Exact Mass: 662.4546152

Exact Mass Matches: 662.4546152

Found 390 metabolites which its exact mass value is equals to given mass value 662.4546152, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

CLINDAMYCIN PALMITATE

CLINDAMYCIN PALMITATE

C34H63ClN2O6S (662.4095128000001)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D055231 - Lincosamides D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

Goyaglycoside c

2-(hydroxymethyl)-6-({19-methoxy-8-[(4E)-6-methoxy-6-methylhept-4-en-2-yl]-5,9,17,17-tetramethyl-18-oxapentacyclo[10.5.2.0¹,¹³.0⁴,¹².0⁵,⁹]nonadec-2-en-16-yl}oxy)oxane-3,4,5-triol

C38H62O9 (662.4393602)


Goyaglycoside d is found in bitter gourd. Goyaglycoside d is a constituent of Momordica charantia (bitter melon).

   

DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H66O5 (662.4909986)


DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H66O5 (662.4909986)


DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:3(9Z,12Z,15Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propan-2-yl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C43H66O5 (662.4909986)


DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:5(4Z,7Z,10Z,13Z,16Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from animal fats and brain. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0)

(2S)-1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propan-2-yl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H66O5 (662.4909986)


DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:4(6Z,9Z,12Z,15Z)/22:5(7Z,10Z,13Z,16Z,19Z)/0:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-2 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(20:4(5Z,8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propan-2-yl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H66O5 (662.4909986)


DG(20:4(5Z,8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(5Z,8Z,11Z,14Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The arachidonic acid moiety is derived from animal fats and eggs, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:4(8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0)

(2S)-1-hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propan-2-yl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H66O5 (662.4909986)


DG(20:4(8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:4(8Z,11Z,14Z,17Z)/20:5(5Z,8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of eicsoatetraenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-2 position. The eicsoatetraenoic acid moiety is derived from fish oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z)/0:0)

(2S)-3-hydroxy-2-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H66O5 (662.4909986)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)/0:0)

(2S)-3-hydroxy-2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H66O5 (662.4909986)


DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(20:5(5Z,8Z,11Z,14Z,17Z)/20:4(8Z,11Z,14Z,17Z)/0:0), in particular, consists of one chain of eicosapentaenoic acid at the C-1 position and one chain of eicsoatetraenoic acid at the C-2 position. The eicosapentaenoic acid moiety is derived from fish oils, liver and kidney, while the eicsoatetraenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoate

C43H66O5 (662.4909986)


DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(4Z,7Z,10Z,13Z,16Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position.

   

DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H66O5 (662.4909986)


DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:5(7Z,10Z,13Z,16Z,19Z)/18:4(6Z,9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. The docosapentaenoic acid moiety is derived from fish oils, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0)

(2S)-3-hydroxy-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H66O5 (662.4909986)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(6Z,9Z,12Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of g-linolenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the g-linolenic acid moiety is derived from animal fats. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0)

(2S)-3-hydroxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H66O5 (662.4909986)


DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0), in particular, consists of one chain of docosahexaenoic acid at the C-1 position and one chain of a-linolenic acid at the C-2 position. The docosahexaenoic acid moiety is derived from fish oils, while the a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.

   

DG(18:3n6/0:0/22:6n3)

(2R)-2-Hydroxy-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid

C43H66O5 (662.4909986)


DG(18:3n6/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n6/0:0/22:6n3), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:4n6/0:0/20:5n3)

(2R)-2-hydroxy-3-[(5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate

C43H66O5 (662.4909986)


DG(20:4n6/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n6/0:0/20:5n3), in particular, consists of one chain of arachidonic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The arachidonic acid moiety is derived from animal fats and eggs, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(22:5n6/0:0/18:4n3)

(2S)-2-Hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoic acid

C43H66O5 (662.4909986)


DG(22:5n6/0:0/18:4n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(22:5n6/0:0/18:4n3), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of stearidonic acid at the C-3 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the stearidonic acid moiety is derived from seed oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:3n3/0:0/22:6n3)

(2R)-2-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]propyl (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H66O5 (662.4909986)


DG(18:3n3/0:0/22:6n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:3n3/0:0/22:6n3), in particular, consists of one chain of a-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-3 position. The a-linolenic acid moiety is derived from seed oils, especially canola and soybean oil, while the docosahexaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(18:4n3/0:0/22:5n3)

(2S)-2-Hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]propyl (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoic acid

C43H66O5 (662.4909986)


DG(18:4n3/0:0/22:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(18:4n3/0:0/22:5n3), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of docosapentaenoic acid at the C-3 position. The stearidonic acid moiety is derived from seed oils, while the docosapentaenoic acid moiety is derived from fish oils. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

DG(20:4n3/0:0/20:5n3)

(2R)-2-Hydroxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyloxy]propyl (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoic acid

C43H66O5 (662.4909986)


DG(20:4n3/0:0/20:5n3) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at the C-1, C-2, or C-3 positions. DG(20:4n3/0:0/20:5n3), in particular, consists of one chain of eicosatetraenoic acid at the C-1 position and one chain of eicosapentaenoic acid at the C-3 position. The eicosatetraenoic acid moiety is derived from fish oils, while the eicosapentaenoic acid moiety is derived from fish oils, liver and kidney. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.
Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-3 position.

   

PA(15:0/18:0)

[(2R)-2-(octadecanoyloxy)-3-(pentadecanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(15:0/18:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/18:0), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of stearic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:0/15:0)

[(2R)-3-(octadecanoyloxy)-2-(pentadecanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(18:0/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:0/15:0), in particular, consists of one chain of stearic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/13:0)

[(2R)-3-(icosanoyloxy)-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(20:0/13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/13:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of tridecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(21:0/12:0)

[(2R)-2-(dodecanoyloxy)-3-(henicosanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(21:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/12:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/a-13:0)

[(2R)-3-(icosanoyloxy)-2-[(10-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(20:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/a-13:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(20:0/i-13:0)

[(2R)-3-(icosanoyloxy)-2-[(11-methyldodecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(20:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(20:0/i-13:0), in particular, consists of one chain of arachidic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(21:0/i-12:0)

[(2R)-3-(henicosanoyloxy)-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(21:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(21:0/i-12:0), in particular, consists of one chain of heneicosylic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(8:0/a-25:0)

[(2R)-2-[(22-methyltetracosanoyl)oxy]-3-(octanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(8:0/a-25:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(8:0/a-25:0), in particular, consists of one chain of caprylic acid at the C-1 position and one chain of anteisopentacosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-13:0/i-20:0)

[(2R)-3-[(10-methyldodecanoyl)oxy]-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(a-13:0/i-20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-13:0/i-20:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-21:0/12:0)

[(2R)-2-(dodecanoyloxy)-3-[(18-methylicosanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(a-21:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/12:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-21:0/i-12:0)

[(2R)-3-[(18-methylicosanoyl)oxy]-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(a-21:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-21:0/i-12:0), in particular, consists of one chain of anteisoheneicosanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(a-25:0/8:0)

[(2R)-3-[(22-methyltetracosanoyl)oxy]-2-(octanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(a-25:0/8:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(a-25:0/8:0), in particular, consists of one chain of anteisopentacosanoic acid at the C-1 position and one chain of caprylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-12:0/a-21:0)

[(2R)-2-[(18-methylicosanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-12:0/a-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/a-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-12:0/i-21:0)

[(2R)-2-[(19-methylicosanoyl)oxy]-3-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-12:0/i-21:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-12:0/i-21:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isoheneicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-13:0/i-20:0)

[(2R)-3-[(11-methyldodecanoyl)oxy]-2-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-13:0/i-20:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-13:0/i-20:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isoeicosanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-20:0/13:0)

[(2R)-3-[(18-methylnonadecanoyl)oxy]-2-(tridecanoyloxy)propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-20:0/13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/13:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of tridecylic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-20:0/a-13:0)

[(2R)-2-[(10-methyldodecanoyl)oxy]-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-20:0/a-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/a-13:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-20:0/i-13:0)

[(2R)-2-[(11-methyldodecanoyl)oxy]-3-[(18-methylnonadecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-20:0/i-13:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-20:0/i-13:0), in particular, consists of one chain of isoeicosanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-21:0/12:0)

[(2R)-2-(dodecanoyloxy)-3-[(19-methylicosanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-21:0/12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/12:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of lauric acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(i-21:0/i-12:0)

[(2R)-3-[(19-methylicosanoyl)oxy]-2-[(10-methylundecanoyl)oxy]propoxy]phosphonic acid

C36H71O8P (662.4886296)


PA(i-21:0/i-12:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(i-21:0/i-12:0), in particular, consists of one chain of isoheneicosanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

[(2R,5S)-5-(Octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl 2-quinolin-1-ium-1-ylethyl phosphate

[(2R,5S)-5-(Octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl 2-quinolin-1-ium-1-ylethyl phosphoric acid

C36H59N2O7P (662.4059674)


   

DG(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)

(2S)-1-(Hexadecanoyloxy)-3-hydroxypropan-2-yl (5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoic acid

C39H66O8 (662.4757436000001)


DG(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0/0:0)

(2S)-2-(Hexadecanoyloxy)-3-hydroxypropyl (5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoic acid

C39H66O8 (662.4757436000001)


DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2R)-3-(Hexadecanoyloxy)-2-hydroxypropyl (5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoic acid

C39H66O8 (662.4757436000001)


DG(16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/16:0)

(2S)-3-(Hexadecanoyloxy)-2-hydroxypropyl (5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoic acid

C39H66O8 (662.4757436000001)


DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)

(2S)-1-Hydroxy-3-[(14-methylpentadecanoyl)oxy]propan-2-yl (5R,6R,7Z,9Z,11E,13E,15S,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoic acid

C39H66O8 (662.4757436000001)


DG(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0/0:0)

(2S)-3-Hydroxy-2-[(14-methylpentadecanoyl)oxy]propyl (5S,6S,7Z,9Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoic acid

C39H66O8 (662.4757436000001)


DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.

   

DG(i-16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

(2R)-2-Hydroxy-3-[(14-methylpentadecanoyl)oxy]propyl (5S,6S,7Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoic acid

C39H66O8 (662.4757436000001)


DG(i-16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-16:0)

(2S)-2-Hydroxy-3-[(14-methylpentadecanoyl)oxy]propyl (5S,6S,7Z,11E,13E,15R,17Z)-5,6,15-trihydroxyicosa-7,9,11,13,17-pentaenoic acid

C39H66O8 (662.4757436000001)


DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-16:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.

   

Charantoside VIII

Charantoside VIII

C38H62O9 (662.4393602)


   
   
   
   

Prostaglandin E2-biotin

11α,15S-dihydroxy-9-oxo-prosta-5Z,13E-dien-1-oyl-N-biotinoyl-1,5-diaminopentane

C35H58N4O6S (662.4076848)


   

(12R,20S)-12-O-(2-O-acetyl-beta-D-xylopyranosyl)-20-hydroxy-24-methylene-3,4-secodammar-4(28)-en-3-oic acid

(12R,20S)-12-O-(2-O-acetyl-beta-D-xylopyranosyl)-20-hydroxy-24-methylene-3,4-secodammar-4(28)-en-3-oic acid

C38H62O9 (662.4393602)


   
   

(12R,20S)-12-O-(2-O-acetyl-alpha-L-arabinofuranosyl)-20-hydroxy-24-methylene-3,4-secodammar-4(28)-en-3-oic acid

(12R,20S)-12-O-(2-O-acetyl-alpha-L-arabinofuranosyl)-20-hydroxy-24-methylene-3,4-secodammar-4(28)-en-3-oic acid

C38H62O9 (662.4393602)


   

methyl 3beta-O-(4-O-methyl-E-cinnamoyl)-arjunolate

methyl 3beta-O-(4-O-methyl-E-cinnamoyl)-arjunolate

C41H58O7 (662.4182318000001)


   

26-O-(3-Isopentanoyl)-??-D-glucopyranosyl-5??-furost-20(22)-ene-3??,26-diol

26-O-(3-Isopentanoyl)-??-D-glucopyranosyl-5??-furost-20(22)-ene-3??,26-diol

C38H62O9 (662.4393602)


   

3-(1-Oxoheptacosyloxy)-5,7-dihydroxyflavone

3-(1-Oxoheptacosyloxy)-5,7-dihydroxyflavone

C42H62O6 (662.4546152)


   
   

(19R,23S)-5beta,19-epoxy-19,23-dimethoxycucurbita-6,24-dien-3beta-ol-3-O-beta-D-allopyranoside|charantagenin E

(19R,23S)-5beta,19-epoxy-19,23-dimethoxycucurbita-6,24-dien-3beta-ol-3-O-beta-D-allopyranoside|charantagenin E

C38H62O9 (662.4393602)


   

methyl 3alpha-trans-feruloyloxy-2alpha-hydroxyurs-12-en-28-oate

methyl 3alpha-trans-feruloyloxy-2alpha-hydroxyurs-12-en-28-oate

C41H58O7 (662.4182318000001)


   

17-(4-Hydroxyphenyl)-2,4,6,8,10,12,14,16-heptadecaoctaensaeure-<2-dodecyl-3-hydroxy-5-(2-methylpropyl)-phenylester>|17-(4-Hydroxyphenyl)-2,4,6,8,10,12,14,16-heptadecaoctaensaeure-[2-dodecyl-3-hydroxy-5-(2-methylpropyl)-phenylester]

17-(4-Hydroxyphenyl)-2,4,6,8,10,12,14,16-heptadecaoctaensaeure-<2-dodecyl-3-hydroxy-5-(2-methylpropyl)-phenylester>|17-(4-Hydroxyphenyl)-2,4,6,8,10,12,14,16-heptadecaoctaensaeure-[2-dodecyl-3-hydroxy-5-(2-methylpropyl)-phenylester]

C45H58O4 (662.4334868)


   

3beta-hydroxy-21beta-E-dimethylcaffeoyloxyolean-12-en-28-oic acid

3beta-hydroxy-21beta-E-dimethylcaffeoyloxyolean-12-en-28-oic acid

C41H58O7 (662.4182318000001)


   
   

26-O-(3-isopentanoyl)-beta-D-glucopyranosyl-5alpha-furost-20(22)-ene-3beta,26-diol

26-O-(3-isopentanoyl)-beta-D-glucopyranosyl-5alpha-furost-20(22)-ene-3beta,26-diol

C38H62O9 (662.4393602)


   

3-hexanoyl-NBD Cholesterol

3-hexanoyl-NBD Cholesterol

C39H58N4O5 (662.4406978)


   

D 16-834

Phenol, 2,4-bis(1,1-dimethylethyl)-, phosphate (3:1)

C42H63O4P (662.4463728)


Tris(2,4-di-tert-butylphenyl) phosphate is an aryl phosphate. Tris(2,4-di-tert-butylphenyl)phosphate is an active compound from the leaves of Vitex negundo L. shows anti-inflammatory activity with evidence of inhibition for secretory Phospholipase A2 (sPLA2) through molecular docking[1]. Tris(2,4-di-tert-butylphenyl)phosphate is an active compound from the leaves of Vitex negundo L. shows anti-inflammatory activity with evidence of inhibition for secretory Phospholipase A2 (sPLA2) through molecular docking[1].

   

YRLIV

Tyr Arg Leu Ile Val

C32H54N8O7 (662.4115254000001)


   

DG(20:4/20:5/0:0)[iso2]

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-(5Z,8Z,11Z,14Z,17Z-eicosapentaenoyl)-sn-glycerol

C43H66O5 (662.4909986)


   

DG(18:3/22:6/0:0)[iso2]

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycerol

C43H66O5 (662.4909986)


   

Diglyceride

DG(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/18:3(9Z,12Z,15Z)/0:0)

C43H66O5 (662.4909986)


   

3-C6-NBD Cholesterol

6-[(7-nitro-2,1,3-benzoxadial-4-yl)amino]-cholest-5-en-3-ol

C39H58N4O5 (662.4406978)


   

PG(14:1(9Z)/14:1(9Z))

1,2-di-(9Z-tetradecenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C34H63O10P (662.4158628)


   

PA(12:0/21:0)

1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(14:0/19:0)

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(17:0/16:0)

1-heptadecanoyl-2-hexadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(18:0/15:0)

1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(21:0/12:0)

1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(20:0/13:0)

1-eicosanoyl-2-tridecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(19:0/14:0)

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(16:0/17:0)

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(15:0/18:0)

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

PA(13:0/20:0)

1-tridecanoyl-2-eicosanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

Goyaglycoside c

2-(hydroxymethyl)-6-({19-methoxy-8-[(4E)-6-methoxy-6-methylhept-4-en-2-yl]-5,9,17,17-tetramethyl-18-oxapentacyclo[10.5.2.0^{1,13}.0^{4,12}.0^{5,9}]nonadec-2-en-16-yl}oxy)oxane-3,4,5-triol

C38H62O9 (662.4393602)


   

DG 40:9

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-(7Z,10Z,13Z,16Z,19Z-docosapentaenoyl)-sn-glycerol

C43H66O5 (662.4909986)


   

PG 28:2

1,2-di-(9Z-tetradecenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C34H63O10P (662.4158628)


   

PA 33:0

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   
   
   

[(2R,5S)-5-(Octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl 2-quinolin-1-ium-1-ylethyl phosphate

[(2R,5S)-5-(Octadecylcarbamoyloxymethyl)oxolan-2-yl]methyl 2-quinolin-1-ium-1-ylethyl phosphoric acid

C36H59N2O7P (662.4059674)


   
   

DG(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)

DG(16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)

C39H66O8 (662.4757436000001)


   

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0/0:0)

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/16:0/0:0)

C39H66O8 (662.4757436000001)


   

DG(16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

DG(16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C39H66O8 (662.4757436000001)


   

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/16:0)

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/16:0)

C39H66O8 (662.4757436000001)


   

DG(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)

DG(i-16:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0)

C39H66O8 (662.4757436000001)


   

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0/0:0)

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/i-16:0/0:0)

C39H66O8 (662.4757436000001)


   

DG(i-16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

DG(i-16:0/0:0/20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15))

C39H66O8 (662.4757436000001)


   

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-16:0)

DG(20:5(7Z,9Z,11E,13E,17Z)-3OH(5,6,15)/0:0/i-16:0)

C39H66O8 (662.4757436000001)


   

Phosphoric acid methyl 2,3-bis(palmitoyloxy)propyl ester

Phosphoric acid methyl 2,3-bis(palmitoyloxy)propyl ester

C36H71O8P (662.4886296)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(E)-2-(dodecanoylamino)-3,4-dihydroxyoctadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-(dodecanoylamino)-3,4-dihydroxyoctadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C35H71N2O7P (662.4998625999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] decanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-nonadeca-9,12-dienoxy]propan-2-yl] decanoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] dodecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-heptadeca-9,12-dienoxy]propan-2-yl] dodecanoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-tetradec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-pentadec-9-enoxy]propan-2-yl] (Z)-tetradec-9-enoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tetradec-9-enoxy]propan-2-yl] (Z)-pentadec-9-enoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] tridecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-hexadeca-9,12-dienoxy]propan-2-yl] tridecanoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] undecanoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propan-2-yl] undecanoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoxy]propan-2-yl] (Z)-hexadec-9-enoate

C35H67O9P (662.4522462)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (Z)-tridec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-hexadec-9-enoxy]propan-2-yl] (Z)-tridec-9-enoate

C35H67O9P (662.4522462)


   

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-decoxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C35H67O9P (662.4522462)


   

[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]amino]tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H63N2O6P (662.4423508)


   

[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-[[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]amino]-3-hydroxyhexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H63N2O6P (662.4423508)


