Chemical Formula: C36H71O8P

Chemical Formula C36H71O8P

Found 78 metabolite its formula value is C36H71O8P

PA(15:0/18:0)

[(2R)-2-(octadecanoyloxy)-3-(pentadecanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(15:0/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/18:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:0/15:0)

[(2R)-3-(octadecanoyloxy)-2-(pentadecanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(18:0/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/15:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/13:0)

[(2R)-3-(icosanoyloxy)-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(20:0/13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/13:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of tridecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(21:0/12:0)

[(2R)-2-(dodecanoyloxy)-3-(henicosanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(21:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/12:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/a-13:0)

[(2R)-3-(icosanoyloxy)-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(20:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/a-13:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/i-13:0)

[(2R)-3-(icosanoyloxy)-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(20:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/i-13:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(21:0/i-12:0)

[(2R)-3-(henicosanoyloxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(21:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/i-12:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(8:0/a-25:0)

[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-(octanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(8:0/a-25:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/a-25:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of anteisopentacosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-13:0/i-20:0)

[(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(a-13:0/i-20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-20:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-21:0/12:0)

[(2R)-2-(dodecanoyloxy)-3-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(a-21:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/12:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-21:0/i-12:0)

[(2R)-3-[(18-methylicosanoyl)oxy]-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(a-21:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/i-12:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-25:0/8:0)

[(2R)-3-[(22-methyltetracosanoyl)oxy]-2-(octanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(a-25:0/8:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-25:0/8:0), in particular, consists of one chain of anteisopentacosanoic acid at the C-1 position and one chain of caprylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-12:0/a-21:0)

[(2R)-2-[(18-methylicosanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-12:0/a-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/a-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-12:0/i-21:0)

[(2R)-2-[(19-methylicosanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-12:0/i-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/i-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-13:0/i-20:0)

[(2R)-3-[(11-methyldodecanoyl)oxy]-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-13:0/i-20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-20:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-20:0/13:0)

[(2R)-3-[(18-methylnonadecanoyl)oxy]-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-20:0/13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/13:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of tridecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-20:0/a-13:0)

[(2R)-2-[(10-methyldodecanoyl)oxy]-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-20:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/a-13:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-20:0/i-13:0)

[(2R)-2-[(11-methyldodecanoyl)oxy]-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-20:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/i-13:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-21:0/12:0)

[(2R)-2-(dodecanoyloxy)-3-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-21:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/12:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-21:0/i-12:0)

[(2R)-3-[(19-methylicosanoyl)oxy]-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-21:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/i-12:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(12:0/21:0)

1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(14:0/19:0)

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(17:0/16:0)

1-heptadecanoyl-2-hexadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(18:0/15:0)

1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(21:0/12:0)

1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(20:0/13:0)

1-eicosanoyl-2-tridecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(19:0/14:0)

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(16:0/17:0)

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(15:0/18:0)

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(13:0/20:0)

1-tridecanoyl-2-eicosanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA 33:0

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

Phosphoric acid methyl 2,3-bis(palmitoyloxy)propyl ester

Phosphoric acid methyl 2,3-bis(palmitoyloxy)propyl ester

C36H71O8P (662.4886296)


   
   
   
   
   
   
   
   
   

(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate

(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate

C36H71O8P (662.4886296)


   

(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) tetracosanoate

(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) tetracosanoate

C36H71O8P (662.4886296)


   

(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) heptacosanoate

(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) heptacosanoate

C36H71O8P (662.4886296)


   

(1-Octanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate

(1-Octanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate

C36H71O8P (662.4886296)


   

(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate

(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate

C36H71O8P (662.4886296)


   

(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) nonadecanoate

(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) nonadecanoate

C36H71O8P (662.4886296)


   

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) heptadecanoate

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) heptadecanoate

C36H71O8P (662.4886296)


   

(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate

(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate

C36H71O8P (662.4886296)


   

(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) icosanoate

(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) icosanoate

C36H71O8P (662.4886296)


   

(1-Decanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate

(1-Decanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate

C36H71O8P (662.4886296)


   

(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) docosanoate

(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) docosanoate

C36H71O8P (662.4886296)


   

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] tricosanoate

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] tricosanoate

C36H71O8P (662.4886296)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] docosanoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] docosanoate

C36H71O8P (662.4886296)


   

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] tricosanoate

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] tricosanoate

C36H71O8P (662.4886296)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] docosanoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] docosanoate

C36H71O8P (662.4886296)


   

1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphate

1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphate

1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-eicosanoyl-2-tridecanoyl-glycero-3-phosphate

1-eicosanoyl-2-tridecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphate

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphate

1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphate

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphate

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-heptadecanoyl-2-palmitoyl-sn-glycero-3-phosphate

1-heptadecanoyl-2-palmitoyl-sn-glycero-3-phosphate

C36H71O8P (662.4886296)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the phosphatidyl acyl groups at postions 1 and 2 are specified as heptadecanoyl and palmitoyl respectively.

   

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphate

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-tridecanoyl-2-eicosanoyl-glycero-3-phosphate

1-tridecanoyl-2-eicosanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PMe(32:0)

PMe(16:0_16:0)

C36H71O8P (662.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(31:0)

BisMePA(15:0_16:0)

C36H71O8P (662.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved