Exact Mass: 810.4203578

Exact Mass Matches: 810.4203578

Found 239 metabolites which its exact mass value is equals to given mass value 810.4203578, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Vinblastine

methyl (1R,9R,10S,11R,12R,19R)-11-(acetyloxy)-12-ethyl-4-[(13S,15S,17S)-17-ethyl-17-hydroxy-13-(methoxycarbonyl)-1,11-diazatetracyclo[13.3.1.0⁴,¹².0⁵,¹⁰]nonadeca-4(12),5,7,9-tetraen-13-yl]-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2(7),3,5,13-tetraene-10-carboxylate

C46H58N4O9 (810.4203578)


Vinblastine is only found in individuals that have used or taken this drug. It is an antitumor alkaloid isolated from Vinca rosea. (Merck, 11th ed.)The antitumor activity of vinblastine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Vinblastine binds to the microtubular proteins of the mitotic spindle, leading to crystallization of the microtubule and mitotic arrest or cell death. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids

   

Azukisaponin III

6-{[11-carboxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C42H66O15 (810.4401486)


Azukisaponin III is found in adzuki bean. Azukisaponin III is isolated from seeds of Vigna angularis (azuki bean). Isolated from seeds of Vigna angularis (azuki bean). Azukisaponin III is found in pulses and adzuki bean.

   
   

vinblastin

Vinblastine

C46H58N4O9 (810.4203578)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids

   

Spinasaponin B

6-{[8a-carboxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C42H66O15 (810.4401486)


Saponin from roots of spinach (Spinacia subspecies). Spinasaponin B is found in green vegetables. Spinasaponin B is found in green vegetables. Saponin from roots of spinach (Spinacia species

   

Cynarasaponin E

3,4,5-trihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C42H66O15 (810.4401486)


Cynarasaponin E is found in green vegetables. Cynarasaponin E is a constituent of Cynara cardunculus (cardoon). Constituent of Cynara cardunculus (cardoon). Cynarasaponin E is found in herbs and spices and green vegetables.

   

Goldinodox

N-[(2Z,4E)-7-{3,4-dihydroxy-5-[(1Z,3E,5Z)-7-(4-hydroxy-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-6-methyl-7-oxohepta-1,3,5-trien-1-yl]oxolan-2-yl}-6-methoxy-5-methylocta-2,4-dien-1-yl]-2-{2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3Z)-penta-1,3-dien-1-yl]oxan-2-yl}butanimidate

C44H62N2O12 (810.4302532)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Poultry growth promote

   

Phytolaccoside D

10-[(3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9-(hydroxymethyl)-2-(methoxycarbonyl)-2,6a,6b,9,12a-pentamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C42H66O15 (810.4401486)


Isolated from Phytolacca americana (pokeberry). Phytolaccoside D is found in fruits and green vegetables. Phytolaccoside D is found in fruits. Phytolaccoside D is isolated from Phytolacca americana (pokeberry

   

Phytolaccoside D2

10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9-(hydroxymethyl)-2-(methoxycarbonyl)-2,6a,6b,9,12a-pentamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C42H66O15 (810.4401486)


Phytolaccoside D2 is found in fruits. Phytolaccoside D2 is a constituent of Phytolacca americana (pokeberry). Constituent of Phytolacca americana (pokeberry). Phytolaccoside D2 is found in fruits and green vegetables.

   

15-Oxo-21-hydroxymabiogenin 3-[rhamnosyl-(1->6)-glucoside]

(1R,2R,5S,6R,9S,10R,14R,17S)-5-(hydroxymethyl)-1,2,14,18,18-pentamethyl-6-(3-methylbut-2-en-1-yl)-17-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4,7-dioxapentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosane-3,8-dione

C42H66O15 (810.4401486)


15-Oxo-21-hydroxymabiogenin 3-[rhamnosyl-(1->6)-glucoside] is found in beverages. 15-Oxo-21-hydroxymabiogenin 3-[rhamnosyl-(1->6)-glucoside] is a constituent of Colubrina elliptica (mabi).

   

Elatoside H

6-[(8a-carboxy-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy]-3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C42H66O15 (810.4401486)


Elatoside H is found in green vegetables. Elatoside H is a constituent of Aralia elata (Japanese angelica tree). Constituent of Aralia elata (Japanese angelica tree). Elatoside H is found in green vegetables.

   

Lucyoside J

3,4,5-Trihydroxy-6-(hydroxymethyl)oxan-2-yl 9-formyl-3-hydroxy-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C42H66O15 (810.4401486)


Lucyoside J is found in fruits. Lucyoside J is a constituent of Luffa cylindrica (smooth luffa) Constituent of Luffa cylindrica (smooth luffa). Lucyoside J is found in fruits.

   

Betavulgaroside VII

6-{[8a-carboxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-4-[2-carboxy-1-(carboxymethoxy)-2-hydroxyethoxy]-3,5-dihydroxyoxane-2-carboxylic acid

C41H62O16 (810.4037652)


Betavulgaroside VII is found in root vegetables. Betavulgaroside VII is a constituent of Beta vulgaris (sugar beet). Constituent of Beta vulgaris (sugar beet). Betavulgaroside VII is found in root vegetables.

   

Nodularin-R

9-(3-Carbamimidamidopropyl)-2-ethylidene-3,7,10,14,19-pentahydroxy-12-(6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl)-6,13-dimethyl-1,4,8,11,15-pentaazacyclononadeca-1(19),3,7,10,14-pentaene-5,16-dicarboxylate

C40H58N8O10 (810.4275688)


   

PA(20:4(5Z,8Z,11Z,14Z)/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H71O12P (810.4682895999999)


PA(20:4(5Z,8Z,11Z,14Z)/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H71O12P (810.4682895999999)


PA(6 keto-PGF1alpha/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H71O12P (810.4682895999999)


PA(20:4(5Z,8Z,11Z,14Z)/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)/TXB2), in particular, consists of one chain of one 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/20:4(5Z,8Z,11Z,14Z))

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propoxy]phosphonic acid

C43H71O12P (810.4682895999999)


PA(TXB2/20:4(5Z,8Z,11Z,14Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/20:4(5Z,8Z,11Z,14Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 5Z,8Z,11Z,14Z-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)/6 keto-PGF1alpha)

[(2R)-2-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H71O12P (810.4682895999999)


PA(20:4(8Z,11Z,14Z,17Z)/6 keto-PGF1alpha) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)/6 keto-PGF1alpha), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of 6-Keto-prostaglandin F1alpha at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(6 keto-PGF1alpha/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-({7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]cyclopentyl]-6-oxoheptanoyl}oxy)-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H71O12P (810.4682895999999)


PA(6 keto-PGF1alpha/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(6 keto-PGF1alpha/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one 6-Keto-prostaglandin F1alpha at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(8Z,11Z,14Z,17Z)/TXB2)

[(2R)-2-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H71O12P (810.4682895999999)


PA(20:4(8Z,11Z,14Z,17Z)/TXB2) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(8Z,11Z,14Z,17Z)/TXB2), in particular, consists of one chain of one 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-1 position and one chain of Thromboxane B2 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(TXB2/20:4(8Z,11Z,14Z,17Z))

[(2R)-3-{[(5Z)-7-[(2R,3S,4S)-4,6-dihydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]oxan-3-yl]hept-5-enoyl]oxy}-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propoxy]phosphonic acid

C43H71O12P (810.4682895999999)


PA(TXB2/20:4(8Z,11Z,14Z,17Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(TXB2/20:4(8Z,11Z,14Z,17Z)), in particular, consists of one chain of one Thromboxane B2 at the C-1 position and one chain of 8Z,11Z,14Z,17Z-eicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-[(10-methylundecanoyl)oxy]-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-[(10-methylundecanoyl)oxy]-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2S)-2-hydroxy-3-({hydroxy[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   

PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0)

[(2S)-2-hydroxy-3-({hydroxy[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphoryl}oxy)propoxy]phosphonic acid

C38H68O14P2 (810.4084088000001)


PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0) is an oxidized phosphoglycerophosphate (PGP). Oxidized phosphoglycerophosphates are glycerophospholipids in which a phosphoglycerol moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphoglycerophosphates belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphoglycerophosphates can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PGPs can be synthesized via three different routes. In one route, the oxidized PGP is synthetized de novo following the same mechanisms as for PGPs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PGP backbone, mainely through the action of LOX (PMID: 33329396).

   
   

Ilexoside XLVIII

Ilexoside XLVIII

C42H66O15 (810.4401486)


Ilexoside XLVIII is a natural product found in Ilex kaushue, Anredera baselloides, and other organisms with data available.

   
   
   
   
   

Acanthopanaxoside E

(-)-Acanthopanaxoside E

C42H66O15 (810.4401486)


   
   
   
   
   
   

(1S,2R,4aS,6aR,6bR,10S,12aR,14bS)-1,2,6b,9,9,12a-hexamethyl-10-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-6a-carboxylic acid

(1S,2R,4aS,6aR,6bR,10S,12aR,14bS)-1,2,6b,9,9,12a-hexamethyl-10-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-6a-carboxylic acid

C42H66O15 (810.4401486)


   

Soyasapogenol B base + O-HexA-HexA

Soyasapogenol B base + O-HexA-HexA

C42H66O15 (810.4401486)


Annotation level-3

   

(DMAdda3)Nodularin|Nodularin

(DMAdda3)Nodularin|Nodularin

C40H58N8O10 (810.4275688)


   
   
   

Hederagenin-28-O-??-D-glucuronopyranosyl (1鈥樏傗垎4)-??-D-glucopyranoside

Hederagenin-28-O-??-D-glucuronopyranosyl (1鈥樏傗垎4)-??-D-glucopyranoside

C42H66O15 (810.4401486)


   

Polygalasaaponin XXVI|polygalasaponin XXVI

Polygalasaaponin XXVI|polygalasaponin XXVI

C42H66O15 (810.4401486)


   

quinovic acid-3beta-O-beta-D-9-glucopyranosyl-(27-1)-beta-glucopyranosyl ester

quinovic acid-3beta-O-beta-D-9-glucopyranosyl-(27-1)-beta-glucopyranosyl ester

C42H66O15 (810.4401486)


   

Gypsogenic acid-3-O-D-glucopyranosyl-(1->2)-D-glucopyranosid

Gypsogenic acid-3-O-D-glucopyranosyl-(1->2)-D-glucopyranosid

C42H66O15 (810.4401486)


   

2beta,3beta-dihydroxy-30-norolean-12,20(29)-diene-23,28-dioic acid 23,28-di-O-beta-D-glucopyranosyl ester

2beta,3beta-dihydroxy-30-norolean-12,20(29)-diene-23,28-dioic acid 23,28-di-O-beta-D-glucopyranosyl ester

C41H62O16 (810.4037652)


   

2alpha-hydroxyhirundigenin 3-O-beta-D-cymarosyl-(1->4)-alpha-L-sarmentosyl-(1->4)-beta-D-cymaroside

2alpha-hydroxyhirundigenin 3-O-beta-D-cymarosyl-(1->4)-alpha-L-sarmentosyl-(1->4)-beta-D-cymaroside

C42H66O15 (810.4401486)


   

cynanoside G|hancopregnane 3-O-alpha-L-cymaropyranosyl-(1->4)-beta-D-digitoxopyranosyl-(1->4)-beta-D-cymaropyranoside

cynanoside G|hancopregnane 3-O-alpha-L-cymaropyranosyl-(1->4)-beta-D-digitoxopyranosyl-(1->4)-beta-D-cymaropyranoside

C41H62O16 (810.4037652)


   

3-O-beta-D-glucopyranosyl-6,1-beta-D-glucopyranosidecordifolin A

3-O-beta-D-glucopyranosyl-6,1-beta-D-glucopyranosidecordifolin A

C42H66O15 (810.4401486)


   

3-O-beta-D-glucopyranosyl-(1->3)-O-alpha-L-arabinopyranosyl phytolaccagenic acid

3-O-beta-D-glucopyranosyl-(1->3)-O-alpha-L-arabinopyranosyl phytolaccagenic acid

C42H66O15 (810.4401486)


   

3-O-beta-D-galactopyranosyl-(1->3)-beta-D-glucopyranosylgypsogenic acid|caryocaroside V-1

3-O-beta-D-galactopyranosyl-(1->3)-beta-D-glucopyranosylgypsogenic acid|caryocaroside V-1

C42H66O15 (810.4401486)


   
   
   

3beta-[beta-glucopyranosyl-(1->2)-beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione methyl ester|pandaroside A methyl ester

3beta-[beta-glucopyranosyl-(1->2)-beta-glucopyranosyloxyuronic acid]-16-hydroxy-5alpha,14beta-poriferast-16-ene-15,23-dione methyl ester|pandaroside A methyl ester

C42H66O15 (810.4401486)


   
   

3alpha-hydroxylup-20(29)-ene-23,28-dioic acid 28-O-[beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl] ester

3alpha-hydroxylup-20(29)-ene-23,28-dioic acid 28-O-[beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl] ester

C42H66O15 (810.4401486)


   
   
   

3beta,21,24-trihydroxy-21,23;22,28;26,28-triepoxy-5alpha-stigmasta-8(9),14(15)-dien-3-O-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranoside

3beta,21,24-trihydroxy-21,23;22,28;26,28-triepoxy-5alpha-stigmasta-8(9),14(15)-dien-3-O-beta-D-galactopyranosyl-(1->2)-beta-D-glucopyranoside

C41H62O16 (810.4037652)


   

polygalasaponin XII

polygalasaponin XII

C42H66O15 (810.4401486)


   
   

3-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucuronopyranosyl-24-hydroxyoleanolic acid

3-O-beta-D-glucopyranosyl-(1->2)-beta-D-glucuronopyranosyl-24-hydroxyoleanolic acid

C42H66O15 (810.4401486)


   

(3S,11S)-dihydroxytetradecanoic acid 11-O-(4-O-angeloyl)-alpha-L-rhamnopyranosyl-(1?2)-O-beta-D-glucopyranosyl-(1?2)-beta-D-quinovopyranoside methyl ester|poranaside A

(3S,11S)-dihydroxytetradecanoic acid 11-O-(4-O-angeloyl)-alpha-L-rhamnopyranosyl-(1?2)-O-beta-D-glucopyranosyl-(1?2)-beta-D-quinovopyranoside methyl ester|poranaside A

C38H66O18 (810.4248936000001)


   

3-O-[beta-D-glucopyranosyl-(1?2)-beta-D-glucuronopyranosyl]-3beta,24,30-trihydroxyolean-12-en-22-one|sarosiensin V

3-O-[beta-D-glucopyranosyl-(1?2)-beta-D-glucuronopyranosyl]-3beta,24,30-trihydroxyolean-12-en-22-one|sarosiensin V

C42H66O15 (810.4401486)


   
   

3-O-beta-D-glucopyranosyl(1->2)-beta-D-glucopyranosyl-olean-18-ene-27,28-dioic acid|phelasin A

3-O-beta-D-glucopyranosyl(1->2)-beta-D-glucopyranosyl-olean-18-ene-27,28-dioic acid|phelasin A

C42H66O15 (810.4401486)


   

3-O-beta-D-glucopyranosyl(1->2)-beta-D-glucopyranosyl-urs-12-ene-27,28-dioic acid|phelasin B

3-O-beta-D-glucopyranosyl(1->2)-beta-D-glucopyranosyl-urs-12-ene-27,28-dioic acid|phelasin B

C42H66O15 (810.4401486)


   

3-O-beta-D-glucopyranosyl-2beta,3beta-dihydroxy-30-noroleane-12,20(29)-diene-23,28-dioic acid 28-O-beta-D-glucopyranosyl ester

3-O-beta-D-glucopyranosyl-2beta,3beta-dihydroxy-30-noroleane-12,20(29)-diene-23,28-dioic acid 28-O-beta-D-glucopyranosyl ester

C41H62O16 (810.4037652)


   
   

3-O-beta-D-galactopyranosyl-(1->3)-beta-D-glucuronopyranosyl-2beta-hydroxyoleanolic acid|caryocaroside IV-7

3-O-beta-D-galactopyranosyl-(1->3)-beta-D-glucuronopyranosyl-2beta-hydroxyoleanolic acid|caryocaroside IV-7

C42H66O15 (810.4401486)


   
   

(D-Asp1)Nodularin|Nodularin

(D-Asp1)Nodularin|Nodularin

C40H58N8O10 (810.4275688)


   

20-hydroxy-4-[(Xi)-2-((Xi)-1-hydroxy-ethyl)-pyrrolidin-2-yl]-(20xiH)-4-deoxy-rifamycin|Halomicin C|halomicin-C

20-hydroxy-4-[(Xi)-2-((Xi)-1-hydroxy-ethyl)-pyrrolidin-2-yl]-(20xiH)-4-deoxy-rifamycin|Halomicin C|halomicin-C

C43H58N2O13 (810.3938698000001)


   

Quinovic acid-28-O-beta-D-glucopyranosyl(2->1)beta-D-glucopyranoside ester

Quinovic acid-28-O-beta-D-glucopyranosyl(2->1)beta-D-glucopyranoside ester

C42H66O15 (810.4401486)


   
   

Quinovic acid 27-O-beta-D-glucopyranosyl(2->1)beta-D-glucopyranosyl ester

Quinovic acid 27-O-beta-D-glucopyranosyl(2->1)beta-D-glucopyranosyl ester

C42H66O15 (810.4401486)


   
   

polygalasaponin XIII

polygalasaponin XIII

C42H66O15 (810.4401486)


   

Esculentoside C

(2S,4aR,6aR,6aS,6bR,8aR,9R,10S,12aR,14bS)-10-[(2S,3R,4R,5R)-3,4-dihydroxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-9-(hydroxymethyl)-2-methoxycarbonyl-2,6a,6b,9,12a-pentamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C42H66O15 (810.4401486)


Esculentoside C is a natural product found in Phytolacca americana and Phytolacca acinosa with data available.

   

3-GlcA-28-Glc-4-Epi Hederagenin

3-GlcA-28-Glc-4-Epi Hederagenin

C42H66O15 (810.4401486)


   

Vinblastine

methyl (1R,9R,10S,11R,12R,19R)-11-acetyloxy-12-ethyl-4-[(13S,15S,17S)-17-ethyl-17-hydroxy-13-methoxycarbonyl-1,11-diazatetracyclo[13.3.1.04,12.05,10]nonadeca-4(12),5,7,9-tetraen-13-yl]-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.01,9.02,7.016,19]nonadeca-2,4,6,13-tetraene-10-carboxylate

C46H58N4O9 (810.4203578)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C932 - Vinca Alkaloid Compound C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent C1907 - Drug, Natural Product

   

C44H62N2O12_(2S)-N-[(2E,4E,6S,7R)-7-{(2S,3S,4R,5R)-3,4-Dihydroxy-5-[(1E,3E,5E)-7-(4-hydroxy-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl)-6-methyl-7-oxo-1,3,5-heptatrien-1-yl]tetrahydro-2-furanyl}-6-methoxy-5-methyl-2,4-octadien-1-yl]-2-{(2R,3R,4R,6S)-2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3E)-1,3-pentadien-1-yl]tetrahydro-2H-pyran-2-yl}butanamide

NCGC00384845-01_C44H62N2O12_(2S)-N-[(2E,4E,6S,7R)-7-{(2S,3S,4R,5R)-3,4-Dihydroxy-5-[(1E,3E,5E)-7-(4-hydroxy-1-methyl-2-oxo-1,2-dihydro-3-pyridinyl)-6-methyl-7-oxo-1,3,5-heptatrien-1-yl]tetrahydro-2-furanyl}-6-methoxy-5-methyl-2,4-octadien-1-yl]-2-{(2R,3R,4R,6S)-2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3E)-1,3-pentadien-1-yl]tetrahydro-2H-pyran-2-yl}butanamide

C44H62N2O12 (810.4302532)


   

C42H66O15_1-O-[(2alpha,3beta,5xi,9xi)-3-(Hexopyranuronosyloxy)-2-hydroxy-28-oxoolean-12-en-28-yl]hexopyranose

NCGC00180255-02_C42H66O15_1-O-[(2alpha,3beta,5xi,9xi)-3-(Hexopyranuronosyloxy)-2-hydroxy-28-oxoolean-12-en-28-yl]hexopyranose

C42H66O15 (810.4401486)


   

C42H66O15_beta-D-Glucopyranose, 1-O-[(3beta,5xi,9xi,18xi)-3-(beta-D-glucopyranuronosyloxy)-29-hydroxy-28-oxoolean-12-en-28-yl]

NCGC00347541-02_C42H66O15_beta-D-Glucopyranose, 1-O-[(3beta,5xi,9xi,18xi)-3-(beta-D-glucopyranuronosyloxy)-29-hydroxy-28-oxoolean-12-en-28-yl]-

C42H66O15 (810.4401486)


   

C42H66O15_1-O-[(3beta,5xi,9xi,18xi)-3-(beta-D-Glucopyranuronosyloxy)-23-hydroxy-28-oxoolean-12-en-28-yl]-beta-D-glucopyranose

NCGC00169139-03_C42H66O15_1-O-[(3beta,5xi,9xi,18xi)-3-(beta-D-Glucopyranuronosyloxy)-23-hydroxy-28-oxoolean-12-en-28-yl]-beta-D-glucopyranose

C42H66O15 (810.4401486)


   

6-[[(2R,3R,6aR,6bS,8aS,12aS,14bR)-2-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-8a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[[(2R,3R,6aR,6bS,8aS,12aS,14bR)-2-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-8a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C42H66O15 (810.4401486)


   

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C42H66O15 (810.4401486)


   

Hederagenin base + O-HexA-Hex

Hederagenin base + O-HexA-Hex

C42H66O15 (810.4401486)


Annotation level-3

   
   

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_major

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_major

C42H66O15 (810.4401486)


   

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_22.4\\%

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_22.4\\%

C42H66O15 (810.4401486)


   

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_77.4\\%

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_77.4\\%

C42H66O15 (810.4401486)


   
   
   

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_24.5\\%

(2S,3S,4S,5R,6R)-6-[[(3S,4R,6aR,6bS,8aS,14bR)-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid_24.5\\%

C42H66O15 (810.4401486)


   

aurodox

N-[(2Z,4E)-7-{3,4-dihydroxy-5-[(1Z,3E,5Z)-7-(4-hydroxy-1-methyl-2-oxo-1,2-dihydropyridin-3-yl)-6-methyl-7-oxohepta-1,3,5-trien-1-yl]oxolan-2-yl}-6-methoxy-5-methylocta-2,4-dien-1-yl]-2-{2,3,4-trihydroxy-5,5-dimethyl-6-[(1E,3Z)-penta-1,3-dien-1-yl]oxan-2-yl}butanamide

C44H62N2O12 (810.4302532)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Lucyoside J

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 9-formyl-3-hydroxy-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylate

C42H66O15 (810.4401486)


   

Betavulgaroside VII

6-{[8a-carboxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-4-[2-carboxy-1-(carboxymethoxy)-2-hydroxyethoxy]-3,5-dihydroxyoxane-2-carboxylic acid

C41H62O16 (810.4037652)


   

Spinasaponin B

6-{[8a-carboxy-4-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}-3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C42H66O15 (810.4401486)


   

Cynarasaponin E

3,4,5-trihydroxy-6-{[4-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl]oxy}oxane-2-carboxylic acid

C42H66O15 (810.4401486)


   

Mabioside b??

5-(hydroxymethyl)-1,2,14,18,18-pentamethyl-6-(3-methylbut-2-en-1-yl)-17-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4,7-dioxapentacyclo[11.8.0.0^{2,10}.0^{5,9}.0^{14,19}]henicosane-3,8-dione

C42H66O15 (810.4401486)


   

Phytolaccoside D2

10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9-(hydroxymethyl)-2-(methoxycarbonyl)-2,6a,6b,9,12a-pentamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C42H66O15 (810.4401486)


   

Elatoside H

6-[(8a-carboxy-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl)oxy]-3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid

C42H66O15 (810.4401486)


   

Mussaendoside S, >=95\\% (LC/MS-ELSD)

Mussaendoside S, >=95\\% (LC/MS-ELSD)

C42H66O15 (810.4401486)


   

Azukisaponin III

(2S,3S,4S,5R,6R)-6-[[(3S,4S,4aR,6aR,6bS,8aS,11R,12aR,14aR,14bR)-11-carboxy-4-(hydroxymethyl)-4,6a,6b,8a,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy]-3,4-dihydroxy-5-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethy

C42H66O15 (810.4401486)


   

15-Oxo-21-hydroxymabiogenin 3-[rhamnosyl-(1->6)-glucoside]

15-Oxo-21-hydroxymabiogenin 3-[rhamnosyl-(1->6)-glucoside]

C42H66O15 (810.4401486)


   
   
   
   
   

PA(20:4(5Z,8Z,11Z,14Z)/6 keto-PGF1alpha)

PA(20:4(5Z,8Z,11Z,14Z)/6 keto-PGF1alpha)

C43H71O12P (810.4682895999999)


   

PA(6 keto-PGF1alpha/20:4(5Z,8Z,11Z,14Z))

PA(6 keto-PGF1alpha/20:4(5Z,8Z,11Z,14Z))

C43H71O12P (810.4682895999999)


   

PA(20:4(8Z,11Z,14Z,17Z)/6 keto-PGF1alpha)

PA(20:4(8Z,11Z,14Z,17Z)/6 keto-PGF1alpha)

C43H71O12P (810.4682895999999)


   

PA(6 keto-PGF1alpha/20:4(8Z,11Z,14Z,17Z))

PA(6 keto-PGF1alpha/20:4(8Z,11Z,14Z,17Z))

C43H71O12P (810.4682895999999)


   

PGP(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PGP(i-12:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C38H68O14P2 (810.4084088000001)


   

PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0)

PGP(20:3(5Z,8Z,11Z)-O(14R,15S)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PGP(i-12:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C38H68O14P2 (810.4084088000001)


   

PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0)

PGP(20:3(5Z,8Z,14Z)-O(11S,12R)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:3(5Z,11Z,14Z)-O(8,9))

PGP(i-12:0/20:3(5Z,11Z,14Z)-O(8,9))

C38H68O14P2 (810.4084088000001)


   

PGP(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0)

PGP(20:3(5Z,11Z,14Z)-O(8,9)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:3(8Z,11Z,14Z)-O(5,6))

PGP(i-12:0/20:3(8Z,11Z,14Z)-O(5,6))

C38H68O14P2 (810.4084088000001)


   

PGP(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0)

PGP(20:3(8Z,11Z,14Z)-O(5,6)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0)

PGP(20:4(5Z,8Z,11Z,14Z)-OH(20)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PGP(i-12:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0)

PGP(20:4(6E,8Z,11Z,14Z)-OH(5S)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0)

PGP(20:4(5Z,8Z,11Z,14Z)-OH(19S)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0)

PGP(20:4(5Z,8Z,11Z,14Z)-OH(18R)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0)

PGP(20:4(5Z,8Z,11Z,14Z)-OH(17)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PGP(i-12:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0)

PGP(20:4(5Z,8Z,11Z,14Z)-OH(16R)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PGP(i-12:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0)

PGP(20:4(5Z,8Z,11Z,13E)-OH(15S)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PGP(i-12:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0)

PGP(20:4(5Z,8Z,10E,14Z)-OH(12S)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PGP(i-12:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0)

PGP(20:4(5E,8Z,12Z,14Z)-OH(11R)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

PGP(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PGP(i-12:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C38H68O14P2 (810.4084088000001)


   

PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0)

PGP(20:4(5Z,7E,11Z,14Z)-OH(9)/i-12:0)

C38H68O14P2 (810.4084088000001)


   

(2Z)-9-[3-(diaminomethylideneamino)propyl]-2-ethylidene-12-[(1Z,3E)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dienyl]-6,13-dimethyl-3,7,10,14,19-pentaoxo-1,4,8,11,15-pentazacyclononadecane-5,16-dicarboxylic acid

(2Z)-9-[3-(diaminomethylideneamino)propyl]-2-ethylidene-12-[(1Z,3E)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dienyl]-6,13-dimethyl-3,7,10,14,19-pentaoxo-1,4,8,11,15-pentazacyclononadecane-5,16-dicarboxylic acid

C40H58N8O10 (810.4275688)


   

(2R,3R,4R,5S,6S)-6-[[(3S,4R,4aR,6aR,6bS,8aS,11R,12S,12aS,14aR,14bR)-4-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1H-picen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

(2R,3R,4R,5S,6S)-6-[[(3S,4R,4aR,6aR,6bS,8aS,11R,12S,12aS,14aR,14bR)-4-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1H-picen-3-yl]oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C42H66O15 (810.4401486)


   
   

Dimethyl 12-ethyl-4-(17-ethyl-17-hydroxy-13-methoxycarbonyl-1,11-diazatetracyclo[13.3.1.04,12.05,10]nonadeca-4(12),5,7,9-tetraen-13-yl)-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.01,9.02,7.016,19]nonadeca-2,4,6,13-tetraene-10,11-dicarboxylate

Dimethyl 12-ethyl-4-(17-ethyl-17-hydroxy-13-methoxycarbonyl-1,11-diazatetracyclo[13.3.1.04,12.05,10]nonadeca-4(12),5,7,9-tetraen-13-yl)-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.01,9.02,7.016,19]nonadeca-2,4,6,13-tetraene-10,11-dicarboxylate

C46H58N4O9 (810.4203578)


   
   

methyl (1R,10S,11R,12R,19R)-11-acetyloxy-12-ethyl-4-[(13S,15R,17S)-17-ethyl-17-hydroxy-13-methoxycarbonyl-1,11-diazatetracyclo[13.3.1.04,12.05,10]nonadeca-4(12),5,7,9-tetraen-13-yl]-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.01,9.02,7.016,19]nonadeca-2,4,6,13-tetraene-10-carboxylate

methyl (1R,10S,11R,12R,19R)-11-acetyloxy-12-ethyl-4-[(13S,15R,17S)-17-ethyl-17-hydroxy-13-methoxycarbonyl-1,11-diazatetracyclo[13.3.1.04,12.05,10]nonadeca-4(12),5,7,9-tetraen-13-yl]-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.01,9.02,7.016,19]nonadeca-2,4,6,13-tetraene-10-carboxylate

C46H58N4O9 (810.4203578)


L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues

   
   
   
   
   
   
   
   
   
   
   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C43H71O12P (810.4682895999999)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C43H71O12P (810.4682895999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C43H71O12P (810.4682895999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate

C43H71O12P (810.4682895999999)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C43H71O12P (810.4682895999999)


   

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[(9Z,12Z)-hexadeca-9,12-dienoxy]-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C43H71O12P (810.4682895999999)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C42H66O15 (810.4401486)


   

[6-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[6-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[3,4,5-trihydroxy-6-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[3,4,5-trihydroxy-6-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(Z)-hexadec-9-enoyl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[6-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

15-[4-(3,4-dihydroxy-5-methoxyoxan-2-yl)oxy-3,5-dimethoxyoxan-2-yl]oxy-4-hydroxy-5,8,8,14,14-pentamethyl-9-[(1E,3E,5E)-nona-1,3,5-trienyl]-10,17,18-trioxatricyclo[11.3.1.14,7]octadecane-3,11-dione

15-[4-(3,4-dihydroxy-5-methoxyoxan-2-yl)oxy-3,5-dimethoxyoxan-2-yl]oxy-4-hydroxy-5,8,8,14,14-pentamethyl-9-[(1E,3E,5E)-nona-1,3,5-trienyl]-10,17,18-trioxatricyclo[11.3.1.14,7]octadecane-3,11-dione

C42H66O15 (810.4401486)


   

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (8E,11E,14E)-heptadeca-8,11,14-trienoate

C42H67O13P (810.4319062)


   

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-2-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-octadec-11-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-[(10E,12E)-octadeca-10,12-dienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-3,4,5-trihydroxy-6-[(2S)-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]oxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-[(E)-undec-4-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[(2R,5R,6R)-3,4,5-trihydroxy-6-[[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxy-3-[(E)-undec-4-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C42H66O15 (810.4401486)


   

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-[(4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-dodecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C43H70O12S (810.4587740000001)


   

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[hydroxy-[(5S)-2,3,4,5,6-pentahydroxycyclohexyl]oxyphosphoryl]oxypropyl] (11E,14E)-heptadeca-11,14-dienoate

C42H67O13P (810.4319062)