H86O6 (842.6424056000001)


   

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (13Z,16Z,19Z)-docosa-13,16,19-trienoate

[3-[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy-2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (13Z,16Z,19Z)-docosa-13,16,19-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

[2-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z)-henicosa-9,11,13,15-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

[2-[(7Z,9Z,11Z,13Z,15Z)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropyl] (7Z,10Z,13Z,16Z)-nonadeca-7,10,13,16-tetraenoate

C55H86O6 (842.6424056000001)


   

[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[2-[(4Z,7Z)-hexadeca-4,7-dienoyl]oxy-3-[(6Z,9Z,12Z)-pentadeca-6,9,12-trienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

[2-[(9Z,11Z,13Z,15Z)-octadeca-9,11,13,15-tetraenoyl]oxy-3-[(5Z,8Z,11Z)-tetradeca-5,8,11-trienoyl]oxypropyl] (5Z,8Z,11Z)-icosa-5,8,11-trienoate

C55H86O6 (842.6424056000001)


   

2,3-bis[[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

2,3-bis[[(9Z,12Z)-pentadeca-9,12-dienoyl]oxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C55H86O6 (842.6424056000001)


   

[1-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropan-2-yl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

[1-[(4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoyl]oxy-3-[(7Z,9Z)-tetradeca-7,9-dienoyl]oxypropan-2-yl] (10Z,13Z,16Z)-nonadeca-10,13,16-trienoate

C55H86O6 (842.6424056000001)


   

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

[2-[(9Z,11Z,13Z)-hexadeca-9,11,13-trienoyl]oxy-3-[(9Z,12Z)-pentadeca-9,12-dienoyl]oxypropyl] (9Z,11Z,13Z,15Z,17Z)-henicosa-9,11,13,15,17-pentaenoate

C55H86O6 (842.6424056000001)


   

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropan-2-yl] (10Z,12Z)-octadeca-10,12-dienoate

[1-[(5Z,7Z,9Z,11Z,13Z)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(11Z,13Z,15Z)-octadeca-11,13,15-trienoyl]oxypropan-2-yl] (10Z,12Z)-octadeca-10,12-dienoate

C55H86O6 (842.6424056000001)


   

[2-[(Z)-heptadec-7-enoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

[2-[(Z)-heptadec-7-enoyl]oxy-3-[(7Z,9Z,11Z,13Z)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (4Z,7Z,10Z,13Z,16Z)-nonadeca-4,7,10,13,16-pentaenoate

C55H86O6 (842.6424056000001)


   

6-[2,3-Di(dodecanoyloxy)propoxy]-3,4-dihydroxy-5-tetradecanoyloxyoxane-2-carboxylic acid

6-[2,3-Di(dodecanoyloxy)propoxy]-3,4-dihydroxy-5-tetradecanoyloxyoxane-2-carboxylic acid

C47H86O12 (842.6118956)


   

[(8E,12E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E)-2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3,4-dihydroxyoctadeca-8,12-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C49H83N2O7P (842.5937578)


   

[(8E,12E,16E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(8E,12E,16E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C49H83N2O7P (842.5937578)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] tricosanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] tricosanoate

C47H87O10P (842.6036531999999)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-pentadec-9-enoyl]oxypropyl] (5E,9E)-hexacosa-5,9-dienoate

C47H87O10P (842.6036531999999)


   

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] tricosanoate

[(2R)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropyl] tricosanoate

C47H87O10P (842.6036531999999)


   

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(7E,10E,13E,16E,19E,22E)-pentacosa-7,10,13,16,19,22-hexaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H81NO8P+ (842.5699496)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropan-2-yl] (E)-tetracos-15-enoate

C47H87O10P (842.6036531999999)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-pentacosa-11,14-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (11E,14E)-pentacosa-11,14-dienoate

C50H82O10 (842.5907672000001)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropan-2-yl] henicosanoate

C47H87O10P (842.6036531999999)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (13E,16E,19E)-pentacosa-13,16,19-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (13E,16E,19E)-pentacosa-13,16,19-trienoate

C50H82O10 (842.5907672000001)


   

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H81NO8P+ (842.5699496)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-3-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C53H80NO7+ (842.593447)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] pentacosanoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] pentacosanoate

C47H87O10P (842.6036531999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] tricosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(6E,9E,12E)-octadeca-6,9,12-trienoyl]oxypropan-2-yl] tricosanoate

C47H87O10P (842.6036531999999)


   

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H81NO8P+ (842.5699496)


   

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-pentacos-11-enoate

[3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (E)-pentacos-11-enoate

C47H87O10P (842.6036531999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] henicosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropan-2-yl] henicosanoate

C47H87O10P (842.6036531999999)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-tetracos-15-enoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(9E,12E)-heptadeca-9,12-dienoyl]oxypropyl] (E)-tetracos-15-enoate

C47H87O10P (842.6036531999999)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (13E,16E,19E,22E)-pentacosa-13,16,19,22-tetraenoate

C50H82O10 (842.5907672000001)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] henicosanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(5E,8E,11E)-icosa-5,8,11-trienoyl]oxypropyl] henicosanoate

C47H87O10P (842.6036531999999)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-pentadec-9-enoyl]oxypropan-2-yl] (5E,9E)-hexacosa-5,9-dienoate

C47H87O10P (842.6036531999999)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-3-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C53H80NO7+ (842.593447)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E,19E)-docosa-7,9,11,13,15,17,19-heptaenoyl]oxy-2-[(9E,11E,13E,15E,17E)-henicosa-9,11,13,15,17-pentaenoyl]oxypropoxy]propyl]-trimethylazanium

C53H80NO7+ (842.593447)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] tricosanoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] tricosanoate

C47H87O10P (842.6036531999999)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] henicosanoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(8E,11E,14E)-icosa-8,11,14-trienoyl]oxypropyl] henicosanoate

C47H87O10P (842.6036531999999)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E,15E,17E)-icosa-7,9,11,13,15,17-hexaenoyl]oxy-2-[(5E,8E,11E,14E,17E,20E)-tricosa-5,8,11,14,17,20-hexaenoyl]oxypropoxy]propyl]-trimethylazanium

C53H80NO7+ (842.593447)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (10E,13E,16E,19E,22E)-pentacosa-10,13,16,19,22-pentaenoate

C50H82O10 (842.5907672000001)


   

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[3-octadecoxy-2-[(6E,8Z,10E,14Z,16E)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-octadecoxy-2-[(6E,8Z,10E,14Z,16E)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[2-[(5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,14E)-11,12-dihydroxyicosa-5,8,14-trienoyl]oxy-3-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[2-[(Z)-7-[6-[(1E,5Z)-3-hydroxyocta-1,5-dienyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-octadecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-7-[6-[(1E,5Z)-3-hydroxyocta-1,5-dienyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-octadecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[2-[(5E,9Z)-8-hydroxy-10-[3-[(E)-oct-2-enyl]oxiran-2-yl]deca-5,9-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(5E,9Z)-8-hydroxy-10-[3-[(E)-oct-2-enyl]oxiran-2-yl]deca-5,9-dienoyl]oxy-3-octadecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-[(7Z,9Z,11E,13Z)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-[(7Z,9Z,11E,13Z)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[2-[(6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(6E,8E,10E,14E)-5,12-dihydroxyicosa-6,8,10,14-tetraenoyl]oxy-3-octadecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoxy]-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[2-[(Z)-7-[6-[(E)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-7-[6-[(E)-3-hydroxyoct-1-enyl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoyl]oxy-3-[(Z)-octadec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C46H85NO10P+ (842.5910779999999)


   

2-[[3-[(15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-15,18,21,24,27,30,33,36,39-nonaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(15Z,18Z,21Z,24Z,27Z,30Z,33Z,36Z,39Z)-dotetraconta-15,18,21,24,27,30,33,36,39-nonaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoyl]oxy-3-nonanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C49H81NO8P+ (842.5699496)


   

2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoyl]oxy-3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]-2-[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoxy]-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[hydroxy-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]-2-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C50H85NO7P+ (842.606333)


   

1-(8Z,11Z,14Z-eicosatrienoyl)-2-heneicosanoyl-glycero-3-phospho-(1-sn-glycerol)

1-(8Z,11Z,14Z-eicosatrienoyl)-2-heneicosanoyl-glycero-3-phospho-(1-sn-glycerol)

C47H87O10P (842.6036531999999)


   

phosphatidylserine 40:2(1-)

phosphatidylserine 40:2(1-)

C46H85NO10P (842.5910779999999)


A 3-sn-phosphatidyl-L-serine(1-) in which the acyl groups at C-1 and C-2 contain 40 carbons in total and 2 double bonds.

   

MGDG(41:7)

MGDG(20:3_21:4)

C50H82O10 (842.5907672000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

MGDG(42:7)

MGDG(20:3(1)_22:4)

C51H86O9 (842.6271506)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-16:0/26:2 or PG O-16:1/26:2

PG P-16:0/26:2 or PG O-16:1/26:2

C48H91O9P (842.6400366)


   
   

PG P-16:1/26:1 or PG O-16:2/26:1

PG P-16:1/26:1 or PG O-16:2/26:1

C48H91O9P (842.6400366)


   
   

PG P-18:1/24:1 or PG O-18:2/24:1

PG P-18:1/24:1 or PG O-18:2/24:1

C48H91O9P (842.6400366)


   
   
   

PG P-20:0/22:2 or PG O-20:1/22:2

PG P-20:0/22:2 or PG O-20:1/22:2

C48H91O9P (842.6400366)


   
   
   

PG P-20:1/22:1 or PG O-20:2/22:1

PG P-20:1/22:1 or PG O-20:2/22:1

C48H91O9P (842.6400366)


   
   

PG P-22:0/20:2 or PG O-22:1/20:2

PG P-22:0/20:2 or PG O-22:1/20:2

C48H91O9P (842.6400366)


   
   

PG P-22:1/20:1 or PG O-22:2/20:1

PG P-22:1/20:1 or PG O-22:2/20:1

C48H91O9P (842.6400366)


   
   

PG P-42:2 or PG O-42:3

PG P-42:2 or PG O-42:3

C48H91O9P (842.6400366)