Exact Mass: 680.3619

Exact Mass Matches: 680.3619

Found 316 metabolites which its exact mass value is equals to given mass value 680.3619, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Gingerglycolipid C

2-Hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9Z)-octadec-9-enoic acid

C33H60O14 (680.3983)


Gingerglycolipid C is found in ginger. Gingerglycolipid C is from Zingiber officinale (ginger). From Zingiber officinale (ginger). Gingerglycolipid C is found in herbs and spices and ginger.

   

Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside]

4-{5-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-14-yl}-2,5-dihydrofuran-2-one

C35H52O13 (680.3408)


Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside] is found in green vegetables. Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside] is a constituent of Corchorus olitorius (Jews mallow) Constituent of Corchorus olitorius (Jews mallow). Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside] is found in tea, herbs and spices, and green vegetables.

   

Tenuifolin

2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4,8a-dicarboxylic acid

C36H56O12 (680.3772)


   

Myelopeptides

2-({[1-(2-{[2-({2-[(2-amino-1-hydroxy-3-phenylpropylidene)amino]-1-hydroxy-4-methylpentylidene}amino)-1-hydroxyethylidene]amino}-3-phenylpropanoyl)pyrrolidin-2-yl](hydroxy)methylidene}amino)-3-hydroxybutanoate

C35H48N6O8 (680.3533)


   

PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2R)-3-(dodecanoyloxy)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2R)-3-(dodecanoyloxy)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2R)-3-(dodecanoyloxy)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2R)-3-(dodecanoyloxy)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2R)-3-(dodecanoyloxy)-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0)

[(2R)-2-(dodecanoyloxy)-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

[(2R)-2-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))

[(2R)-3-{[(6E,8Z,11Z,14Z)-5-oxoicosa-6,8,11,14-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z)), in particular, consists of one chain of one 5-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

[(2R)-2-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-oxo-eicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,13E)-15-oxoicosa-5,8,11,13-tetraenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z)), in particular, consists of one chain of one 15-oxo-eicosatetraenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 18-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z)), in particular, consists of one chain of one 18-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

[(2R)-2-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 15-hydroxyleicosapentaenyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z)), in particular, consists of one chain of one 15-hydroxyleicosapentaenyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

[(2R)-2-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 12-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))

[(2R)-3-{[(5Z,8Z,10E,14Z,17Z)-12-hydroxyicosa-5,8,10,14,17-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z)), in particular, consists of one chain of one 12-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

[(2R)-2-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5)), in particular, consists of one chain of one 9Z-tetradecenoyl at the C-1 position and one chain of 5-hydroxyleicosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))

[(2R)-3-{[(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoyl]oxy}-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z)), in particular, consists of one chain of one 5-hydroxyleicosapentaenoyl at the C-1 position and one chain of 9Z-tetradecenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

[(2R)-2-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

[(2R)-3-{[(5Z,7Z,10Z,13Z,16Z,19Z)-4-hydroxydocosa-5,7,10,13,16,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

[(2R)-2-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)

[(2R)-3-{[(4Z,8Z,10Z,13Z,16Z,19Z)-7-hydroxydocosa-4,8,10,13,16,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

[(2R)-2-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)

[(2R)-3-{[(4Z,7Z,10Z,12E,16Z,19Z)-14-hydroxydocosa-4,7,10,12,16,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

[(2R)-2-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)

[(2R)-3-{[(4Z,7Z,10Z,13E,15E,19Z)-17-hydroxydocosa-4,7,10,13,15,19-hexaenoyl]oxy}-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

[(2R)-3-[(10-methylundecanoyl)oxy]-2-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one 10-methylundecanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)

[(2R)-2-[(10-methylundecanoyl)oxy]-3-{[(4Z,7Z,10Z,13Z)-15-{3-[(2Z)-pent-2-en-1-yl]oxiran-2-yl}pentadeca-4,7,10,13-tetraenoyl]oxy}propoxy]phosphonic acid

C37H61O9P (680.4053)


PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of 10-methylundecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Tenuifolin

(2S,3R,4S,4aR,6aR,6bR,8aS,12aS,14aR,14bR)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

C36H56O12 (680.3772)


Tenuifolin is a natural product found in Polygala comosa, Muraltia spinosa, and other organisms with data available. Tenuifolin is a triterpene isolated from Polygala tenuifolia?Willd, has neuroprotective effects. Tenuifolin reduces Aβ secretion by inhibiting β-secretase. Tenuifolin improves learning and memory in aged mice by decreasing AChE activity and has the potential for Alzheimer’s disease (AD) treatment[1]. Tenuifolin is a triterpene isolated from Polygala tenuifolia?Willd, has neuroprotective effects. Tenuifolin reduces Aβ secretion by inhibiting β-secretase. Tenuifolin improves learning and memory in aged mice by decreasing AChE activity and has the potential for Alzheimer’s disease (AD) treatment[1].

   

SCHEMBL22409698

SCHEMBL22409698

C36H56O12 (680.3772)


   

Isofusicoccin

Isofusicoccin

C36H56O12 (680.3772)


   

Aeruginosin 103-A

Aeruginosin 103-A

C35H48N6O8 (680.3533)


   

2-(beta-D-glucopyranosyloxy)-3,16,20-trihydroxy-9-methyl-19-norlanosta-5,24-diene-22-one

2-(beta-D-glucopyranosyloxy)-3,16,20-trihydroxy-9-methyl-19-norlanosta-5,24-diene-22-one

C36H56O12 (680.3772)


   
   
   

Allofusicoccin

Allofusicoccin

C36H56O12 (680.3772)


   

MEGxp0_000350

MEGxp0_000350

C36H56O12 (680.3772)


   

(2R,3R,4R,6aR,6bS,8aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2R,3R,4R,6aR,6bS,8aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

16alpha,23alpha-epoxy-2beta,3beta,7beta,20beta,26-pentahydroxy-10alpha,23alpha-cucurbit-5,24-(E)-dien-11-one 2-O-beta-D-glucopyranoside

16alpha,23alpha-epoxy-2beta,3beta,7beta,20beta,26-pentahydroxy-10alpha,23alpha-cucurbit-5,24-(E)-dien-11-one 2-O-beta-D-glucopyranoside

C36H56O12 (680.3772)


   

eremophiloside E

eremophiloside E

C36H56O12 (680.3772)


   
   

2alpha,3beta,19alpha,23-tetrahydroxy-11-oxo-olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester

2alpha,3beta,19alpha,23-tetrahydroxy-11-oxo-olean-12-en-28-oic acid 28-O-beta-D-glucopyranosyl ester

C36H56O12 (680.3772)


   

(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-2,8,9-triacetate-7-isobutyrate-5-(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 2,8,9-triacetate 7-isobutyrate 5-(2-methylbutyrate)

(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-2,8,9-triacetate-7-isobutyrate-5-(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 2,8,9-triacetate 7-isobutyrate 5-(2-methylbutyrate)

C35H52O13 (680.3408)


   

17-benzoyloxy-20-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)ingenol

17-benzoyloxy-20-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)ingenol

C39H52O10 (680.356)


   

(2R,3R,2R,3R)-nostoxanthin 3-sulfate|nostoxanthin monosulfate

(2R,3R,2R,3R)-nostoxanthin 3-sulfate|nostoxanthin monosulfate

C40H56O7S (680.3747)


   

Scandenaside RII

Scandenaside RII

C36H56O12 (680.3772)


   

olean-3alpha,5alpha,25-triol-12-en-23,28-dioic acid 3-beta-D-glucopyranoside|termiarjunoside II

olean-3alpha,5alpha,25-triol-12-en-23,28-dioic acid 3-beta-D-glucopyranoside|termiarjunoside II

C36H56O12 (680.3772)


   

Fusicoccin from Fusicoccum amygdali

Fusicoccin from Fusicoccum amygdali

C36H56O12 (680.3772)


   

(3S,3R)-Astaxanthindiacetat|(3S,3S)-Astaxanthin-diacetat|all-trans-(3S,3S) astaxanthin diacetate|Astaxanthin-diacetat|Astaxanthin-ester|Astaxanthindiacetat

(3S,3R)-Astaxanthindiacetat|(3S,3S)-Astaxanthin-diacetat|all-trans-(3S,3S) astaxanthin diacetate|Astaxanthin-diacetat|Astaxanthin-ester|Astaxanthindiacetat

C44H56O6 (680.4077)


   

4-methoxy pycnocomolide|4-Methoxypycnocomolide

4-methoxy pycnocomolide|4-Methoxypycnocomolide

C42H48O8 (680.3349)


   

2-beta-Glucopyranosyl-dihydrocucurbitacin D|2-O-beta-D-glucopyranosyl-23,24-dihydrocucurbitacin D|arvenin IV|cucurbitacin R-glucoside

2-beta-Glucopyranosyl-dihydrocucurbitacin D|2-O-beta-D-glucopyranosyl-23,24-dihydrocucurbitacin D|arvenin IV|cucurbitacin R-glucoside

C36H56O12 (680.3772)


   

17-benzoylox y-3 -O-(2,3-di methylbutanoyl)-13-(2,3-dimethylbu tanoyloxy)ingenol|17-benzoyloxy-3-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)ingenol

17-benzoylox y-3 -O-(2,3-di methylbutanoyl)-13-(2,3-dimethylbu tanoyloxy)ingenol|17-benzoyloxy-3-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)ingenol

C39H52O10 (680.356)


   

22-dehydrocyasterone 2-glucoside

22-dehydrocyasterone 2-glucoside

C35H52O13 (680.3408)


   

2alpha-O-isobutyryl-3beta-O-propionyl-5alpha,7beta,10,15beta-tetra-O-acetyl-10,18-dihydromyrsinol

2alpha-O-isobutyryl-3beta-O-propionyl-5alpha,7beta,10,15beta-tetra-O-acetyl-10,18-dihydromyrsinol

C35H52O13 (680.3408)


   

2-[(E)-2-{3-[(2E)-3,7-dimethyl-2,6-octadienyl]-5-carboxy-2-hydroxyphenyl}ethenyl]-8-[(2E)-3,7-dimethyl-2,6-octadienyl]-2-methyl-4-(2-methyl-1-propenyl)-6-chromancarboxylic acid

2-[(E)-2-{3-[(2E)-3,7-dimethyl-2,6-octadienyl]-5-carboxy-2-hydroxyphenyl}ethenyl]-8-[(2E)-3,7-dimethyl-2,6-octadienyl]-2-methyl-4-(2-methyl-1-propenyl)-6-chromancarboxylic acid

C44H56O6 (680.4077)


   

19alpha-hydroxy-2,3-secours-12-en-2,3,28-trioic acid 28-O-beta-D-glucopyranosyl ester|potentillanoside D

19alpha-hydroxy-2,3-secours-12-en-2,3,28-trioic acid 28-O-beta-D-glucopyranosyl ester|potentillanoside D

C36H56O12 (680.3772)


   

3-Ketone,2-O-beta-D-Glucopyranoside-(2beta,3beta,16alpha,20(,24(,25()-20,24-Epoxy-2,3,16,25,26-pentahydroxycucurbit-5-en-11-one|3-Ketone,2-O-beta-D-Glucopyranoside-(2beta,3beta,16alpha,20xi,24xi,25xi)-20,24-Epoxy-2,3,16,25,26-pentahydroxycucurbit-5-en-11-one

3-Ketone,2-O-beta-D-Glucopyranoside-(2beta,3beta,16alpha,20(,24(,25()-20,24-Epoxy-2,3,16,25,26-pentahydroxycucurbit-5-en-11-one|3-Ketone,2-O-beta-D-Glucopyranoside-(2beta,3beta,16alpha,20xi,24xi,25xi)-20,24-Epoxy-2,3,16,25,26-pentahydroxycucurbit-5-en-11-one

C36H56O12 (680.3772)


   

vernonioside B2

vernonioside B2

C36H56O12 (680.3772)


   

16-oxolyclanitin-29-yl E-4-hydroxyl-3-methoxycinnamate

16-oxolyclanitin-29-yl E-4-hydroxyl-3-methoxycinnamate

C40H56O9 (680.3924)


   

albatrellin

albatrellin

C44H56O6 (680.4077)


   

Methyl-2alpha,3beta-dibenzoyloxy-urs-12-en-28-oat

Methyl-2alpha,3beta-dibenzoyloxy-urs-12-en-28-oat

C44H56O6 (680.4077)


   

ilexoside XLV

ilexoside XLV

C36H56O12 (680.3772)


   

(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-7,8,9-triacetate-2-isobutyrate-5-(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 7,8,9-triacetate 2-isobutyrate 5-(2-methylbutyrate)

(2R,3R,4R,5R,7S,8S,9S,11E,13S,15R)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-7,8,9-triacetate-2-isobutyrate-5-(2-methylbutyrate)|2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one 7,8,9-triacetate 2-isobutyrate 5-(2-methylbutyrate)

C35H52O13 (680.3408)


   

cheiranthoside III|erysimin 4-O-alpha-L-rhamnopyranoside

cheiranthoside III|erysimin 4-O-alpha-L-rhamnopyranoside

C35H52O13 (680.3408)


   

(3beta,4beta,5alpha,6alpha.15beta,24S)-Cholestane-3,4,6,8,15,24-hexol

(3beta,4beta,5alpha,6alpha.15beta,24S)-Cholestane-3,4,6,8,15,24-hexol

C32H56O13S (680.3441)


   

Lys Phe Lys Met Lys

Lys Phe Lys Met Lys

C32H56N8O6S (680.4043)


   

Lys Asp Tyr Glu Leu

Lys Asp Tyr Glu Leu

C31H48N6O11 (680.3381)


   

Asp Lys Tyr Leu Glu

Asp Lys Tyr Leu Glu

C31H48N6O11 (680.3381)


   
   

Suavissimoside F1

(2R,3R,4S,4aR,6aR,6bS,8aS,11R,12R,12aS,14aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


Suavissimoside R1 is a natural product found in Rubus chingii var. suavissimus, Trachelospermum asiaticum, and other organisms with data available.

   

[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate

NCGC00381314-01![3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate

C32H56O15 (680.3619)


   

C36H56O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,9xi)-2,3,19,24-tetrahydroxy-24,28-dioxours-12-en-28-yl]

NCGC00169718-03_C36H56O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,9xi)-2,3,19,24-tetrahydroxy-24,28-dioxours-12-en-28-yl]-

C36H56O12 (680.3772)


   

C36H56O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,9xi,18xi)-2,3,19,24-tetrahydroxy-24,28-dioxoolean-12-en-28-yl]

NCGC00385360-01_C36H56O12_beta-D-Glucopyranose, 1-O-[(2alpha,3beta,5xi,9xi,18xi)-2,3,19,24-tetrahydroxy-24,28-dioxoolean-12-en-28-yl]-

C36H56O12 (680.3772)


   
   

(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based: Match]

NCGC00381314-01![3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based: Match]

C32H56O15 (680.3619)


   

[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846625]

NCGC00381314-01![3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846625]

C32H56O15 (680.3619)


   

[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846630]

NCGC00381314-01![3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846630]

C32H56O15 (680.3619)


   

[3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846627]

NCGC00381314-01![3-methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate [IIN-based on: CCMSLIB00000846627]

C32H56O15 (680.3619)


   

(2R,3R,4R,6aR,6bS,8aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_major

(2R,3R,4R,6aR,6bS,8aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_major

C36H56O12 (680.3772)


   

(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid_minor

(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid_minor

C36H56O12 (680.3772)


   

(2R,3R,4R,6aR,6bS,8aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_minor

(2R,3R,4R,6aR,6bS,8aR,14bR)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid_minor

C36H56O12 (680.3772)


   

(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid_major

(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid_major

C36H56O12 (680.3772)


   

(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid_72.4\\%

(2R,3R,4R,6aR,6bS,8aS,11R,12R,12aS,14bR)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid_72.4\\%

C36H56O12 (680.3772)


   

KFKMK

Lys-Phe-Lys-Met-Lys

C32H56N8O6S (680.4043)


   

Canarigenin 3-[glucosyl-(1->4)-6-deoxy-alloside]

4-{5-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11-hydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-14-yl}-2,5-dihydrofuran-2-one

C35H52O13 (680.3408)


   

Gingerglycolipid C

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9Z)-octadec-9-enoate

C33H60O14 (680.3983)


   

2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-(((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)carbonyl)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-(((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)carbonyl)-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

DGMG 18:1

1-(9Z-octadecenoy)l-3-O-(6-O-alpha-D-galactosyl-beta-D-galactosyl)-sn-glycerol

C33H60O14 (680.3983)


   

OA-PG

1-(9Z-octadecenoyl)-2-azeloyl-sn-glycero-3-phospho-(1-sn-glycerol)

C33H61O12P (680.39)


   

OHODiA-PG

1-(9Z-octadecenoyl)-2-(5-hydroxy-7-carboxy-6E-heptenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C32H57O13P (680.3537)


   

Arvenin IV

Cucurbitacin R 2-O-beta-D-glucoside

C36H56O12 (680.3772)


   

Nostoxanthin sulfate

Nostoxanthin sulfate

C40H56O7S (680.3747)


   

1-[1-(pyridin-4-ylmethyl)benzimidazol-2-yl]-N,N-bis[[1-(pyridin-4-ylmethyl)benzimidazol-2-yl]methyl]methanamine

1-[1-(pyridin-4-ylmethyl)benzimidazol-2-yl]-N,N-bis[[1-(pyridin-4-ylmethyl)benzimidazol-2-yl]methyl]methanamine

C42H36N10 (680.3124)


   

4-tert-butyl-calix[4]arene-crown-6-complex

4-tert-butyl-calix[4]arene-crown-6-complex

C44H56O6 (680.4077)


   

Fusicoccin

Fusicoccin-A

C36H56O12 (680.3772)


   

methyl ((S)-1-((S)-2-(5-(4-(2-((S)-1-((S)-2-amino-3-methylbutanoyl)pyrrolidin-2-yl)-1H-imidazol-4-yl)-[1,1-biphenyl]-4-yl)-1H-imidazol-2-yl)pyrrolidin-1-yl)-3-methyl-1-oxobutan-2-yl)carbamate

methyl ((S)-1-((S)-2-(5-(4-(2-((S)-1-((S)-2-amino-3-methylbutanoyl)pyrrolidin-2-yl)-1H-imidazol-4-yl)-[1,1-biphenyl]-4-yl)-1H-imidazol-2-yl)pyrrolidin-1-yl)-3-methyl-1-oxobutan-2-yl)carbamate

C38H48N8O4 (680.3798)


   

(E)-(4S,6S)-8-Methyl-6-((S)-3-methyl-2-{(S)-2-[(5-methyl-isoxazole-3-carbonyl)-amino]-propionylamino}-butyrylamino)-5-oxo-4-((R)-2-oxo-pyrrolidin-3-ylmethyl)-non-2-enoic acid benzyl ester

(E)-(4S,6S)-8-Methyl-6-((S)-3-methyl-2-{(S)-2-[(5-methyl-isoxazole-3-carbonyl)-amino]-propionylamino}-butyrylamino)-5-oxo-4-((R)-2-oxo-pyrrolidin-3-ylmethyl)-non-2-enoic acid benzyl ester

C35H48N6O8 (680.3533)


   

Penbutolol sulfate

Penbutolol sulfate

C36H60N2O8S (680.407)


C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

2,3,12-Trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,3,12-Trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxycarbonyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

Nostoxanthin 3-sulfate

Nostoxanthin 3-sulfate

C40H56O7S (680.3747)


   

PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PA(12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C37H61O9P (680.4053)


   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0)

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/12:0)

C37H61O9P (680.4053)


   

PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PA(12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C37H61O9P (680.4053)


   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0)

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/12:0)

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

PA(14:1(9Z)/20:4(6E,8Z,11Z,14Z)+=O(5))

C37H61O9P (680.4053)


   

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))

PA(20:4(6E,8Z,11Z,14Z)+=O(5)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

PA(14:1(9Z)/20:4(5Z,8Z,11Z,13E)+=O(15))

C37H61O9P (680.4053)


   

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))

PA(20:4(5Z,8Z,11Z,13E)+=O(15)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

PA(14:1(9Z)/20:5(6E,8Z,11Z,14Z,17Z)-OH(5))

C37H61O9P (680.4053)


   

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))

PA(20:5(6E,8Z,11Z,14Z,17Z)-OH(5)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PA(12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C37H61O9P (680.4053)


   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0)

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/12:0)

C37H61O9P (680.4053)


   

PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PA(12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C37H61O9P (680.4053)


   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0)

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/12:0)

C37H61O9P (680.4053)


   

PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PA(12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C37H61O9P (680.4053)


   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0)

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/12:0)

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18R))

C37H61O9P (680.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18R)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

PA(14:1(9Z)/20:5(5Z,8Z,11Z,14Z,16E)-OH(18))

C37H61O9P (680.4053)


   

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))

PA(20:5(5Z,8Z,11Z,14Z,16E)-OH(18)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

PA(14:1(9Z)/20:5(5Z,8Z,10E,14Z,17Z)-OH(12))

C37H61O9P (680.4053)


   

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))

PA(20:5(5Z,8Z,10E,14Z,17Z)-OH(12)/14:1(9Z))

C37H61O9P (680.4053)


   

PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

PA(i-12:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))

C37H61O9P (680.4053)


   

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/i-12:0)

C37H61O9P (680.4053)


   

PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

PA(i-12:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))

C37H61O9P (680.4053)


   

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)

PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/i-12:0)

C37H61O9P (680.4053)


   

PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

PA(i-12:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))

C37H61O9P (680.4053)


   

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)

PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/i-12:0)

C37H61O9P (680.4053)


   

PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

PA(i-12:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))

C37H61O9P (680.4053)


   

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)

PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/i-12:0)

C37H61O9P (680.4053)


   

PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

PA(i-12:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))

C37H61O9P (680.4053)


   

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)

PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/i-12:0)

C37H61O9P (680.4053)


   

CID 101635263

CID 101635263

C33H60O14 (680.3983)


   

1-[(3S,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

1-[(3S,9R,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

C36H48N4O7S (680.3244)


   

N-[(3S,9S,10S)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide

N-[(3S,9S,10S)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide

C37H52N4O8 (680.3785)


   

1-[(3R,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

1-[(3R,9S,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

C36H48N4O7S (680.3244)


   

1-[(3S,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

1-[(3S,9R,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

C36H48N4O7S (680.3244)


   

1-[(3S,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

1-[(3S,9R,10R)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

C36H48N4O7S (680.3244)


   

N-[(3S,9S,10R)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide

N-[(3S,9S,10R)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide

C37H52N4O8 (680.3785)


   

N-[(3R,9S,10R)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide

N-[(3R,9S,10R)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide

C37H52N4O8 (680.3785)


   

N-[(3S,9S,10S)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide

N-[(3S,9S,10S)-9-[[[(1,3-benzodioxol-5-ylamino)-oxomethyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]cyclohexanecarboxamide

C37H52N4O8 (680.3785)


   

1-[(3S,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

1-[(3S,9S,10R)-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

C36H48N4O7S (680.3244)


   

1-[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

1-[(3R,9S,10S)-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-9-[[methyl-(4-methylphenyl)sulfonylamino]methyl]-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-phenylurea

C36H48N4O7S (680.3244)


   

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (13Z,16Z)-tetracosa-13,16-dienoate

C33H61O12P (680.39)


   

Smgdg O-16:2_8:0

Smgdg O-16:2_8:0

C33H60O12S (680.3805)


   

Smgdg O-22:2_2:0

Smgdg O-22:2_2:0

C33H60O12S (680.3805)


   

Smgdg O-20:2_4:0

Smgdg O-20:2_4:0

C33H60O12S (680.3805)


   

Smgdg O-18:2_6:0

Smgdg O-18:2_6:0

C33H60O12S (680.3805)


   

Smgdg O-8:0_16:2

Smgdg O-8:0_16:2

C33H60O12S (680.3805)


   

Smgdg O-17:2_7:0

Smgdg O-17:2_7:0

C33H60O12S (680.3805)


   

Smgdg O-21:2_3:0

Smgdg O-21:2_3:0

C33H60O12S (680.3805)


   

Smgdg O-19:2_5:0

Smgdg O-19:2_5:0

C33H60O12S (680.3805)


   

Dgdg O-15:1_3:0

Dgdg O-15:1_3:0

C33H60O14 (680.3983)


   

Dgdg O-13:1_5:0

Dgdg O-13:1_5:0

C33H60O14 (680.3983)


   

Dgdg O-16:1_2:0

Dgdg O-16:1_2:0

C33H60O14 (680.3983)


   

Dgdg O-14:1_4:0

Dgdg O-14:1_4:0

C33H60O14 (680.3983)


   

[3-Methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate

[3-Methyl-1-[3-methyl-1-[3-methyl-1-oxo-1-(2,3,4,5,6-pentahydroxyhexoxy)pentan-2-yl]oxy-1-oxopentan-2-yl]oxy-1-oxopentan-2-yl] 2-acetyloxy-3-methylpentanoate

C32H56O15 (680.3619)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C32H56O15 (680.3619)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tridec-9-enoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tridec-9-enoate

C32H56O15 (680.3619)


   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C32H56O15 (680.3619)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C32H57O13P (680.3537)


   

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C32H57O13P (680.3537)


   

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C32H57O13P (680.3537)


   

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C32H57O13P (680.3537)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C32H57O13P (680.3537)


   

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C32H57O13P (680.3537)


   

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H60O12S (680.3805)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate

C36H57O10P (680.3689)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C33H60O12S (680.3805)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C36H57O10P (680.3689)


   
   
   
   
   
   

PA 14:1/20:5;O

PA 14:1/20:5;O

C37H61O9P (680.4053)


   

PA 20:3/13:4;O2

PA 20:3/13:4;O2

C36H57O10P (680.3689)


   

PA 20:4/13:3;O2

PA 20:4/13:3;O2

C36H57O10P (680.3689)


   

PA 20:5/12:3;O3

PA 20:5/12:3;O3

C35H53O11P (680.3325)


   
   
   
   

PG O-16:0/11:3;O3

PG O-16:0/11:3;O3

C33H61O12P (680.39)


   

PG O-20:0/7:3;O3

PG O-20:0/7:3;O3

C33H61O12P (680.39)


   

PG O-27:3;O3

PG O-27:3;O3

C33H61O12P (680.39)


   

PG P-20:0/7:2;O3

PG P-20:0/7:2;O3

C33H61O12P (680.39)


   

PG 14:0/12:3;O3

PG 14:0/12:3;O3

C32H57O13P (680.3537)


   

PG 14:1/12:2;O3

PG 14:1/12:2;O3

C32H57O13P (680.3537)


   
   
   

PG 18:1/9:1;O2

PG 18:1/9:1;O2

C33H61O12P (680.39)


   

PG 20:0/7:2;O2

PG 20:0/7:2;O2

C33H61O12P (680.39)


   

PG 22:1/5:1;O2

PG 22:1/5:1;O2

C33H61O12P (680.39)


   
   
   
   

PI O-16:0/7:3;O

PI O-16:0/7:3;O

C32H57O13P (680.3537)


   

PI O-20:1/4:1

PI O-20:1/4:1

C33H61O12P (680.39)


   

PI O-20:2/4:0

PI O-20:2/4:0

C33H61O12P (680.39)


   

PI O-22:2/2:0

PI O-22:2/2:0

C33H61O12P (680.39)


   
   
   
   

PI P-18:1/4:2;O2

PI P-18:1/4:2;O2

C31H53O14P (680.3173)


   

PI P-18:1/5:1;O

PI P-18:1/5:1;O

C32H57O13P (680.3537)


   

PI P-20:0/4:1

PI P-20:0/4:1

C33H61O12P (680.39)


   

PI P-20:0/4:1 or PI O-20:1/4:1

PI P-20:0/4:1 or PI O-20:1/4:1

C33H61O12P (680.39)


   

PI P-20:1/4:0

PI P-20:1/4:0

C33H61O12P (680.39)


   

PI P-20:1/4:0 or PI O-20:2/4:0

PI P-20:1/4:0 or PI O-20:2/4:0

C33H61O12P (680.39)


   

PI P-22:1/2:0

PI P-22:1/2:0

C33H61O12P (680.39)


   

PI P-22:1/2:0 or PI O-22:2/2:0

PI P-22:1/2:0 or PI O-22:2/2:0

C33H61O12P (680.39)


   
   

PI P-24:1 or PI O-24:2

PI P-24:1 or PI O-24:2

C33H61O12P (680.39)


   
   
   
   
   
   
   

ST 29:4;O7;GlcA

ST 29:4;O7;GlcA

C35H52O13 (680.3408)


   

ST 29:5;O8;Hex

ST 29:5;O8;Hex

C35H52O13 (680.3408)


   

PAR-4 Agonist Peptide, amide

PAR-4 Agonist Peptide, amide

C34H48N8O7 (680.3646)


PAR-4 Agonist Peptide, amide (PAR-4-AP; AY-NH2) is a proteinase-activated receptor-4 (PAR-4) agonist, which has no effect on either PAR-1 or PAR-2 and whose effects are blocked by a PAR-4 antagonist.

   

n-[(2r,3s)-1-carbamimidoyl-2-ethoxypiperidin-3-yl]-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-6-hydroxy-octahydroindole-2-carboximidic acid

n-[(2r,3s)-1-carbamimidoyl-2-ethoxypiperidin-3-yl]-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-6-hydroxy-octahydroindole-2-carboximidic acid

C35H48N6O8 (680.3533)


   

(3s,6r)-6-benzyl-8,10-dihydroxy-3-isopropyl-4,9-dimethyl-12-[(7r)-7-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octan-2-yl]-1-oxa-4,7-diazacyclododec-7-ene-2,5-dione

(3s,6r)-6-benzyl-8,10-dihydroxy-3-isopropyl-4,9-dimethyl-12-[(7r)-7-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octan-2-yl]-1-oxa-4,7-diazacyclododec-7-ene-2,5-dione

C35H56N2O11 (680.3884)


   

2-ethyl-3-methyl-6-oxo-5-{[2,4,6-tris(acetyloxy)-3-(3,7-dimethylocta-2,6-dien-1-yl)-5-(2-methylbutanoyl)phenyl]methyl}pyran-4-yl acetate

2-ethyl-3-methyl-6-oxo-5-{[2,4,6-tris(acetyloxy)-3-(3,7-dimethylocta-2,6-dien-1-yl)-5-(2-methylbutanoyl)phenyl]methyl}pyran-4-yl acetate

C38H48O11 (680.3196)


   

n-(1-carbamimidoyl-2-ethoxypiperidin-3-yl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl)-6-hydroxy-octahydroindole-2-carboximidic acid

n-(1-carbamimidoyl-2-ethoxypiperidin-3-yl)-1-(2-{[1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl)-6-hydroxy-octahydroindole-2-carboximidic acid

C35H48N6O8 (680.3533)


   

(2r,3r,3ar,4r,6s,7s,8s,12s,13ar)-6,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-2-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl (2r)-2-methylbutanoate

(2r,3r,3ar,4r,6s,7s,8s,12s,13ar)-6,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-2-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl (2r)-2-methylbutanoate

C35H52O13 (680.3408)


   

8,16-dihydroxy-6-[3-hydroxy-2-(hydroxymethyl)prop-1-en-1-yl]-2,8,10,13,18,18-hexamethyl-17-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one

8,16-dihydroxy-6-[3-hydroxy-2-(hydroxymethyl)prop-1-en-1-yl]-2,8,10,13,18,18-hexamethyl-17-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one

C36H56O12 (680.3772)


   

[(1s,4s,5r,6r,9s,10r,11r,12s,14r)-12-{[(2r)-2,3-dimethylbutanoyl]oxy}-7-({[(2r)-2,3-dimethylbutanoyl]oxy}methyl)-4,5,6-trihydroxy-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl]methyl benzoate

[(1s,4s,5r,6r,9s,10r,11r,12s,14r)-12-{[(2r)-2,3-dimethylbutanoyl]oxy}-7-({[(2r)-2,3-dimethylbutanoyl]oxy}methyl)-4,5,6-trihydroxy-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl]methyl benzoate

C39H52O10 (680.356)


   

[(1s,4s,5s,6r,9s,10r,11r,12s,14r)-4,12-bis({[(2r)-2,3-dimethylbutanoyl]oxy})-5,6-dihydroxy-7-(hydroxymethyl)-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl]methyl benzoate

[(1s,4s,5s,6r,9s,10r,11r,12s,14r)-4,12-bis({[(2r)-2,3-dimethylbutanoyl]oxy})-5,6-dihydroxy-7-(hydroxymethyl)-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl]methyl benzoate

C39H52O10 (680.356)


   

{12-[(2,3-dimethylbutanoyl)oxy]-7-{[(2,3-dimethylbutanoyl)oxy]methyl}-4,5,6-trihydroxy-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl}methyl benzoate

{12-[(2,3-dimethylbutanoyl)oxy]-7-{[(2,3-dimethylbutanoyl)oxy]methyl}-4,5,6-trihydroxy-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl}methyl benzoate

C39H52O10 (680.356)


   

(2r,3r,4r,5r,7s,8s,9s,11e,13s,15r)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-2,8,9-triacetate-7-isobutyrate-5-(2-methylbutyrate)

NA

C35H52O13 (680.3408)


{"Ingredient_id": "HBIN006416","Ingredient_name": "(2r,3r,4r,5r,7s,8s,9s,11e,13s,15r)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-2,8,9-triacetate-7-isobutyrate-5-(2-methylbutyrate)","Alias": "NA","Ingredient_formula": "C35H52O13","Ingredient_Smile": "CCC(C)C(=O)OC1C2C(C(CC2(C(=O)C(C=CC(C(C(C(C1=C)OC(=O)C(C)C)OC(=O)C)OC(=O)C)(C)C)C)O)(C)OC(=O)C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9398","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(2r,3r,4r,5r,7s,8s,9s,11e,13s,15r)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-7,8,9-triacetate-2-isobutyrate-5-(2-methylbutyrate)

NA

C35H52O13 (680.3408)


