Exact Mass: 662.4998625999999
Exact Mass Matches: 662.4998625999999
Found 500 metabolites which its exact mass value is equals to given mass value 662.4998625999999
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)
DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)
DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)
DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)
DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(20:4(5Z,8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)
DG(20:4(5Z,8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(20:4(8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)
DG(20:4(8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z)/0:0)
DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)/0:0)
DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)/0:0)
DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.
DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0)
DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0)
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0)
DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
PA(O-16:0/18:0)
2-octadecanoyl-1-hexadecyl-sn-glycero-3-phosphate is an intermediate in ether lipid metabolism. 2-octadecanoyl-1-hexadecyl-sn-glycero-3-phosphate is converted from 1-octadecyl-glycerone-3-phosphate via 1-acylglycerol-3-phosphate O-acyltransferase. (EC: 2.3.1.51). Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. Ether lipids are called plasmalogens (1-O-1-alkenyl-2-acylglycerophospholipids) if these are glycerol-containing phospholipids with an unsaturated O-(1-alkenyl) (vinyl ether) group at the first position on the glycerol chain. Plasmalogens as well as some 1-O-alkyl lipids are ubiquitous and sometimes major parts of the cell membranes in mammals and anaerobic bacteria. In archaea, ether lipids are the major polar lipids in the cell envelope and their abundance is one of the major characteristics that separate this group of prokaryotes from the bacteria. In these cells, diphytanylglycerolipids or bipolar macrocyclic tetraethers can form covalently linked bilayers.
DG(18:3n6/0:0/22:6n3)
DG(18:3n6/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n6/0:0/22:6n3), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(20:4n6/0:0/20:5n3)
DG(20:4n6/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n6/0:0/20:5n3), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The arachidonic acid moiety is derived from animal fats and eggs, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(22:5n6/0:0/18:4n3)
DG(22:5n6/0:0/18:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:5n6/0:0/18:4n3), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of stearidonic acid at the C-3 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(18:3n3/0:0/22:6n3)
DG(18:3n3/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n3/0:0/22:6n3), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(18:4n3/0:0/22:5n3)
DG(18:4n3/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:4n3/0:0/22:5n3), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
DG(20:4n3/0:0/20:5n3)
DG(20:4n3/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n3/0:0/20:5n3), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The eicosatetraenoic acid moiety is derived from fish oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.
PA(15:0/18:0)
PA(15:0/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/18:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:0/15:0)
PA(18:0/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/15:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/13:0)
PA(20:0/13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/13:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of tridecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(21:0/12:0)
PA(21:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/12:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/a-13:0)
PA(20:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/a-13:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(20:0/i-13:0)
PA(20:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/i-13:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(21:0/i-12:0)
PA(21:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/i-12:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/a-25:0)
PA(8:0/a-25:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/a-25:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of anteisopentacosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-13:0/i-20:0)
PA(a-13:0/i-20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-20:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-21:0/12:0)
PA(a-21:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/12:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-21:0/i-12:0)
PA(a-21:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/i-12:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(a-25:0/8:0)
PA(a-25:0/8:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-25:0/8:0), in particular, consists of one chain of anteisopentacosanoic acid at the C-1 position and one chain of caprylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/a-21:0)
PA(i-12:0/a-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/a-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-12:0/i-21:0)
PA(i-12:0/i-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/i-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-13:0/i-20:0)
PA(i-13:0/i-20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-20:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-20:0/13:0)
PA(i-20:0/13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/13:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of tridecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-20:0/a-13:0)
PA(i-20:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/a-13:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-20:0/i-13:0)
PA(i-20:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/i-13:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-21:0/12:0)
PA(i-21:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/12:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(i-21:0/i-12:0)
PA(i-21:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/i-12:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
DG(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/16:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/17:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(17:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(17:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/17:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/17:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(17:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(17:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/17:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/17:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(17:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(17:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/17:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(a-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-17:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/a-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-17:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(a-17:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/a-17:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/a-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(a-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-17:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/a-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-17:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(a-17:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/a-17:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/a-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(a-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-17:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/a-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-17:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(a-17:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/a-17:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/a-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(i-16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-16:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0)
DG(i-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-17:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-17:0/0:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/i-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-17:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R))
DG(i-17:0/0:0/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/i-17:0)
DG(20:4(6Z,8E,10E,14Z)-2OH(5S,12R)/0:0/i-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0)
DG(i-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-17:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-17:0/0:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/i-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-17:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S))
DG(i-17:0/0:0/20:4(6E,8Z,11Z,13E)-2OH(5S,15S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/i-17:0)
DG(20:4(6E,8Z,11Z,13E)-2OH(5S,15S)/0:0/i-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0)
DG(i-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-17:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-17:0/0:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-17:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/i-17:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-17:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R))
DG(i-17:0/0:0/20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/i-17:0)
DG(20:4(8Z,11Z,14Z,17Z)-2OH(5S,6R)/0:0/i-17:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(20:4/20:5/0:0)[iso2]
DG(18:3/22:6/0:0)[iso2]
PA(O-16:0/18:0)
2-octadecanoyl-1-hexadecyl-sn-glycero-3-phosphate is an intermediate in ether lipid metabolism. 2-octadecanoyl-1-hexadecyl-sn-glycero-3-phosphate is converted from 1-octadecyl-glycerone-3-phosphate via 1-acylglycerol-3-phosphate O-acyltransferase. (EC: 2.3.1.51). Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. Ether lipids are called plasmalogens (1-O-1-alkenyl-2-acylglycerophospholipids) if these are glycerol-containing phospholipids with an unsaturated O-(1-alkenyl) (vinyl ether) group at the first position on the glycerol chain. Plasmalogens as well as some 1-O-alkyl lipids are ubiquitous and sometimes major parts of the cell membranes in mammals and anaerobic bacteria. In archaea, ether lipids are the major polar lipids in the cell envelope and their abundance is one of the major characteristics that separate this group of prokaryotes from the bacteria. In these cells, diphytanylglycerolipids or bipolar macrocyclic tetraethers can form covalently linked bilayers. 2-octadecanoyl-1-hexadecyl-sn-glycero-3-phosphate is an intermediate in ether lipid metabolism. 2-octadecanoyl-1-hexadecyl-sn-glycero-3-phosphate is converted from 1-octadecyl-glycerone-3-phosphate via 1-acylglycerol-3-phosphate O-acyltransferase. (EC: 2.3.1.51)
DG(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0/0:0)
DG(i-16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))
DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-16:0)
2-[hydroxy-[(2R)-2-hydroxy-3-[(E)-octacos-5-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-azaniumylethyl (2S,3R)-3-hydroxy-2-(palmitoylamino)octadecyl phosphate
C36H75N2O6P (662.5362459999999)
N-hexadecanoylsphinganine-1-phosphoethanolamine
C36H75N2O6P (662.5362459999999)
Phosphoric acid methyl 2,3-bis(palmitoyloxy)propyl ester
[(E)-2-(dodecanoylamino)-3,4-dihydroxyoctadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C35H71N2O7P (662.4998625999999)
(2-Acetamido-3-hydroxynonacosyl) 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[2-(Hexanoylamino)-3-hydroxypentacosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[2-(Butanoylamino)-3-hydroxyheptacosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[2-(Heptanoylamino)-3-hydroxytetracosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(nonanoylamino)docosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(octanoylamino)tricosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(propanoylamino)octacosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[2-(Docosanoylamino)-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(pentanoylamino)hexacosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate
[2-(Decanoylamino)-3-hydroxyhenicosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[2-(Henicosanoylamino)-3-hydroxydecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(nonadecanoylamino)dodecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(icosanoylamino)undecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(octadecanoylamino)tridecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(undecanoylamino)icosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate
[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate
2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate
[3-Hydroxy-2-(tricosanoylamino)octyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(tridecanoylamino)octadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[2-(Heptadecanoylamino)-3-hydroxytetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[2-(Hexadecanoylamino)-3-hydroxypentadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(pentadecanoylamino)hexadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[3-Hydroxy-2-(tetradecanoylamino)heptadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
