Exact Mass: 733.5128556

Exact Mass Matches: 733.5128556

Found 500 metabolites which its exact mass value is equals to given mass value 733.5128556, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

PC(16:0/16:0)

(R)-4-Hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxohexadecyl)oxy]-3,5,9-trioxa-4-phosphapentacosan-1-aminium 4-oxide hydroxide inner salt

C40H80NO8P (733.562125)


PC(16:0/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/16:0), in particular, consists of two chains of palmitic acid at the C-1 and C-2 positions. The palmitic acid moieties are derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dipalmitoylphosphatidylcholine (DPPC) is the major constituent of pulmonary surfactant. It is also used for research purposes in studying liposomes, lipid bilayers, and model biological membranes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(16:0/16:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(16:0/16:0), in particular, consists of two chains of palmitic acid at the C-1 and C-2 positions. The palmitic acid moieties are derived from fish oils, milk fats, vegetable oils and animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Dipalmitoylphosphatidylcholine (DPPC) is the major constituent of pulmonary surfactant. It is also used for research purposes in studying liposomes, lipid bilayers, and model biological membranes. R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AA - Lung surfactants C78273 - Agent Affecting Respiratory System DPPC (129Y83) is a zwitterionic phosphoglyceride that can be used for the preparation of liposomal monolayers[1]. DPPC-liposome serves effectively as a delivery vehicle for inducing immune responses against GSL antigen in mice[2].

   

PC(14:0/18:0)

trimethyl(2-{[(2R)-2-(octadecanoyloxy)-3-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C40H80NO8P (733.562125)


PC(14:0/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/18:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of stearic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(14:0/18:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(14:0/18:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of stearic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PC(18:0/14:0)

trimethyl(2-{[(2R)-3-(octadecanoyloxy)-2-(tetradecanoyloxy)propyl phosphonato]oxy}ethyl)azanium

C40H80NO8P (733.562125)


PC(18:0/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/14:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of myristic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. PC(18:0/14:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(18:0/14:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of myristic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the myristic acid moiety is derived from nutmeg and butter. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))

(2-aminoethoxy)[(2R)-2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO8P (733.4682298)


PE(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(14:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the docosahexaenoic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(15:0/20:0)

(2-aminoethoxy)[(2R)-2-(icosanoyloxy)-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H80NO8P (733.562125)


PE(15:0/20:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(15:0/20:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of arachidic acid at the C-2 position. The pentadecanoic acid moiety is derived from dairy products and milk fat, while the arachidic acid moiety is derived from peanut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(15:0/20:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(15:0/20:0), in particular, consists of one pentadecanoyl chain to the C-1 atom, and one eicosanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C41H68NO8P (733.4682298)


PE(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(6Z,9Z,12Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C41H68NO8P (733.4682298)


PE(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the stearidonic acid moiety is derived from seed oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z))

(2-aminoethoxy)[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

C41H68NO8P (733.4682298)


PE(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the g-linolenic acid moiety is derived from animal fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z))

(2-aminoethoxy)[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propoxy]phosphinic acid

C41H68NO8P (733.4682298)


PE(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE(20:0/15:0)

(2-aminoethoxy)[(2R)-3-(icosanoyloxy)-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H80NO8P (733.562125)


PE(20:0/15:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(20:0/15:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. The arachidic acid moiety is derived from peanut oil, while the pentadecanoic acid moiety is derived from dairy products and milk fat. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(20:0/15:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PE(20:0/15:0), in particular, consists of one eicosanoyl chain to the C-1 atom, and one pentadecanoyl to the C-2 atom. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z))

(2-aminoethoxy)[(2R)-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphinic acid

C41H68NO8P (733.4682298)


PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/14:1(9Z)), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the myristoleic acid moiety is derived from milk fats. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PS(14:0/18:1(9Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(9Z)-octadec-9-enoyloxy]-3-(tetradecanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C38H72NO10P (733.4893582)


PS(14:0/18:1(9Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(14:0/18:1(9Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of oleic acid at the C-2 position. The myristic acid moiety is derived from nutmeg and butter, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(14:0/18:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(14:0/18:1(9Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 9Z-octadecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(14:1(9Z)/18:0)

(2S)-2-amino-3-({hydroxy[(2R)-2-(octadecanoyloxy)-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H72NO10P (733.4893582)


PS(14:1(9Z)/18:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(14:1(9Z)/18:0), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of stearic acid at the C-2 position. The myristoleic acid moiety is derived from milk fats, while the stearic acid moiety is derived from animal fats, coco butter and sesame oil. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(14:1(9Z)/18:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(14:1(9Z)/18:0), in particular, consists of one 9Z-tetradecenoyl chain to the C-1 atom, and one octadecanoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(16:0/16:1(9Z))

(2S)-2-amino-3-({[(2R)-2-[(9Z)-hexadec-9-enoyloxy]-3-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C38H72NO10P (733.4893582)


PS(16:0/16:1(9Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(16:0/16:1(9Z)), in particular, consists of one chain of palmitic acid at the C-1 position and one chain of palmitoleic acid at the C-2 position. The palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats, while the palmitoleic acid moiety is derived from animal fats and vegetable oils. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(16:0/16:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(16:0/16:1(9Z)), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one 9Z-hexadecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(16:1(9Z)/16:0)

(2S)-2-amino-3-({[(2R)-3-[(9Z)-hexadec-9-enoyloxy]-2-(hexadecanoyloxy)propoxy](hydroxy)phosphoryl}oxy)propanoic acid

C38H72NO10P (733.4893582)


PS(16:1(9Z)/16:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(16:1(9Z)/16:0), in particular, consists of one chain of palmitoleic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The palmitoleic acid moiety is derived from animal fats and vegetable oils, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(16:1(9Z)/16:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(16:1(9Z)/16:0), in particular, consists of one 9Z-hexadecenoyl chain to the C-1 atom, and one hexadecanoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:0/14:1(9Z))

(2S)-2-amino-3-({hydroxy[(2R)-3-(octadecanoyloxy)-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphoryl}oxy)propanoic acid

C38H72NO10P (733.4893582)


PS(18:0/14:1(9Z)) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(18:0/14:1(9Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the myristoleic acid moiety is derived from milk fats. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(18:0/14:1(9Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(18:0/14:1(9Z)), in particular, consists of one octadecanoyl chain to the C-1 atom, and one 9Z-tetradecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:1(9Z)/14:0)

(2S)-2-amino-3-{[hydroxy((2R)-3-[(9Z)-octadec-9-enoyloxy]-2-(tetradecanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C38H72NO10P (733.4893582)


PS(18:1(9Z)/14:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(18:1(9Z)/14:0), in particular, consists of one chain of oleic acid at the C-1 position and one chain of myristic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the myristic acid moiety is derived from nutmeg and butter. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. It is usually less than 10\\% of the total phospholipids, the greatest concentration being in myelin from brain tissue. However, it may comprise 10 to 20 mol\\% of the total phospholipid in the plasma membrane and endoplasmic reticulum of the cell. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine, especially during bone formation for example. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. In human plasma, 1-stearoyl-2-oleoyl and 1-stearoyl-2-arachidonoyl species predominate, but in brain (especially grey matter), retina and many other tissues 1-stearoyl-2-docosahexaenoyl species are very abundant. Indeed, the ratio of n-3 to n-6 fatty acids in brain phosphatidylserine is very much higher than in most other lipids. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE. PS(18:1(9Z)/14:0) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(18:1(9Z)/14:0), in particular, consists of one 9Z-octadecenoyl chain to the C-1 atom, and one tetradecanoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(14:0/18:1(11Z))

(2S)-2-amino-3-{[hydroxy((2R)-2-[(11Z)-octadec-11-enoyloxy]-3-(tetradecanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C38H72NO10P (733.4893582)


PS(14:0/18:1(11Z)) is a phosphatidylserine. It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylserines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 atoms. PS(14:0/18:1(11Z)), in particular, consists of one tetradecanoyl chain to the C-1 atom, and one 11Z-octadecenoyl to the C-2 atom. Phosphatidylserine or 1,2-diacyl-sn-glycero-3-phospho-L-serine is distributed widely among animals, plants and microorganisms. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. This interaction may be of considerable relevance to the biological function of phosphatidylserine. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Phosphatidylserines typically carry a net charge of -1 at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PS(18:1(11Z)/14:0)

(2S)-2-amino-3-{[hydroxy((2R)-3-[(11Z)-octadec-11-enoyloxy]-2-(tetradecanoyloxy)propoxy)phosphoryl]oxy}propanoic acid

C38H72NO10P (733.4893582)


PS(18:1(11Z)/14:0) is a phosphatidylserine (PS or GPSer). It is a glycerophospholipid in which a phosphorylserine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoserines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PS(18:1(11Z)/14:0), in particular, consists of one chain of vaccenic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidylserine is an acidic (anionic) phospholipid with three ionizable groups, i.e. the phosphate moiety, the amino group and the carboxyl function. As with other acidic lipids, it exists in nature in salt form, but it has a high propensity to chelate to calcium via the charged oxygen atoms of both the carboxyl and phosphate moieties, modifying the conformation of the polar head group. As phosphatidylserine is located entirely on the inner monolayer surface of the plasma membrane (and of other cellular membranes) and it is the most abundant anionic phospholipids. Therefore phosphatidylseriine may make the largest contribution to interfacial effects in membranes involving non-specific electrostatic interactions. This normal distribution is disturbed during platelet activation and cellular apoptosis. Phosphatidylserines typically carry a net charge of -1 at physiological pH. PS biosynthesis involves an exchange reaction of serine for ethanolamine in PE.

   

PE-NMe(16:0/18:0)

[3-(hexadecanoyloxy)-2-(octadecanoyloxy)propoxy][2-(methylamino)ethoxy]phosphinic acid

C40H80NO8P (733.562125)


PE-NMe(16:0/18:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(16:0/18:0), in particular, consists of one hexadecanoyl chain to the C-1 atom, and one octadecanoyl to the C-2 atom. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.

   

PE-NMe(14:0/20:0)

[2-(icosanoyloxy)-3-(tetradecanoyloxy)propoxy][2-(methylamino)ethoxy]phosphinic acid

C40H80NO8P (733.562125)


PE-NMe(14:0/20:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(14:0/20:0), in particular, consists of one chain of myristic acid at the C-1 position and one chain of arachidic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(18:0/16:0)

[2-(hexadecanoyloxy)-3-(octadecanoyloxy)propoxy][2-(methylamino)ethoxy]phosphinic acid

C40H80NO8P (733.562125)


PE-NMe(18:0/16:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(18:0/16:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of palmitic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe(20:0/14:0)

[3-(icosanoyloxy)-2-(tetradecanoyloxy)propoxy][2-(methylamino)ethoxy]phosphinic acid

C40H80NO8P (733.562125)


PE-NMe(20:0/14:0) is a monomethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Monomethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe(20:0/14:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of myristic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(15:0/18:0)

[2-(dimethylamino)ethoxy][2-(octadecanoyloxy)-3-(pentadecanoyloxy)propoxy]phosphinic acid

C40H80NO8P (733.562125)


PE-NMe2(15:0/18:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(15:0/18:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

PE-NMe2(18:0/15:0)

[2-(dimethylamino)ethoxy][3-(octadecanoyloxy)-2-(pentadecanoyloxy)propoxy]phosphinic acid

C40H80NO8P (733.562125)


PE-NMe2(18:0/15:0) is a dimethylphosphatidylethanolamine. It is a glycerophospholipid, and it is formed by sequential methylation of phosphatidylethanolamine as part of a mechanism for biosynthesis of phosphatidylcholine. Dimethylphosphatidylethanolamines are usually found at trace levels in animal or plant tissues. They can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PE-NMe2(18:0/15:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Fatty acids containing 16, 18 and 20 carbons are the most common. Phospholipids are ubiquitous in nature. They are key components of the cell lipid bilayer and are involved in metabolism and signaling.

   

1,2-Dipalmitoylphosphatidylcholine

(2-{[2,3-bis(hexadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C40H80NO8P (733.562125)


   

Tildipirosin

6-{[4-(dimethylamino)-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-16-ethyl-4-hydroxy-5,9,13-trimethyl-7-[2-(piperidin-1-yl)ethyl]-15-[(piperidin-1-yl)methyl]-1-oxacyclohexadeca-11,13-diene-2,10-dione

C41H71N3O8 (733.5240886)


   

PE(P-16:0/18:1(12Z)-2OH(9,10))

(2-aminoethoxy)[(2R)-2-{[(9S,10S,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-3-[(1E)-hexadec-1-en-1-yloxy]propoxy]phosphinic acid

C39H76NO9P (733.5257416)


PE(P-16:0/18:1(12Z)-2OH(9,10)) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(P-16:0/18:1(12Z)-2OH(9,10)), in particular, consists of one chain of one 1Z-hexadecenyl at the C-1 position and one chain of 9,10-hydroxy-octadecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

PE(18:1(12Z)-2OH(9,10)/P-16:0)

(2-aminoethoxy)[(2R)-3-{[(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoyl]oxy}-2-[(1E)-hexadec-1-en-1-yloxy]propoxy]phosphinic acid

C39H76NO9P (733.5257416)


PE(18:1(12Z)-2OH(9,10)/P-16:0) is an oxidized phosphatidylethanolamine (PE). Oxidized phosphatidylethanolamines are glycerophospholipids in which a phosphorylethanolamine moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidylethanolamines belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidylethanolamines can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PE(18:1(12Z)-2OH(9,10)/P-16:0), in particular, consists of one chain of one 9,10-hydroxy-octadecenoyl at the C-1 position and one chain of 1Z-hexadecenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PEs can be synthesized via three different routes. In one route, the oxidized PE is synthetized de novo following the same mechanisms as for PEs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PE backbone, mainly through the action of LOX (PMID: 33329396).

   

Tildipirosin

Tildipirosin

C41H71N3O8 (733.5240886)


C784 - Protein Synthesis Inhibitor > C261 - Macrolide Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   

1-O-TBSA-2-O-palmitoyl-sn-phosphotidylethanolamine|1-O-tuberculostearoyl-2-O-palmitoyl-sn-glycero-3-phosphoethanolamine

1-O-TBSA-2-O-palmitoyl-sn-phosphotidylethanolamine|1-O-tuberculostearoyl-2-O-palmitoyl-sn-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

Phosphatidylcholine 16:0-16:0

1,2-DIHEXADECANOYL-RAC-GLYCERO-3-PHOSPHOCHOLINE

C40H80NO8P (733.562125)


   

2,3-dihydromicrocolin B

2,3-dihydromicrocolin B

C39H67N5O8 (733.4989382)


   

PC 32:0

1-heptadecanoyl-2-pentadecanoyl-sn-glycero-3-phosphocholine

C40H80NO8P (733.562125)


Found in mouse lung; TwoDicalId=6; MgfFile=160901_Lung_AA_Neg_17_never; MgfId=1093

   

Colfosceril palmitate

(2-{[2.3-bis(hexadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C40H80NO8P (733.562125)


R - Respiratory system > R07 - Other respiratory system products > R07A - Other respiratory system products > R07AA - Lung surfactants C78273 - Agent Affecting Respiratory System DPPC (129Y83) is a zwitterionic phosphoglyceride that can be used for the preparation of liposomal monolayers[1]. DPPC-liposome serves effectively as a delivery vehicle for inducing immune responses against GSL antigen in mice[2].

   

(2-{[2.3-bis(hexadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

(2-{[2.3-bis(hexadecanoyloxy)propyl phosphono]oxy}ethyl)trimethylazanium

C40H80NO8P (733.562125)


   

PC(13:0/19:0)

3,5,8-Trioxa-4-phosphaheptacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxotridecyl)oxy]methyl]-, inner salt, 4-oxide, (R)-

C40H80NO8P (733.562125)


   

PC(13:0/19:0)[U]

3,5,8-Trioxa-4-phosphaheptacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxotridecyl)oxy]methyl]-, inner salt, 4-oxide

C40H80NO8P (733.562125)


   

PC(14:0/18:0)[U]

3,5,8-Trioxa-4-phosphahexacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxotetradecyl)oxy]methyl]-, inner salt, 4-oxide

C40H80NO8P (733.562125)


   

PC(15:0/17:0)

3,5,8-Trioxa-4-phosphapentacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxopentadecyl)oxy]methyl]-, inner salt, 4-oxide, (R)-

C40H80NO8P (733.562125)


   

PC(15:0/17:0)[U]

3,5,8-Trioxa-4-phosphapentacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxopentadecyl)oxy]methyl]-, inner salt, 4-oxide

C40H80NO8P (733.562125)


   

Dipalmitoyl phosphatidylcholine

1,2-dihexadecanoyl-sn-glycero-3-phosphocholine

C40H80NO8P (733.562125)


   

PC(16:0/16:0)[U]

3,5,9-Trioxa-4-phosphapentacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxohexadecyl)oxy]-, inner salt, 4-oxide, (-)-

C40H80NO8P (733.562125)


   

PC(17:0/15:0)

3,5,9-Trioxa-4-phosphahexacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxopentadecyl)oxy]-, inner salt, 4-oxide, (R)-

C40H80NO8P (733.562125)


   

PC(17:0/15:0)[U]

3,5,9-Trioxa-4-phosphahexacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxopentadecyl)oxy]-, inner salt, 4-oxide

C40H80NO8P (733.562125)


   

PC(18:0/14:0)[U]

Myristin, 1-stearo-2-, dihydrogen phosphate, monoester with choline hydroxide, inner salt

C40H80NO8P (733.562125)


   

PC(19:0/13:0)

3,5,9-Trioxa-4-phosphaoctacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxotridecyl)oxy]-, inner salt, 4-oxide, (R)-

C40H80NO8P (733.562125)


   

PC(20:0/12:0)

3,5,9-Trioxa-4-phosphanonacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxododecyl)oxy]-, inner salt, 4-oxide, (R)-

C40H80NO8P (733.562125)


   

PC(20:0/12:0)[U]

3,5,9-Trioxa-4-phosphanonacosan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxododecyl)oxy]-, inner salt, 4-oxide, (1)-

C40H80NO8P (733.562125)


   

PC(21:0/11:0)

3,5,9-Trioxa-4-phosphatriacontan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxoundecyl)oxy]-, inner salt, 4-oxide, (R)-

C40H80NO8P (733.562125)


   

PC(22:0/10:0)

3,5,9-Trioxa-4-phosphahentriacontan-1-aminium, 4-hydroxy-N,N,N-trimethyl-10-oxo-7-[(1-oxodecyl)oxy]-, inner salt, 4-oxide, (R)-

C40H80NO8P (733.562125)


   

PC(9:0/23:0)

3,5,8-Trioxa-4-phosphahentriacontan-1-aminium, 4-hydroxy-N,N,N-trimethyl-9-oxo-7-[[(1-oxononyl)oxy]methyl]-, inner salt, 4-oxide, (R)-

C40H80NO8P (733.562125)


   

PE(17:0/18:0)[U]

Octadecanoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxoheptadecyl)oxy]ethyl ester

C40H80NO8P (733.562125)


   

PE(19:0/16:0)

Nonadecanoic acid, 3-[[(2-aminoethoxy)hydroxyphosphinyl]oxy]-2-[(1-oxohexadecyl)oxy]propyl ester, (R)-

C40H80NO8P (733.562125)


   

PE(19:0/16:0)[U]

Nonadecanoic acid, 3-[[(2-aminoethoxy)hydroxyphosphinyl]oxy]-2-[(1-oxohexadecyl)oxy]propyl ester

C40H80NO8P (733.562125)


   

PE(16:0/19:0)

Nonadecanoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, (R)-

C40H80NO8P (733.562125)


   

PE(16:0/19:0)[U]

Nonadecanoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester

C40H80NO8P (733.562125)


   

PE(20:0/15:0)[U]

1-Eicosanoyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PE(18:0/17:0)[U]

1-octadecanoyl-2-heptadecanoyl-sn-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PE(13:0/22:0)[U]

1-tridecanoyl-2-docosanoyl-sn-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PE(14:0/21:0)[U]

1-tetradecanoyl-2-heneicosanoyl-sn-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

GPEtnNMe(17:0/17:0)[U]

Heptadecanoic acid, 1-[[[hydroxy[2-(methylamino)ethoxy]phosphinyl]oxy]methyl]-1,2-ethanediyl ester

C40H80NO8P (733.562125)


   

PE(18:0(10(R)Me)/16:0)

1-TBSA-2-palmitoyl-sn-glycero-3-phosphoethanolamine, 1-tuberculostearoyl-2-palmitoyl-sn-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

Lecithin

1-Stearoyl-2-myristoyl-sn-glycero-3-phosphocholine

C40H80NO8P (733.562125)


   

PE(36:7)

1-stearidonoyl-2-alpha-linolenoyl-sn-glycero-3-phosphoethanolamine

C41H68NO8P (733.4682298)


   

PE(35:0)

1-Arachidonyl-2-pentadecanoyl-sn-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PE(13:0/22:0)

1-tridecanoyl-2-docosanoyl-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PE(14:0/21:0)

1-tetradecanoyl-2-heneicosanoyl-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PE(18:0/17:0)

1-octadecanoyl-2-heptadecanoyl-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PE(22:0/13:0)

1-docosanoyl-2-tridecanoyl-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PE(21:0/14:0)

1-heneicosanoyl-2-tetradecanoyl-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PE(17:0/18:0)

1-heptadecanoyl-2-octadecanoyl-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

PS(12:0/20:1(11Z))

1-dodecanoyl-2-(11Z-eicosenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(13:0/19:1(9Z))

1-tridecanoyl-2-(9Z-nonadecenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(14:1(9Z)/18:0)

1-(9Z-tetradecenoyl)-2-octadecanoyl-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(15:0/17:1(9Z))

1-pentadecanoyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(15:1(9Z)/17:0)

1-(9Z-pentadecenoyl)-2-heptadecanoyl-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(16:1(9Z)/16:0)

1-(9Z-hexadecenoyl)-2-hexadecanoyl-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(17:0/15:1(9Z))

1-heptadecanoyl-2-(9Z-pentadecenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(17:1(9Z)/15:0)

1-(9Z-heptadecenoyl)-2-pentadecanoyl-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(18:0/14:1(9Z))

1-octadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(19:1(9Z)/13:0)

1-(9Z-nonadecenoyl)-2-tridecanoyl-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(20:1(11Z)/12:0)

1-(11Z-eicosenoyl)-2-dodecanoyl-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(18:1(9Z)/14:0)

1-(9Z-octadecenoyl)-2-tetradecanoyl-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(16:0/16:1(9Z))

1-hexadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(14:0/18:1(9Z))

1-tetradecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS(O-16:0/17:1(9Z))

1-hexadecyl-2-(9Z-heptadecenoyl)-glycero-3-phosphoserine

C39H76NO9P (733.5257416)


   

PS(O-18:0/15:1(9Z))

1-octadecyl-2-(9Z-pentadecenoyl)-glycero-3-phosphoserine

C39H76NO9P (733.5257416)


   

PS(P-16:0/17:0)

1-(1Z-hexadecenyl)-2-heptadecanoyl-glycero-3-phosphoserine

C39H76NO9P (733.5257416)


   

PS(P-18:0/15:0)

1-(1Z-octadecenyl)-2-pentadecanoyl-glycero-3-phosphoserine

C39H76NO9P (733.5257416)


   

PS(P-20:0/13:0)

1-(1Z-eicosenyl)-2-tridecanoyl-glycero-3-phosphoserine

C39H76NO9P (733.5257416)


   

PE 35:0

Nonadecanoic acid, 1-[[[(2-aminoethoxy)hydroxyphosphinyl]oxy]methyl]-2-[(1-oxohexadecyl)oxy]ethyl ester, (R)-

C40H80NO8P (733.562125)


   

PE 36:7

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphoethanolamine

C41H68NO8P (733.4682298)


   

PS 32:1

1-(9Z-heptadecenoyl)-2-pentadecanoyl-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

PS O-33:1

1-(1Z-octadecenyl)-2-pentadecanoyl-glycero-3-phosphoserine

C39H76NO9P (733.5257416)


   
   

L-1-Phosphatidylethanolamine

L-1-Phosphatidylethanolamine

C40H80NO8P (733.562125)


   

Phosphatidylglycerol (1-palmitoyl, 2-cis-9,10-methylene hexadecanoyl)

Phosphatidylglycerol (1-palmitoyl, 2-cis-9,10-methylene hexadecanoyl)

C39H74O10P- (733.5019334)


   

(11E,13Z)-6-[4-(dimethylamino)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-16-ethyl-4-hydroxy-5,9,13-trimethyl-7-(2-piperidin-1-ylethyl)-15-(piperidin-1-ylmethyl)-1-oxacyclohexadeca-11,13-diene-2,10-dione

(11E,13Z)-6-[4-(dimethylamino)-3,5-dihydroxy-6-methyloxan-2-yl]oxy-16-ethyl-4-hydroxy-5,9,13-trimethyl-7-(2-piperidin-1-ylethyl)-15-(piperidin-1-ylmethyl)-1-oxacyclohexadeca-11,13-diene-2,10-dione

C41H71N3O8 (733.5240886)


   

PE(P-16:0/18:1(12Z)-2OH(9,10))

PE(P-16:0/18:1(12Z)-2OH(9,10))

C39H76NO9P (733.5257416)


   

PE(18:1(12Z)-2OH(9,10)/P-16:0)

PE(18:1(12Z)-2OH(9,10)/P-16:0)

C39H76NO9P (733.5257416)


   

2-[[(E,2S,3R)-2-[[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E,2S,3R)-2-[[(Z,9S,10S)-9,10-dihydroxyoctadec-12-enoyl]amino]-3-hydroxyhexadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C39H78N2O8P+ (733.5495498)


   

1-Myristoyl-2-stearoylphosphatidylcholine

1-Myristoyl-2-stearoylphosphatidylcholine

C40H80NO8P (733.562125)


   

(3-Octanoyloxy-2-tetracosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(3-Octanoyloxy-2-tetracosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-octoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-3-octoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO7P (733.5046132)


   

2-[3-nonanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-nonanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H75NO8 (733.5492390000001)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

2-[3-heptadecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-heptadecanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H75NO8 (733.5492390000001)


   

2-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[3-[(Z)-heptadec-9-enoyl]oxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H75NO8 (733.5492390000001)


   

2-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxy-3-[(Z)-pentadec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H75NO8 (733.5492390000001)


   

2-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentadecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H75NO8 (733.5492390000001)


   

2-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-undecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H75NO8 (733.5492390000001)


   

2-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H75NO8 (733.5492390000001)


   

2-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(9Z,12Z)-heptadeca-9,12-dienoyl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H75NO8 (733.5492390000001)


   

2-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

2-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-tridecanoyloxypropoxy]-2-[2-(trimethylazaniumyl)ethoxy]acetate

C43H75NO8 (733.5492390000001)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] nonanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propan-2-yl] nonanoate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C42H72NO7P (733.5046132)


   

[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]-2-octanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO7P (733.5046132)


   

[2-hexanoyloxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-hexanoyloxy-3-[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] undecanoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoxy]propan-2-yl] undecanoate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propan-2-yl] (Z)-tridec-9-enoate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate

C42H72NO7P (733.5046132)


   

2-amino-3-[hydroxy-[2-icosanoyloxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-icosanoyloxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[3-octadecoxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-octadecoxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO7P (733.5046132)


   

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-docos-13-enoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-pentadecoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-pentadecoxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO7P (733.5046132)


   

2-amino-3-[hydroxy-[3-icosoxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-icosoxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-docos-13-enoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[3-nonadecoxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-nonadecoxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[[2-heptadecanoyloxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-heptadecanoyloxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[[2-dodecanoyloxy-3-[(Z)-henicos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-dodecanoyloxy-3-[(Z)-henicos-11-enoxy]propoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[2-nonadecanoyloxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-nonadecanoyloxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hexadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-hexadecoxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-pentadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-octadecanoyloxy-3-[(Z)-pentadec-9-enoxy]propoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[[3-dodecoxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-dodecoxy-2-[(Z)-henicos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-[(Z)-octadec-9-enoxy]-2-pentadecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[[3-heptadecoxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptadecoxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-[(Z)-heptadec-9-enoxy]-2-hexadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C39H76NO9P (733.5257416)


   

2-[4-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-12-hydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C42H71NO7S (733.4950976)


   

2-[4-[3-[(Z)-heptadec-9-enoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

2-[4-[3-[(Z)-heptadec-9-enoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]ethanesulfonic acid

C43H75NO6S (733.531481)


   

2-[4-[12-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

2-[4-[12-hydroxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoylamino]acetic acid

C46H71NO6 (733.5281106)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoate

C41H68NO8P (733.4682298)


   
   
   
   
   
   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C42H72NO7P (733.5046132)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO7P (733.5046132)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propan-2-yl] (Z)-pentadec-9-enoate

C42H72NO7P (733.5046132)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO7P (733.5046132)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoxy]propan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C42H72NO7P (733.5046132)


   

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(9Z,12Z)-hexadeca-9,12-dienoxy]-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C42H72NO7P (733.5046132)


   

2-amino-3-[hydroxy-[3-octanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-octanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] hexacosanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] hexacosanoate

C40H80NO8P (733.562125)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoate

C41H68NO8P (733.4682298)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] icosanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-pentadecanoyloxypropan-2-yl] icosanoate

C40H80NO8P (733.562125)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] octadecanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-heptadecanoyloxypropan-2-yl] octadecanoate

C40H80NO8P (733.562125)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] nonadecanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-hexadecanoyloxypropan-2-yl] nonadecanoate

C40H80NO8P (733.562125)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] docosanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecanoyloxypropan-2-yl] docosanoate

C40H80NO8P (733.562125)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] henicosanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tetradecanoyloxypropan-2-yl] henicosanoate

C40H80NO8P (733.562125)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] pentacosanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] pentacosanoate

C40H80NO8P (733.562125)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetracosanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetracosanoate

C40H80NO8P (733.562125)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] tricosanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] tricosanoate

C40H80NO8P (733.562125)


   

2-amino-3-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-octadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

2-amino-3-[[3-decanoyloxy-2-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-decanoyloxy-2-[(Z)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

2-amino-3-[hydroxy-[3-octadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-octadecanoyloxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

2-amino-3-[[3-dodecanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-dodecanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

2-amino-3-[[3-heptadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-heptadecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (9Z,12Z)-octadeca-9,12-dienoate

C41H68NO8P (733.4682298)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C41H68NO8P (733.4682298)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropyl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C41H68NO8P (733.4682298)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C41H68NO8P (733.4682298)


   

2-amino-3-[hydroxy-[3-nonadecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

2-amino-3-[hydroxy-[3-nonadecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-heptadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

2-amino-3-[[3-hexadecanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[3-hexadecanoyloxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C41H68NO8P (733.4682298)


   

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-henicos-11-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C41H68NO8P (733.4682298)


   

(3-Decanoyloxy-2-docosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(3-Decanoyloxy-2-docosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

(3-Dodecanoyloxy-2-icosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(3-Dodecanoyloxy-2-icosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

(2-Nonadecanoyloxy-3-tridecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Nonadecanoyloxy-3-tridecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

(2-Heptadecanoyloxy-3-pentadecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Heptadecanoyloxy-3-pentadecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

(14Z,16Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadeca-4,8,12-trien-2-yl]docosa-14,16-dienamide

(14Z,16Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypentadeca-4,8,12-trien-2-yl]docosa-14,16-dienamide

C43H75NO8 (733.5492390000001)


   

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] heptacosanoate

[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] heptacosanoate

C40H80NO8P (733.562125)


   

(2-Heptacosanoyloxy-3-pentanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Heptacosanoyloxy-3-pentanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

(10Z,12Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadeca-4,8,12-trien-2-yl]octadeca-10,12-dienamide

(10Z,12Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxynonadeca-4,8,12-trien-2-yl]octadeca-10,12-dienamide

C43H75NO8 (733.5492390000001)


   

(3-Nonanoyloxy-2-tricosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(3-Nonanoyloxy-2-tricosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

2-amino-3-[[2-[(Z)-hexacos-15-enoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

2-amino-3-[[2-[(Z)-hexacos-15-enoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2-Hexacosanoyloxy-3-hexanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Hexacosanoyloxy-3-hexanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

(2-Henicosanoyloxy-3-undecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(2-Henicosanoyloxy-3-undecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

(3-Heptanoyloxy-2-pentacosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

(3-Heptanoyloxy-2-pentacosanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

(4Z,7Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosa-4,8,12-trien-2-yl]hexadeca-4,7-dienamide

(4Z,7Z)-N-[(4E,8E,12E)-3-hydroxy-1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyhenicosa-4,8,12-trien-2-yl]hexadeca-4,7-dienamide

C43H75NO8 (733.5492390000001)


   

(2S)-2-amino-3-[[(2R)-3-hexadecanoyloxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-hexadecanoyloxy-2-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-11-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H68NO8P (733.4682298)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-9-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H68NO8P (733.4682298)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] pentacosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-decanoyloxypropan-2-yl] pentacosanoate

C40H80NO8P (733.562125)


   

(2S)-2-amino-3-[[(2S)-3-decanoyloxy-2-[(E)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-decanoyloxy-2-[(E)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-7-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-6-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H68NO8P (733.4682298)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(4E,7E)-hexadeca-4,7-dienoyl]oxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate

C41H68NO8P (733.4682298)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-9-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-undecanoyloxypropyl] tetracosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-undecanoyloxypropyl] tetracosanoate

C40H80NO8P (733.562125)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] tricosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-dodecanoyloxypropyl] tricosanoate

C40H80NO8P (733.562125)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] (11E,14E)-icosa-11,14-dienoate

C41H68NO8P (733.4682298)


   

(2R)-2-amino-3-[[(2S)-2-dodecanoyloxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-2-dodecanoyloxy-3-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H68NO8P (733.4682298)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C41H68NO8P (733.4682298)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-octadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-octadecanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H67NO7 (733.4917272)


   

(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

[3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate

C41H68NO8P (733.4682298)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C41H68NO8P (733.4682298)


   

(2S)-2-amino-3-[[(2R)-3-heptadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-heptadecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

4-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]-2-(trimethylazaniumyl)butanoate

C45H67NO7 (733.4917272)


   

[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(11E,14E)-heptadeca-11,14-dienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H68NO8P (733.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] docosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tridecanoyloxypropyl] docosanoate

C40H80NO8P (733.562125)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-11-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-11-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H68NO8P (733.4682298)


   

[(2S)-3-henicosanoyloxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-3-henicosanoyloxy-2-undecanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C41H68NO8P (733.4682298)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-octadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-octadecanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2S)-2-dodecanoyloxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-dodecanoyloxy-3-icosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] tricosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] tricosanoate

C40H80NO8P (733.562125)


   

(2R)-2-amino-3-[[(2S)-2-decanoyloxy-3-[(E)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-2-decanoyloxy-3-[(E)-docos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H68NO8P (733.4682298)


   

(2S)-2-amino-3-[[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-[(E)-heptadec-9-enoyl]oxy-2-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-4-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C41H68NO8P (733.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] icosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-pentadecanoyloxypropyl] icosanoate

C40H80NO8P (733.562125)


   

(2S)-2-amino-3-[[(2R)-3-hexadecanoyloxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-3-hexadecanoyloxy-2-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-octadec-17-enoyloxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-octadec-17-enoyloxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C41H68NO8P (733.4682298)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C41H68NO8P (733.4682298)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-6-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-7-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2R)-2-amino-3-[[(2S)-2-dodecanoyloxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2R)-2-amino-3-[[(2S)-2-dodecanoyloxy-3-[(E)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-13-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-[(E)-heptadec-9-enoyl]oxy-3-pentadecanoyloxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] henicosanoate

[(2S)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-tetradecanoyloxypropyl] henicosanoate

C40H80NO8P (733.562125)


   

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-decanoyloxypropyl] pentacosanoate

[(2R)-3-[2-aminoethoxy(hydroxy)phosphoryl]oxy-2-decanoyloxypropyl] pentacosanoate

C40H80NO8P (733.562125)


   

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetracosanoate

[(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetracosanoate

C40H80NO8P (733.562125)


   

[(2S)-2-decanoyloxy-3-docosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

[(2S)-2-decanoyloxy-3-docosanoyloxypropyl] 2-(trimethylazaniumyl)ethyl phosphate

C40H80NO8P (733.562125)


   

(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2S)-3-dodecanoyloxy-2-[(E)-icos-13-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-octadec-17-enoyloxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-octadec-17-enoyloxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-2-[(E)-octadec-4-enoyl]oxy-3-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-13-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

(2S)-2-amino-3-[hydroxy-[(2R)-3-[(E)-octadec-13-enoyl]oxy-2-tetradecanoyloxypropoxy]phosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[[(2R)-2-hexadecanoyloxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-hexadecanoyloxy-3-[(E)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[[(2R)-2-heptadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-heptadecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

(2S)-2-amino-3-[[(2R)-2-hexadecanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

(2S)-2-amino-3-[[(2R)-2-hexadecanoyloxy-3-[(E)-hexadec-7-enoyl]oxypropoxy]-hydroxyphosphoryl]oxypropanoic acid

C38H72NO10P (733.4893582)


   

2-[[(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-[[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]amino]-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]nonadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-10,13,16,19,22,25-hexaenoyl]amino]non-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]heptadeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-[[(9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoyl]amino]trideca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tridec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]tridec-4-enoxy]phosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhenicosa-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[hydroxy-[3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-hydroxy-2-[[(7Z,10Z,13Z,16Z,19Z,22Z,25Z)-octacosa-7,10,13,16,19,22,25-heptaenoyl]amino]nonoxy]phosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[[(5Z,8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]amino]-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxypentadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxypentadec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]nonadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(E)-2-[[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]amino]-3-hydroxyundec-4-enoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-[[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]amino]heptadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(8E,12E,16E)-3,4-dihydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]octadeca-8,12,16-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C41H70N2O7P+ (733.4920380000001)


   

2-[[(4E,8E,12E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E,12E)-2-[[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]amino]-3-hydroxypentadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C42H74N2O6P+ (733.5284214000001)


   

1,2-dihexadecanoyl-sn-glycero-3-phosphocholine

1,2-dihexadecanoyl-sn-glycero-3-phosphocholine

C40H80NO8P (733.562125)


A phosphatidylcholine 32:0 in which the 1- and 2-acyl groups are specified as hexadecanoyl (palmitoyl). A synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of pulmonary surfactants.