{"Ingredient_id": "HBIN006418","Ingredient_name": "(2r,3r,4r,5r,7s,8s,9s,11e,13s,15r)-2,3,5,7,8,9,15-heptahydroxyjatropha-6(17),11-diene-14-one-7,8,9-triacetate-2-isobutyrate-5-(2-methylbutyrate)","Alias": "NA","Ingredient_formula": "C35H52O13","Ingredient_Smile": "CCC(C)C(=O)OC1C2C(C(CC2(C(=O)C(C=CC(C(C(C(C1=C)OC(=O)C)OC(=O)C)OC(=O)C)(C)C)C)O)(C)OC(=O)C(C)C)O","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "9399","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

(1r,2r,3as,3bs,7r,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

(1r,2r,3as,3bs,7r,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C36H56O12 (680.3772)


   

(3s,6s,9s,12s,15s)-12-benzyl-15-[(1r)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-3-isopropyl-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

(3s,6s,9s,12s,15s)-12-benzyl-15-[(1r)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-3-isopropyl-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

C35H48N6O8 (680.3533)


   

(2r,3r,4r,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4r,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

4-[3-(3a,7-dihydroxy-9a,11a-dimethyl-5-oxo-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl)-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one

4-[3-(3a,7-dihydroxy-9a,11a-dimethyl-5-oxo-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl)-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one

C35H52O13 (680.3408)


   

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadec-9-enoate

2-hydroxy-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadec-9-enoate

C33H60O14 (680.3983)


   

(2s)-2-[(3r,4s,8r,9r,10r,11s,14s)-8-{[(2s,3s,4r,5s,6s)-5-(acetyloxy)-3,4-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

(2s)-2-[(3r,4s,8r,9r,10r,11s,14s)-8-{[(2s,3s,4r,5s,6s)-5-(acetyloxy)-3,4-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

C36H56O12 (680.3772)


   

(2s)-2-[(1e,3r,4s,8r,9r,10r,11s,14s)-8-{[(2s,3r,4r,5r,6r)-4-(acetyloxy)-3,5-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

(2s)-2-[(1e,3r,4s,8r,9r,10r,11s,14s)-8-{[(2s,3r,4r,5r,6r)-4-(acetyloxy)-3,5-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

C36H56O12 (680.3772)


   

(3s,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-3,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(3s,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-3,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C36H56O12 (680.3772)


   

(1s,2s,4r,6s,8s,9r,10r,13s,14r,16s,17r,21s)-8,17,21-trihydroxy-6-[(1e)-3-hydroxy-2-methylprop-1-en-1-yl]-2,8,10,13,18,18-hexamethyl-16-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one

(1s,2s,4r,6s,8s,9r,10r,13s,14r,16s,17r,21s)-8,17,21-trihydroxy-6-[(1e)-3-hydroxy-2-methylprop-1-en-1-yl]-2,8,10,13,18,18-hexamethyl-16-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one

C36H56O12 (680.3772)


   

2-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-2,5-diene-1,4-dione

2-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-2,5-diene-1,4-dione

C44H56O6 (680.4077)


   

(1r,2s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14br)-2,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-9-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(1r,2s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14br)-2,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-9-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C36H56O12 (680.3772)


   

(3s,4s,5r)-4-[(3r)-3-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7-dihydroxy-9a,11a-dimethyl-5-oxo-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one

(3s,4s,5r)-4-[(3r)-3-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7-dihydroxy-9a,11a-dimethyl-5-oxo-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one

C35H52O13 (680.3408)


   

(1s,3as,3br,4r,5ar,9ar,9br,11s,11as)-11-hydroxy-1-[(3r)-2-hydroxy-5-(hydroxymethyl)oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,3ah,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-4-yl (2e)-3-[4-(acetyloxy)-3-methoxyphenyl]prop-2-enoate

(1s,3as,3br,4r,5ar,9ar,9br,11s,11as)-11-hydroxy-1-[(3r)-2-hydroxy-5-(hydroxymethyl)oxolan-3-yl]-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,3ah,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-4-yl (2e)-3-[4-(acetyloxy)-3-methoxyphenyl]prop-2-enoate

C39H52O10 (680.356)


   

3,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

3,12-dihydroxy-4-(hydroxymethyl)-6a,6b,11,12,14b-pentamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

(2r,3as,3bs,8s,9ar,9br,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

(2r,3as,3bs,8s,9ar,9br,11ar)-1-[(2r)-2,6-dihydroxy-6-methyl-3-oxoheptan-2-yl]-2-hydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,8h,9h,9ah,11h-cyclopenta[a]phenanthrene-7,10-dione

C36H56O12 (680.3772)


   

(3r,4s,5s,6r)-2-({2-[(1s,2r,4ar,7r)-8-[(acetyloxy)methyl]-1,2,7-trihydroxy-4a-methyl-1,3,4,5,6,7-hexahydronaphthalen-2-yl]propan-2-yl}oxy)-4-(acetyloxy)-6-methyl-5-{[(2z)-2-methylbut-2-enoyl]oxy}oxan-3-yl (2z)-2-methylbut-2-enoate

(3r,4s,5s,6r)-2-({2-[(1s,2r,4ar,7r)-8-[(acetyloxy)methyl]-1,2,7-trihydroxy-4a-methyl-1,3,4,5,6,7-hexahydronaphthalen-2-yl]propan-2-yl}oxy)-4-(acetyloxy)-6-methyl-5-{[(2z)-2-methylbut-2-enoyl]oxy}oxan-3-yl (2z)-2-methylbut-2-enoate

C35H52O13 (680.3408)


   

4-{3a-hydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

4-{3a-hydroxy-7-[(4-methoxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl}-5h-furan-2-one

C36H56O12 (680.3772)


   

2,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

2,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-9-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C36H56O12 (680.3772)


   

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C36H56O12 (680.3772)


   

6-benzyl-8,10-dihydroxy-4-methyl-3-(sec-butyl)-12-[(7r)-7-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octan-2-yl]-1-oxa-4,7-diazacyclododec-7-ene-2,5-dione

6-benzyl-8,10-dihydroxy-4-methyl-3-(sec-butyl)-12-[(7r)-7-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}octan-2-yl]-1-oxa-4,7-diazacyclododec-7-ene-2,5-dione

C35H56N2O11 (680.3884)


   

methyl (2r,3ar,3bs,5ar,7s,9as,9br,11ar)-2-[(2-acetyl-3,4-dihydroxy-5-methoxyphenyl)methyl]-7-(acetyloxy)-9a-formyl-2,3b,6,6,11,11a-hexamethyl-1,3-dioxo-4h,5h,5ah,7h,8h,9h,9bh-cyclopenta[a]phenanthrene-3a-carboxylate

methyl (2r,3ar,3bs,5ar,7s,9as,9br,11ar)-2-[(2-acetyl-3,4-dihydroxy-5-methoxyphenyl)methyl]-7-(acetyloxy)-9a-formyl-2,3b,6,6,11,11a-hexamethyl-1,3-dioxo-4h,5h,5ah,7h,8h,9h,9bh-cyclopenta[a]phenanthrene-3a-carboxylate

C38H48O11 (680.3196)


   

(1r,2r,3as,3br,7r,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

(1r,2r,3as,3br,7r,8s,9ar,9br,11ar)-1-[(2r,4e)-2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl]-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C36H56O12 (680.3772)


   

2-{3-[6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-2,5-diene-1,4-dione

2-{3-[6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-2,5-diene-1,4-dione

C44H56O6 (680.4077)


   

12-benzyl-15-(1-hydroxyethyl)-6-[(4-hydroxyphenyl)methyl]-3-isopropyl-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

12-benzyl-15-(1-hydroxyethyl)-6-[(4-hydroxyphenyl)methyl]-3-isopropyl-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

C35H48N6O8 (680.3533)


   

2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

(3s,6s,9s,12s,15s)-12-benzyl-15-[(1s)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-3-isopropyl-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

(3s,6s,9s,12s,15s)-12-benzyl-15-[(1s)-1-hydroxyethyl]-6-[(4-hydroxyphenyl)methyl]-3-isopropyl-9-(2-methylpropyl)-1,4,7,10,13,16-hexaazacyclooctadeca-1,4,7,10,13,16-hexaene-2,5,8,11,14,17-hexol

C35H48N6O8 (680.3533)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2r,3ar,5as,7s,9as,11as)-1-[(2r,3s,3ar,5s,6s,6as)-2,6-dihydroxy-6-isopropyl-5-methoxy-5-methyl-tetrahydrofuro[3,2-b]furan-3-yl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2r,3ar,5as,7s,9as,11as)-1-[(2r,3s,3ar,5s,6s,6as)-2,6-dihydroxy-6-isopropyl-5-methoxy-5-methyl-tetrahydrofuro[3,2-b]furan-3-yl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C36H56O12 (680.3772)


   

4-[(3s,4ar,6ar,6bs,9s,10ar,11as,11bs)-3-{[(2r,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6b-hydroxy-11b-methyl-10-methylidene-tetradecahydrocyclohexa[a]fluoren-9-yl]-5h-furan-2-one

4-[(3s,4ar,6ar,6bs,9s,10ar,11as,11bs)-3-{[(2r,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6b-hydroxy-11b-methyl-10-methylidene-tetradecahydrocyclohexa[a]fluoren-9-yl]-5h-furan-2-one

C35H52O13 (680.3408)


   

2,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-6-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl 2-methylbutanoate

2,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-6-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl 2-methylbutanoate

C35H52O13 (680.3408)


   

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a-dihydroxy-7-{[(2r,4s,5s,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C35H52O13 (680.3408)


   

(2r,3r,3ar,4r,6s,7s,8s,12s,13ar)-2,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-6-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl (2r)-2-methylbutanoate

(2r,3r,3ar,4r,6s,7s,8s,12s,13ar)-2,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-6-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl (2r)-2-methylbutanoate

C35H52O13 (680.3408)


   

(2s,3r,4s,4ar,6ar,6br,8as,12ar,14ar,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

(2s,3r,4s,4ar,6ar,6br,8as,12ar,14ar,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

C36H56O12 (680.3772)


   

(6s,6ar,10as,14r)-12-hexanoyl-7,10a,13-trihydroxy-6,14-diisopropyl-2,2,4,4,8,8,10,10-octamethyl-6,6a,7,14-tetrahydro-5,11-dioxapentaphene-1,3,9-trione

(6s,6ar,10as,14r)-12-hexanoyl-7,10a,13-trihydroxy-6,14-diisopropyl-2,2,4,4,8,8,10,10-octamethyl-6,6a,7,14-tetrahydro-5,11-dioxapentaphene-1,3,9-trione

C40H56O9 (680.3924)


   

4-[(1s,3as,3br,5as,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1s,3as,3br,5as,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C36H56O12 (680.3772)


   

(2s,4s,6ar,8as,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

(2s,4s,6ar,8as,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

C36H56O12 (680.3772)


   

4-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-3,5-diene-1,2-dione

4-{3-[(4e)-6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-[(2e,6e)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]cyclohexa-3,5-diene-1,2-dione

C44H56O6 (680.4077)


   

{4,12-bis[(2,3-dimethylbutanoyl)oxy]-5,6-dihydroxy-7-(hydroxymethyl)-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl}methyl benzoate

{4,12-bis[(2,3-dimethylbutanoyl)oxy]-5,6-dihydroxy-7-(hydroxymethyl)-3,11,14-trimethyl-15-oxotetracyclo[7.5.1.0¹,⁵.0¹⁰,¹²]pentadeca-2,7-dien-11-yl}methyl benzoate

C39H52O10 (680.356)


   

(2s,3r,4s,4ar,6ar,6br,8as,12as,14ar,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

(2s,3r,4s,4ar,6ar,6br,8as,12as,14ar,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

C36H56O12 (680.3772)


   

(2e)-n-[(1s)-1-{[(3s,7s,13s,16s,19s)-15-hydroxy-13,16,17-trimethyl-2,6,12,18-tetraoxo-5-oxa-1,11,14,17-tetraazatricyclo[17.3.0.0⁷,¹¹]docos-14-en-3-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl]hex-2-enimidic acid

(2e)-n-[(1s)-1-{[(3s,7s,13s,16s,19s)-15-hydroxy-13,16,17-trimethyl-2,6,12,18-tetraoxo-5-oxa-1,11,14,17-tetraazatricyclo[17.3.0.0⁷,¹¹]docos-14-en-3-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl]hex-2-enimidic acid

C35H48N6O8 (680.3533)


   

(2s)-2-[(1e,3r,4s,8r,9r,10r,11s,14s)-8-{[(2s,3s,4r,5s,6s)-5-(acetyloxy)-3,4-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

(2s)-2-[(1e,3r,4s,8r,9r,10r,11s,14s)-8-{[(2s,3s,4r,5s,6s)-5-(acetyloxy)-3,4-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

C36H56O12 (680.3772)


   

(1s,2s,4r,6s,8s,9r,10r,13r,14r,16s,17s)-8,16-dihydroxy-6-[3-hydroxy-2-(hydroxymethyl)prop-1-en-1-yl]-2,8,10,13,18,18-hexamethyl-17-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one

(1s,2s,4r,6s,8s,9r,10r,13r,14r,16s,17s)-8,16-dihydroxy-6-[3-hydroxy-2-(hydroxymethyl)prop-1-en-1-yl]-2,8,10,13,18,18-hexamethyl-17-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one

C36H56O12 (680.3772)


   

4-[(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C36H56O12 (680.3772)


   

8,17,21-trihydroxy-6-(3-hydroxy-2-methylprop-1-en-1-yl)-2,8,10,13,18,18-hexamethyl-16-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one

8,17,21-trihydroxy-6-(3-hydroxy-2-methylprop-1-en-1-yl)-2,8,10,13,18,18-hexamethyl-16-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-oxapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁴,¹⁹]henicos-19-en-12-one

C36H56O12 (680.3772)


   

2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

(1r,2s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-2,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-9-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(1r,2s,4ar,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-2,10,11-trihydroxy-1,2,6a,6b,9,12a-hexamethyl-9-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C36H56O12 (680.3772)


   

2-[(1-{2,6-dihydroxy-6-isopropyl-5-methoxy-5-methyl-tetrahydrofuro[3,2-b]furan-3-yl}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[(1-{2,6-dihydroxy-6-isopropyl-5-methoxy-5-methyl-tetrahydrofuro[3,2-b]furan-3-yl}-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C36H56O12 (680.3772)


   

(2r,3as,6s,7as)-n-[(2r,3s)-1-carbamimidoyl-2-ethoxypiperidin-3-yl]-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-6-hydroxy-octahydroindole-2-carboximidic acid

(2r,3as,6s,7as)-n-[(2r,3s)-1-carbamimidoyl-2-ethoxypiperidin-3-yl]-1-[(2r)-2-{[(2r)-1,2-dihydroxy-3-(4-hydroxyphenyl)propylidene]amino}-3-(4-hydroxyphenyl)propanoyl]-6-hydroxy-octahydroindole-2-carboximidic acid

C35H48N6O8 (680.3533)


   

(1s,4r,5r,6r,10s,12s,13s,15s,16r,18s,21r)-18-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-15-hydroxy-4,6,12,17,17-pentamethyl-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-one

(1s,4r,5r,6r,10s,12s,13s,15s,16r,18s,21r)-18-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-15-hydroxy-4,6,12,17,17-pentamethyl-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-one

C36H56O12 (680.3772)


   

morusyunnansin d

morusyunnansin d

C42H48O8 (680.3349)


   

2-[(3r,4s,10r,11s,14s)-8-{[(2s,4s,6r)-4-(acetyloxy)-3,5-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

2-[(3r,4s,10r,11s,14s)-8-{[(2s,4s,6r)-4-(acetyloxy)-3,5-dihydroxy-6-{[(2-methylbut-3-en-2-yl)oxy]methyl}oxan-2-yl]oxy}-4,9-dihydroxy-14-(methoxymethyl)-3,10-dimethyltricyclo[9.3.0.0³,⁷]tetradeca-1,6-dien-6-yl]propyl acetate

C36H56O12 (680.3772)


   

18-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-15-hydroxy-4,6,12,17,17-pentamethyl-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-one

18-({4,5-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-15-hydroxy-4,6,12,17,17-pentamethyl-9-oxahexacyclo[11.9.0.0¹,²¹.0⁴,¹².0⁵,¹⁰.0¹⁶,²¹]docosan-8-one

C36H56O12 (680.3772)


   

(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a-hydroxy-7-{[(2r,4s,5r,6r)-4-hydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

C35H52O13 (680.3408)


   

(4s,4ar,6ar,6br,8as,12as,14ar,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

(4s,4ar,6ar,6br,8as,12as,14ar,14br)-2-hydroxy-6b-(hydroxymethyl)-4,6a,11,11,14b-pentamethyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4,8a-dicarboxylic acid

C36H56O12 (680.3772)


   

(2r,3r,4s,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4s,4ar,6ar,6bs,8ar,12s,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,11,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

morusyunnansin c

morusyunnansin c

C42H48O8 (680.3349)


   

4-{3-[6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-3,5-diene-1,2-dione

4-{3-[6-(2,6-dihydroxy-4-methylphenyl)-4-methylhex-4-en-1-yl]-5-(2-methylprop-1-en-1-yl)furan-2-yl}-5-hydroxy-3-methyl-6-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)cyclohexa-3,5-diene-1,2-dione

C44H56O6 (680.4077)


   

3a-hydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

3a-hydroxy-7-[(4-hydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-11a-methyl-1-(5-oxo-2h-furan-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

C35H52O13 (680.3408)


   

(2s)-2-hydroxy-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

(2s)-2-hydroxy-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

C33H60O14 (680.3983)


   

6,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-2-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl 2-methylbutanoate

6,7,8-tris(acetyloxy)-3,13a-dihydroxy-2,9,9,12-tetramethyl-5-methylidene-2-[(2-methylpropanoyl)oxy]-13-oxo-1h,3h,3ah,4h,6h,7h,8h,12h-cyclopenta[12]annulen-4-yl 2-methylbutanoate

C35H52O13 (680.3408)


   

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

1-(2,6-dihydroxy-6-methyl-3-oxohept-4-en-2-yl)-2,7-dihydroxy-3a,6,6,9b,11a-pentamethyl-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,3bh,4h,7h,8h,9h,9ah,11h-cyclopenta[a]phenanthren-10-one

C36H56O12 (680.3772)


   

(2r,3r,4s,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4s,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

(2r,3r,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4r,4ar,6ar,6bs,8as,11r,12r,12as,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   

(2r,3r,4s,4as,6ar,6bs,8as,11r,12r,12ar,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

(2r,3r,4s,4as,6ar,6bs,8as,11r,12r,12ar,14ar,14br)-2,3,12-trihydroxy-4,6a,6b,11,12,14b-hexamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylic acid

C36H56O12 (680.3772)


   
   

3-{[2-amino-5-(n,3-dihydroxybutanamido)-1-hydroxypentylidene]amino}-3-{[1-({1-[(4-aminobutyl)-c-hydroxycarbonimidoyl]-4-(n-hydroxyformamido)butyl}-c-hydroxycarbonimidoyl)-2-hydroxyethyl]-c-hydroxycarbonimidoyl}-2-hydroxypropanoic acid

3-{[2-amino-5-(n,3-dihydroxybutanamido)-1-hydroxypentylidene]amino}-3-{[1-({1-[(4-aminobutyl)-c-hydroxycarbonimidoyl]-4-(n-hydroxyformamido)butyl}-c-hydroxycarbonimidoyl)-2-hydroxyethyl]-c-hydroxycarbonimidoyl}-2-hydroxypropanoic acid

C26H48N8O13 (680.3341)


   

4-{3-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6b-hydroxy-11b-methyl-10-methylidene-tetradecahydrocyclohexa[a]fluoren-9-yl}-5h-furan-2-one

4-{3-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-6b-hydroxy-11b-methyl-10-methylidene-tetradecahydrocyclohexa[a]fluoren-9-yl}-5h-furan-2-one

C35H52O13 (680.3408)


   

4-[(1s,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

4-[(1s,3as,3br,5ar,7s,9as,9bs,11ar)-3a-hydroxy-7-{[(2r,4r,5s,6s)-4-methoxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]-5h-furan-2-one

C36H56O12 (680.3772)


   

2-ethyl-3-methyl-6-oxo-5-{[2,4,6-tris(acetyloxy)-3-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-5-[(2r)-2-methylbutanoyl]phenyl]methyl}pyran-4-yl acetate

2-ethyl-3-methyl-6-oxo-5-{[2,4,6-tris(acetyloxy)-3-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-5-[(2r)-2-methylbutanoyl]phenyl]methyl}pyran-4-yl acetate

C38H48O11 (680.3196)