Exact Mass: 686.3336
Exact Mass Matches: 686.3336
Found 153 metabolites which its exact mass value is equals to given mass value 686.3336
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Dslet
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins
[5-[2-[4-(4-Benzhydrylpiperazin-1-ium-1-yl)phenyl]ethoxycarbonyl]-2,6-dimethyl-4-(3-nitrophenyl)-4H-pyridin-3-ylidene]-methoxymethanolate
Dslet
PA(12:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PA(12:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/12:0)
PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/12:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(i-12:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
PA(i-12:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of Lipoxin A5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-12:0)
PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-12:0), in particular, consists of one chain of one Lipoxin A5 at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
30,30,34-trichlorocylindrocyclophane A|cylindrocyclophane A3
3-O-benzoyl-17-benzoyloxy-13-(2,3-dimethylbutanoyloxy)ingenol
13,17-dibenzoyloxy-3-O-(2,3-dimethylbutanoyl)ingenol
trichagmalin F
A limonoid with a phragmalin skeleton isolated from the leaves of Trichilia connaroides.
N-(3-Hydroxycarbonylpropionyl)-anthranoyllycoctonin
cucurbitacin D 16-O-(2?-O-acetyl-4?,6?-dideoxy-alpha-gluco-hex-3?-ulopyranoside)|datiscoside I
[7-[[3-(3-chloro-4-methoxyphenyl)-1-[(3-methoxy-2-methyl-3-oxopropyl)amino]-1-oxopropan-2-yl]amino]-7-oxo-2-(3-phenyloxiran-2-yl)hept-5-en-3-yl] 2-hydroxy-4-methylpentanoate
Arg Trp Tyr Tyr
Arg Tyr Trp Tyr
Arg Tyr Tyr Trp
Trp Arg Tyr Tyr
Trp Tyr Arg Tyr
Trp Tyr Tyr Arg
Tyr Arg Trp Tyr
Tyr Arg Tyr Trp
Tyr Trp Arg Tyr
Tyr Trp Tyr Arg
Tyr Tyr Arg Trp
Tyr Tyr Trp Arg
Tetrakis[[2,2,2-nitrilotris[ethanolato]](1-)-N,o]zirconium
Vatanidipine
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
[5-[2-[4-(4-Benzhydrylpiperazin-1-ium-1-yl)phenyl]ethoxycarbonyl]-2,6-dimethyl-4-(3-nitrophenyl)-4H-pyridin-3-ylidene]-methoxymethanolate
2-[2-(2-{2-[2-Amino-3-(4-hydroxy-phenyl)-propionylamino]-propionylamino}-acetylamino)-3-phenyl-propionylamino]-4-methyl-pentanoic acid
2-[3-(2-Tert-butyl-9-ethyl-6,8,8-trimethyl-8,9-dihydropyrano[3,2-g]quinolin-1-ium-4-yl)prop-2-en-1-ylidene]-1-(5-carboxypentyl)-3,3-dimethylindoline-5-sulfonate
N-(2-aminophenyl)-4-[[[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-9-[[3-(4-morpholinyl)-1-oxopropyl]amino]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-2-yl]methyl-methylamino]methyl]benzamide
[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
(2s,3as,4ar,6s,8s,8as,9r,10r)-8,9-bis(acetyloxy)-2-hydroxy-3a-(2-hydroxypropan-2-yl)-1,8a-dimethyl-5-methylidene-6-{[(2e)-3-phenylprop-2-enoyl]oxy}-2h,3h,4h,4ah,6h,7h,8h,9h,10h-cyclohexa[f]azulen-10-yl benzoate
(2s,3s,4s,5r,6r)-6-{[(1r,3as,3bs,5s,5as,7s,9as,11as)-9a,11a-dimethyl-1-[(1s)-1-[(2s,3s)-3-[(2r)-3-methylbutan-2-yl]oxiran-2-yl]ethyl]-5-(sulfooxy)-1h,2h,3h,3ah,3bh,4h,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
(1r,4r,5r,7s,8r,9r,10r,11s,12s)-5,7-bis(acetyloxy)-10-[(3r,5s)-5-(acetyloxy)-3-(furan-3-yl)-2-methylcyclopent-1-en-1-yl]-9-(2-methoxy-2-oxoethyl)-4,8,10-trimethyl-2-oxatricyclo[6.3.1.0⁴,¹²]dodecan-11-yl 2-methylpropanoate
10-[8-(4-carboxy-3-methylbuta-1,3-dien-1-yl)-9-[(4-methoxy-4-oxobut-2-enoyl)oxy]-3-methyl-9-pentyl-1,7-dioxaspiro[5.5]undecan-2-yl]-5-hydroxy-4,8-dimethyldeca-2,6,8-trienoic acid
(1ar,3s,3ar,4r,5r,6r,7as)-6-[(2s,3r,4s)-2-[(acetyloxy)methyl]-3-(2-methoxy-2-oxoethyl)-2,4-dimethyl-7-oxo-3h-oxepin-4-yl]-5-(formyloxy)-3-(furan-3-yl)-3a-methyl-7-methylidene-hexahydroindeno[1,7a-b]oxiren-4-yl (2r,3r)-2-hydroxy-3-methylpentanoate
[(2s,3s,4r,5s)-2-{[(3r,3ar,4s,5ar,5br,7ar,9s,11ar,11br,13r,13ar,13br)-3-acetyl-4,13-dihydroxy-3,5a,5b,8,8,11a,13b-heptamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-9-yl]oxy}-3,5-dihydroxyoxan-4-yl]oxidanesulfonic acid
8-(4-chlorobutyl)-19-(4,4-dichlorobutyl)-3,14-dimethyltricyclo[18.2.2.2⁹,¹²]hexacosa-1(22),9,11,20,23,25-hexaene-2,10,13,21,24,26-hexol
n-[2-(3-chloro-4-methoxyphenyl)-1-[(3-methoxy-2-methyl-3-oxopropyl)-c-hydroxycarbonimidoyl]ethyl]-5-[(2-hydroxy-4-methylpentanoyl)oxy]-6-(3-phenyloxiran-2-yl)hept-2-enimidic acid
2alpha-benzoyloxy-5alpha-cinnamoyloxy-1beta,13alpha-dihydroxy-4(20),11-taxadiene
{"Ingredient_id": "HBIN005276","Ingredient_name": "2alpha-benzoyloxy-5alpha-cinnamoyloxy-1beta,13alpha-dihydroxy-4(20),11-taxadiene","Alias": "NA","Ingredient_formula": "C40H46O10","Ingredient_Smile": "CC1=C2C(C(C3(CCC(C(=C)C3C(C(C2(C)C)(CC1O)O)OC(=O)C4=CC=CC=C4)OC(=O)C=CC5=CC=CC=C5)C)OC(=O)C)OC(=O)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "25198","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
2α-benzoyloxy-5α-cinnamoyloxy-9α,10β-di-acetoxy-1β,13α-dihydroxy-4(20),11-taxadiene
{"Ingredient_id": "HBIN005277","Ingredient_name": "2\u03b1-benzoyloxy-5\u03b1-cinnamoyloxy-9\u03b1,10\u03b2-di-acetoxy-1\u03b2,13\u03b1-dihydroxy-4(20),11-taxadiene","Alias": "NA","Ingredient_formula": "C40H46O10","Ingredient_Smile": "Not Available","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "2250","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}