   

1-hexadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoserine

1-hexadecanoyl-2-(9Z-hexadecenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

1-Stearoyl-2-myristoyl-sn-glycero-3-phosphocholine

1-Stearoyl-2-myristoyl-sn-glycero-3-phosphocholine

C40H80NO8P (733.562125)


A phosphatidylcholine 32:0 in which the acyl group specified at positions 1 and 2 are stearoyl and myristoyl respectively.

   

1-Myristoyl-2-stearoyl-sn-glycero-3-phosphocholine

1-Myristoyl-2-stearoyl-sn-glycero-3-phosphocholine

C40H80NO8P (733.562125)


A phosphatidylcholine 32:0 in which the acyl group specified at positions 1 and 2 are myristoyl and stearoyl respectively.

   

1-tetradecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoserine

1-tetradecanoyl-2-(9Z-octadecenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

1-(9Z-hexadecenoyl)-2-hexadecanoyl-glycero-3-phosphoserine

1-(9Z-hexadecenoyl)-2-hexadecanoyl-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

1-octadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoserine

1-octadecanoyl-2-(9Z-tetradecenoyl)-glycero-3-phosphoserine

C38H72NO10P (733.4893582)


   

1-pentadecanoyl-2-eicosanoyl-glycero-3-phosphoethanolamine

1-pentadecanoyl-2-eicosanoyl-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   

1-eicosanoyl-2-pentadecanoyl-glycero-3-phosphoethanolamine

1-eicosanoyl-2-pentadecanoyl-glycero-3-phosphoethanolamine

C40H80NO8P (733.562125)


   
   
   
   
   
   
   

1-dodecanoyl-2-eicosanoyl-sn-glycero-3-phosphocholine

1-dodecanoyl-2-eicosanoyl-sn-glycero-3-phosphocholine

C40H80NO8P (733.562125)


   

1-heptadecanoyl-2-pentadecanoyl-sn-glycero-3-phosphocholine

1-heptadecanoyl-2-pentadecanoyl-sn-glycero-3-phosphocholine

C40H80NO8P (733.562125)


   

phosphatidylcholine 32:0

phosphatidylcholine 32:0

C40H80NO8P (733.562125)


A 1,2-diacyl-sn-glycero-3-phosphocholine in which the acyl groups at C-1 and C-2 contain 32 carbons in total with 0 double bonds.

   

Phosphatidylcholine 16:0/16:0

Phosphatidylcholine 16:0/16:0

C40H80NO8P (733.562125)


A phosphatidylcholine 32:0 in which the acyl groups at C-1 and C-2 are both hexadecanoyl.

   

eicosanoic acid [(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-(1-oxopentadecoxy)propan-2-yl] ester

eicosanoic acid [(2R)-1-[2-aminoethoxy(hydroxy)phosphoryl]oxy-3-(1-oxopentadecoxy)propan-2-yl] ester

C40H80NO8P (733.562125)


   

MePC(31:0)

MePC(15:0_16:0)

C40H80NO8P (733.562125)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PC(34:7)

PC(12:1(1)_22:6)

C42H72NO7P (733.5046132)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Hex1Cer(37:5)

Hex1Cer(d17:1_20:4)

C43H75NO8 (733.5492390000001)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PC(33:7)

PC(22:6_11:1)

C41H68NO8P (733.4682298)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

dMePE(33:0)

dMePE(16:0_17:0)

C40H80NO8P (733.562125)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   

PC P-34:6 or PC O-34:7

PC P-34:6 or PC O-34:7

C42H72NO7P (733.5046132)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PE P-15:0/22:6 or PE O-15:1/22:6

PE P-15:0/22:6 or PE O-15:1/22:6

C42H72NO7P (733.5046132)


   
   
   

PE P-37:6 or PE O-37:7

PE P-37:6 or PE O-37:7

C42H72NO7P (733.5046132)


   
   
   
   
   
   
   
   
   
   
   
   
   
   

PS P-14:0/19:0 or PS O-14:1/19:0

PS P-14:0/19:0 or PS O-14:1/19:0

C39H76NO9P (733.5257416)


   
   

PS P-16:0/17:0 or PS O-16:1/17:0

PS P-16:0/17:0 or PS O-16:1/17:0

C39H76NO9P (733.5257416)


   
   

PS P-18:0/15:0 or PS O-18:1/15:0

PS P-18:0/15:0 or PS O-18:1/15:0

C39H76NO9P (733.5257416)


   
   

PS P-20:0/13:0 or PS O-20:1/13:0

PS P-20:0/13:0 or PS O-20:1/13:0

C39H76NO9P (733.5257416)


   
   

PS P-22:0/11:0 or PS O-22:1/11:0

PS P-22:0/11:0 or PS O-22:1/11:0

C39H76NO9P (733.5257416)


   
   

PS P-33:0 or PS O-33:1

PS P-33:0 or PS O-33:1

C39H76NO9P (733.5257416)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

GalCer 14:0;O3/22:6

GalCer 14:0;O3/22:6

C42H71NO9 (733.5128556)


   
   
   
   
   
   
   
   
   
   

GlcCer 14:0;O3/22:6

GlcCer 14:0;O3/22:6

C42H71NO9 (733.5128556)


   
   
   
   
   
   
   
   
   
   

HexCer 14:0;O3/22:6

HexCer 14:0;O3/22:6

C42H71NO9 (733.5128556)