   

[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H63N2O6P (662.4423508)


   

[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H63N2O6P (662.4423508)


   

[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H63N2O6P (662.4423508)


   

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-hydroxypropan-2-yl] (6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoate

C43H66O5 (662.4909986)


   

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[1-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C43H66O5 (662.4909986)


   
   
   
   
   
   
   

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

2,3-bis[[(3Z,6Z,9Z)-dodeca-3,6,9-trienoyl]oxy]propyl (6Z,9Z,12Z)-pentadeca-6,9,12-trienoate

C42H62O6 (662.4546152)


   
   
   

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C37H63N2O6P (662.4423508)


   

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[(2-heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C34H63O10P (662.4158628)


   

[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C34H63O10P (662.4158628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C34H63O10P (662.4158628)


   

[1-[(2-acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-[(2-acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C34H63O10P (662.4158628)


   

[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C34H63O10P (662.4158628)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tetradec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C34H63O10P (662.4158628)


   

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-hydroxy-3-[hydroxy-[3-hydroxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C34H63O10P (662.4158628)


   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-[(2-decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[(2-dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C34H63O10P (662.4158628)


   

[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (13Z,16Z)-tetracosa-13,16-dienoate

C34H63O10P (662.4158628)


   

(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate

(1-Heptanoyloxy-3-phosphonooxypropan-2-yl) hexacosanoate

C36H71O8P (662.4886296)


   

[1-acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

[1-acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (15Z,18Z)-hexacosa-15,18-dienoate

C34H63O10P (662.4158628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C34H63O10P (662.4158628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (13Z,16Z)-docosa-13,16-dienoate

C34H63O10P (662.4158628)


   

(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) tetracosanoate

(1-Nonanoyloxy-3-phosphonooxypropan-2-yl) tetracosanoate

C36H71O8P (662.4886296)


   

(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) heptacosanoate

(1-Hexanoyloxy-3-phosphonooxypropan-2-yl) heptacosanoate

C36H71O8P (662.4886296)


   

(1-Octanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate

(1-Octanoyloxy-3-phosphonooxypropan-2-yl) pentacosanoate

C36H71O8P (662.4886296)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate

(1-Dodecanoyloxy-3-phosphonooxypropan-2-yl) henicosanoate

C36H71O8P (662.4886296)


   

(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) nonadecanoate

(1-Phosphonooxy-3-tetradecanoyloxypropan-2-yl) nonadecanoate

C36H71O8P (662.4886296)


   

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) heptadecanoate

(1-Hexadecanoyloxy-3-phosphonooxypropan-2-yl) heptadecanoate

C36H71O8P (662.4886296)


   

(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate

(1-Pentadecanoyloxy-3-phosphonooxypropan-2-yl) octadecanoate

C36H71O8P (662.4886296)


   

(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) icosanoate

(1-Phosphonooxy-3-tridecanoyloxypropan-2-yl) icosanoate

C36H71O8P (662.4886296)


   

(1-Decanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate

(1-Decanoyloxy-3-phosphonooxypropan-2-yl) tricosanoate

C36H71O8P (662.4886296)


   

(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) docosanoate

(1-Phosphonooxy-3-undecanoyloxypropan-2-yl) docosanoate

C36H71O8P (662.4886296)


   

[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

[3-hydroxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C43H66O5 (662.4909986)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

[3-hydroxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropyl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C43H66O5 (662.4909986)


   

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-tetradec-9-enoate

[3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-2-[(Z)-tetradec-9-enoyl]oxypropyl] (Z)-tetradec-9-enoate

C34H63O10P (662.4158628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-pentadec-9-enoate

C34H63O10P (662.4158628)


   

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C43H66O5 (662.4909986)


   

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

[1-hydroxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate

C43H66O5 (662.4909986)


   

(1-hydroxy-3-octanoyloxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate

(1-hydroxy-3-octanoyloxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z,20Z,23Z,26Z,29Z)-dotriaconta-5,8,11,14,17,20,23,26,29-nonaenoate

C43H66O5 (662.4909986)


   

2-[[(2S)-2-decanoyloxy-3-[(E)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-2-decanoyloxy-3-[(E)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[1-carboxy-3-[3-decanoyloxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-decanoyloxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dodec-5-enoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dodec-5-enoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

2-[hydroxy-[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-[(E)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] tricosanoate

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] tricosanoate

C36H71O8P (662.4886296)


   

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-2-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] docosanoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] docosanoate

C36H71O8P (662.4886296)


   

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (9E,11E)-octadeca-9,11-dienoate

C34H63O10P (662.4158628)


   

[1-carboxy-3-[2-[(E)-pentadec-9-enoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-pentadec-9-enoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (6E,9E)-octadeca-6,9-dienoate

C34H63O10P (662.4158628)


   

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

2-[[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(E)-heptadec-7-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-2-tridecanoyloxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-1-hydroxy-3-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C43H66O5 (662.4909986)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate

C34H63O10P (662.4158628)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (2E,4E)-octadeca-2,4-dienoate

C34H63O10P (662.4158628)


   

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-tetradec-9-enoate

[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (E)-tetradec-9-enoate

C34H63O10P (662.4158628)


   

2-[[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[[(2R)-2-dodecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-2-dodecanoyloxy-3-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E)-dodeca-6,9-dienoyl]oxy-2-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[3-[(E)-pentadec-9-enoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(E)-pentadec-9-enoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] (9E,12E)-octadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-[(7E,9E)-tetradeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (9E,12E)-heptadeca-9,12-dienoate

[(2S)-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] (9E,12E)-heptadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2S)-3-hydroxy-2-[(5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoyl]oxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C43H66O5 (662.4909986)


   

[1-carboxy-3-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate

C34H63O10P (662.4158628)


   

[1-carboxy-3-[2-decanoyloxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-decanoyloxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate

C34H63O10P (662.4158628)


   

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (9E,12E,15E,18E)-tetracosa-9,12,15,18-tetraenoate

C43H66O5 (662.4909986)


   

2-[[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-3-[(E)-hexadec-9-enoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[1-carboxy-3-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate

C34H63O10P (662.4158628)


   

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

[1-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E)-tetracosa-6,9,12,15,18-pentaenoate

C43H66O5 (662.4909986)


   

[1-carboxy-3-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(11E,13E,15E)-octadeca-11,13,15-trienoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2S)-1-hydroxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-1-hydroxy-3-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropan-2-yl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C43H66O5 (662.4909986)


   

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-3-hydroxy-2-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropyl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C43H66O5 (662.4909986)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C34H63O10P (662.4158628)


   

[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

[(2S)-3-hydroxy-2-[(9E,12E,15E)-octadeca-9,12,15-trienoyl]oxypropyl] (4E,7E,10E,13E,16E,19E)-docosa-4,7,10,13,16,19-hexaenoate

C43H66O5 (662.4909986)


   

[1-carboxy-3-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoyl]oxy-2-undecanoyloxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] tricosanoate

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] tricosanoate

C36H71O8P (662.4886296)


   

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

[(2S)-1-hydroxy-3-[(6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoyl]oxypropan-2-yl] (7E,10E,13E,16E,19E)-docosa-7,10,13,16,19-pentaenoate

C43H66O5 (662.4909986)


   

2-[[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2S)-3-[(E)-hexadec-7-enoyl]oxy-2-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[[(2R)-3-decanoyloxy-2-[(E)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-decanoyloxy-2-[(E)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(10E,13E,16E)-nonadeca-10,13,16-trienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

2-[hydroxy-[(2R)-3-[(E)-tetradec-9-enoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-3-[(E)-tetradec-9-enoyl]oxy-2-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(7E,9E)-nonadeca-7,9-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

[1-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate

C43H66O5 (662.4909986)


   

2-[[(2R)-3-dodecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(2R)-3-dodecanoyloxy-2-[(E)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] docosanoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] docosanoate

C36H71O8P (662.4886296)


   

[1-carboxy-3-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(E)-tetradec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6E,9E)-dodeca-6,9-dienoyl]oxy-3-[(11E,14E)-heptadeca-11,14-dienoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

2-[hydroxy-[3-nonanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-nonanoyloxy-2-[(Z)-octadec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[hydroxy-[3-propanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-propanoyloxy-2-[(Z)-tetracos-13-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[hydroxy-[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-tetradec-9-enoyl]oxy-3-tridecanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-tridecanoyloxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-nonanoyloxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-hexadec-9-enoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[1-carboxy-3-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-undecanoyloxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

2-[[2-[(Z)-docos-13-enoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-docos-13-enoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[[2-[(Z)-henicos-11-enoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(Z)-henicos-11-enoyl]oxy-3-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

[1-carboxy-3-[3-pentanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-pentanoyloxy-2-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-heptanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoyl]oxy-3-heptanoyloxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

[1-carboxy-3-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-propanoyloxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[2-[(14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoyl]oxy-3-propanoyloxypropoxy]propyl]-trimethylazanium

C39H68NO7+ (662.4995518000001)


   

2-[hydroxy-[3-tetradecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[3-tetradecanoyloxy-2-[(Z)-tridec-9-enoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(Z)-nonadec-9-enoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[[3-decanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decanoyloxy-2-[(Z)-heptadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[[3-dodecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-dodecanoyloxy-2-[(Z)-pentadec-9-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[[3-heptanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-heptanoyloxy-2-[(Z)-icos-11-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C35H69NO8P+ (662.4760544)


   

2-[carboxy-[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[3-decanoyloxy-2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropoxy]methoxy]ethyl-trimethylazanium

C38H64NO8+ (662.4631684)


   

2-[carboxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

2-[carboxy-[2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxy-3-octanoyloxypropoxy]methoxy]ethyl-trimethylazanium

C38H64NO8+ (662.4631684)


   

1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphate

1-octadecanoyl-2-pentadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphate

1-heneicosanoyl-2-dodecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-eicosanoyl-2-tridecanoyl-glycero-3-phosphate

1-eicosanoyl-2-tridecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphate

1-pentadecanoyl-2-octadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphate

1-dodecanoyl-2-heneicosanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphate

1-hexadecanoyl-2-heptadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphate

1-tetradecanoyl-2-nonadecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-heptadecanoyl-2-palmitoyl-sn-glycero-3-phosphate

1-heptadecanoyl-2-palmitoyl-sn-glycero-3-phosphate

C36H71O8P (662.4886296)


A 1,2-diacyl-sn-glycerol 3-phosphate in which the phosphatidyl acyl groups at postions 1 and 2 are specified as heptadecanoyl and palmitoyl respectively.

   

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphate

1-nonadecanoyl-2-tetradecanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1-tridecanoyl-2-eicosanoyl-glycero-3-phosphate

1-tridecanoyl-2-eicosanoyl-glycero-3-phosphate

C36H71O8P (662.4886296)


   

1,2-di-(9Z-tetradecenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

1,2-di-(9Z-tetradecenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C34H63O10P (662.4158628)


   

TG(39:9)

TG(18:4_10:2_11:3)

C42H62O6 (662.4546152)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

PMe(32:0)

PMe(16:0_16:0)

C36H71O8P (662.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

BisMePA(31:0)

BisMePA(15:0_16:0)

C36H71O8P (662.4886296)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

PG P-14:0/15:1 or PG O-14:1/15:1

PG P-14:0/15:1 or PG O-14:1/15:1

C35H67O9P (662.4522462)


   
   

PG P-16:1/13:0 or PG O-16:2/13:0

PG P-16:1/13:0 or PG O-16:2/13:0

C35H67O9P (662.4522462)


   
   

PG P-18:1/11:0 or PG O-18:2/11:0

PG P-18:1/11:0 or PG O-18:2/11:0

C35H67O9P (662.4522462)


   
   
   

PG P-29:1 or PG O-29:2

PG P-29:1 or PG O-29:2

C35H67O9P (662.4522462)