[2-(Dodecanoylamino)-3-hydroxynonadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate
(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) tetracosanoate
(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) heptacosanoate
(1-Octanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate
(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate
(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) nonadecanoate
(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) heptadecanoate
(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate
(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) icosanoate
(1-Decanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate
(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) docosanoate
[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
(1-hydroxy-3-octanoyloxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate
N-(pentadecanoyl)-hexadecasphinganine-1-phosphocholine
C36H75N2O6P (662.5362459999999)
N-(tetradecanoyl)-heptadecasphinganine-1-phosphocholine
C36H75N2O6P (662.5362459999999)
N-(heptadecanoyl)-tetradecasphinganine-1-phosphocholine
C36H75N2O6P (662.5362459999999)
N-(hexadecanoyl)-pentadecasphinganine-1-phosphocholine
C36H75N2O6P (662.5362459999999)
N-(dodecanoyl)-nonadecasphinganine-1-phosphocholine
C36H75N2O6P (662.5362459999999)
2-[[(2S)-2-decanoyloxy-3-[(E)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-decanoyloxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
2-[hydroxy-[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[(2R)-2-decanoyloxy-3-phosphonooxypropyl] tricosanoate
[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] docosanoate
[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(E)-pentadec-9-enoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[(2R,3S)-2-(decanoylamino)-3-hydroxyhenicosyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H75N2O6P (662.5362459999999)
2-[[(2S)-2-decanoyloxy-3-[(E)-octadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
2-[[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-dodecanoyloxy-3-[(E)-hexadec-1-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[(2S)-1-hydroxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
2-[[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-2-dodecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[3-[(E)-pentadec-9-enoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[(2S)-3-hydroxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
[1-carboxy-3-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-decanoyloxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate
2-[[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate
[1-carboxy-3-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[(2S)-1-hydroxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate
[1-carboxy-3-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] tricosanoate
[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate
2-[[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[(2R)-3-decanoyloxy-2-[(E)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
2-[hydroxy-[(2R)-3-[(E)-tetradec-9-enoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate
2-[[(2R)-3-dodecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] docosanoate
[1-carboxy-3-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
2-[[2-decanoyloxy-3-[(Z)-octadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-nonanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-propanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
2-[[2-[(Z)-docos-13-enoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-henicos-11-enoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-tetradec-9-enoyl]oxy-3-tetradecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-pentanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
[1-carboxy-3-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-heptanoyloxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
2-[[2-dodecanoyloxy-3-[(Z)-hexadec-9-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-propanoyloxypropoxy]propyl]-trimethylazanium
C39H68NO7+ (662.4995518000001)
2-[hydroxy-[3-tetradecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-decanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-dodecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-heptanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-tetradecanoyloxy-3-[(Z)-tetradec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[carboxy-[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium
2-[carboxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium
2-[hydroxy-[2-hydroxy-3-[(Z)-octacos-17-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-icos-11-enoyl]oxy-3-octoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-henicos-11-enoxy]-2-heptanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-docos-13-enoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-pentadecoxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-icos-11-enoxy]-2-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-butanoyloxy-3-[(Z)-tetracos-13-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-pentadec-9-enoyl]oxy-3-tridecoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-acetyloxy-3-[(Z)-hexacos-15-enoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(Z)-heptadec-9-enoxy]-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-pentadecanoyloxy-3-[(Z)-tridec-9-enoxy]propoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-decoxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-[(Z)-heptadec-9-enoyl]oxy-3-undecoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-dodecoxy-2-[(Z)-hexadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-nonadec-9-enoxy]-2-nonanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-nonoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(Z)-pentadec-9-enoxy]-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphate
1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphate
1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphate
1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphate
1-heptadecanoyl-2-palmitoyl-sn-glycero-3-phosphate
A 1,2-diacyl-sn-glycerol 3-phosphate in which the phosphatidyl acyl groups at postions 1 and 2 are specified as heptadecanoyl and palmitoyl respectively.
1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphate
TG(39:9)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PMe(32:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(31:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved