Exact Mass: 658.4642268
Exact Mass Matches: 658.4642268
Found 500 metabolites which its exact mass value is equals to given mass value 658.4642268
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Fucoxanthin
Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia [HMDB] Fucoxanthin is a carotenoid, with formula C40H60O6. It is found as an accessory pigment in the chloroplasts of brown algae and most other heterokonts, giving them a brown or olive-green color. Fucoxanthin absorbs light primarily in the blue-green to yellow-green part of the visible spectrum, peaking at around 510-525 nm by various estimates and absorbing significantly in the range of 450 to 540 nm. -- Wikipedia. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3351-86-8 (retrieved 2024-11-06) (CAS RN: 3351-86-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
PA(15:0/18:2(9Z,12Z))
PA(15:0/18:2(9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(15:0/18:2(9Z,12Z)), in particular, consists of one chain of pentadecanoic acid at the C-1 position and one chain of linoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:2(9Z,12Z)/15:0)
PA(18:2(9Z,12Z)/15:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:2(9Z,12Z)/15:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of pentadecanoic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
DG(11M3/9D3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11M3/9D3/0:0), in particular, consists of one chain of 11-(3-methyl-5-propylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9D3/11M3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9D3/11M3/0:0), in particular, consists of one chain of 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 11-(3-methyl-5-propylfuran-2-yl)undecanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9D3/9M5/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9D3/9M5/0:0), in particular, consists of one chain of 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
DG(9M5/9D3/0:0)
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(9M5/9D3/0:0), in particular, consists of one chain of 9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid at the C-1 position and one chain of 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.
2-(3,7,11,15,19,23,27-Heptamethyloctacosa-2,6,10,14,18,22,26-heptaenyl)-5,6-dimethoxy-3-methylcyclohexa-2,5-diene-1,4-dione
PA(12:0/20:3(6,8,11)-OH(5))
PA(12:0/20:3(6,8,11)-OH(5)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(12:0/20:3(6,8,11)-OH(5)), in particular, consists of one chain of one dodecanoyl at the C-1 position and one chain of 5-hydroxyeicosatetrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(6,8,11)-OH(5)/12:0)
PA(20:3(6,8,11)-OH(5)/12:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(6,8,11)-OH(5)/12:0), in particular, consists of one chain of one 5-hydroxyeicosatetrienoyl at the C-1 position and one chain of dodecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(14:0/18:2(10E,12Z)+=O(9))
PA(14:0/18:2(10E,12Z)+=O(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/18:2(10E,12Z)+=O(9)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 9-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(10E,12Z)+=O(9)/14:0)
PA(18:2(10E,12Z)+=O(9)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(10E,12Z)+=O(9)/14:0), in particular, consists of one chain of one 9-oxo-octadecadienoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(14:0/18:2(9Z,11E)+=O(13))
PA(14:0/18:2(9Z,11E)+=O(13)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/18:2(9Z,11E)+=O(13)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 13-oxo-octadecadienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:2(9Z,11E)+=O(13)/14:0)
PA(18:2(9Z,11E)+=O(13)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:2(9Z,11E)+=O(13)/14:0), in particular, consists of one chain of one 13-oxo-octadecadienoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(14:0/18:3(10,12,15)-OH(9))
PA(14:0/18:3(10,12,15)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(14:0/18:3(10,12,15)-OH(9)), in particular, consists of one chain of one tetradecanoyl at the C-1 position and one chain of 9-hydroxyoctadecatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(18:3(10,12,15)-OH(9)/14:0)
PA(18:3(10,12,15)-OH(9)/14:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(18:3(10,12,15)-OH(9)/14:0), in particular, consists of one chain of one 9-hydroxyoctadecatrienoyl at the C-1 position and one chain of tetradecanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
DG(15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/15:0/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(15:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(15:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/15:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/15:0/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(15:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(15:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/15:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(a-15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-15:0/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(a-15:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/a-15:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/a-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(a-15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(a-15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-15:0/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(a-15:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(a-15:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/a-15:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/a-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(i-15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-15:0/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(i-15:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/i-15:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/i-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(i-15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(i-15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-15:0/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-15:0/0:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-15:0/0:0) is also a substrate of diacylglycerol kinase. It is involved in the phospholipid metabolic pathway.
DG(i-15:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(i-15:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/i-15:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/i-15:0) belongs to the family of Diacylglycerols. These are glycerolipids lipids containing a common glycerol backbone to which at least one fatty acyl group is esterified. It is involved in the phospholipid metabolic pathway.
methyl (sitosterol 3-O-alpha-D-acetylribofuranoside)uronate
Fucoxanthin
Fucoxanthin is an epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. It has a role as an algal metabolite, a CFTR potentiator, a food antioxidant, a neuroprotective agent, a hypoglycemic agent, an apoptosis inhibitor, a hepatoprotective agent, a marine metabolite and a plant metabolite. It is an epoxycarotenol, an acetate ester, a secondary alcohol, a tertiary alcohol and a member of allenes. Fucoxanthin is a natural product found in Aequipecten opercularis, Ascidia zara, and other organisms with data available. An epoxycarotenol that is found in brown seaweed and which exhibits anti-cancer, anti-diabetic, anti-oxidative and neuroprotective properties. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities. Fucoxanthin (all-trans-Fucoxanthin) is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities[1][2][3][4][5][6][7][8][9]. Fucoxanthin is a marine carotenoid and shows anti-obesity, anti-diabetic, anti-oxidant, anti-inflammatory and anticancer activities.
PE-Cer(d14:1(4E)/20:1)
C36H71N2O6P (658.5049475999999)
PE-Cer(d14:2(4E,6E)/20:0)
C36H71N2O6P (658.5049475999999)
PE-Cer(d16:2(4E,6E)/18:0)
C36H71N2O6P (658.5049475999999)
CerPE 34:2;O2
C36H71N2O6P (658.5049475999999)
9,9-Dioctyl-9H-9-silafluorene-2,7-bis(boronic acid pinacol ester)
C40H64B2O4Si (658.4759723999999)
ubiquinone-7
A compound whose structure comprises a 2,3-dimethoxy-5-methylbenzoquinone nucleus, common to ubiquinones; and a side chain of seven isoprenoid units. C26170 - Protective Agent > C275 - Antioxidant
[(2S)-1-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-hydroxypropan-2-yl] 9-(3-methyl-5-pentylfuran-2-yl)nonanoate
[(2S)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-hydroxypropyl] 9-(3-methyl-5-pentylfuran-2-yl)nonanoate
[(2S)-2-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-hydroxypropyl] 11-(3-methyl-5-propylfuran-2-yl)undecanoate
[(2S)-1-[9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoyloxy]-3-hydroxypropan-2-yl] 11-(3-methyl-5-propylfuran-2-yl)undecanoate
DG(15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/15:0/0:0)
DG(15:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/15:0)
DG(15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/15:0/0:0)
DG(15:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/15:0)
DG(a-15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/a-15:0/0:0)
DG(a-15:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/a-15:0)
DG(a-15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/a-15:0/0:0)
DG(a-15:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/a-15:0)
DG(i-15:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0)
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/i-15:0/0:0)
DG(i-15:0/0:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
DG(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/0:0/i-15:0)
DG(i-15:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0)
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/i-15:0/0:0)
DG(i-15:0/0:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
DG(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/0:0/i-15:0)
1-Oleoyl-2-pentadecanoyl-sn-glycero-3-phosphate(2-)
[(8E,12E,16E)-2-(dodecanoylamino)-3,4-dihydroxyoctadeca-8,12,16-trienyl] 2-(trimethylazaniumyl)ethyl phosphate
[(4E,8E)-3-hydroxy-2-(pentanoylamino)hexacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-2-(hexanoylamino)-3-hydroxypentacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-3-hydroxy-2-(octanoylamino)tricosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-2-acetamido-3-hydroxynonacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-2-(butanoylamino)-3-hydroxyheptacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-2-[[(Z)-docos-13-enoyl]amino]-3-hydroxynon-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-3-hydroxy-2-(nonanoylamino)docosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-2-(heptanoylamino)-3-hydroxytetracosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-3-hydroxy-2-(propanoylamino)octacosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]dodecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-3-hydroxy-2-(nonadecanoylamino)dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[2-[[(11Z,14Z)-henicosa-11,14-dienoyl]amino]-3-hydroxydecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]tridecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-2-[[(Z)-hexadec-9-enoyl]amino]-3-hydroxypentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[3-hydroxy-2-[[(11Z,14Z)-icosa-11,14-dienoyl]amino]undecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxypentadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxytetradecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-3-hydroxy-2-[[(Z)-nonadec-9-enoyl]amino]dodec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-3-hydroxy-2-(undecanoylamino)icosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-3-hydroxy-2-[[(Z)-octadec-9-enoyl]amino]tridec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-3-hydroxy-2-[[(Z)-icos-11-enoyl]amino]undec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-3-hydroxy-2-(octadecanoylamino)trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-2-[[(Z)-heptadec-9-enoyl]amino]-3-hydroxytetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-2-(decanoylamino)-3-hydroxyhenicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-2-[[(Z)-henicos-11-enoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]octadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[1-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-nonadec-9-enoate
[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-docos-13-enoate
[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-octadec-9-enoate
[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-henicos-11-enoate
[1-propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-tetracos-13-enoate
[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-icos-11-enoate
[2-[(Z)-tridec-9-enoyl]oxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] tetradecanoate
[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-heptadec-9-enoate
[1-dodecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-pentadec-9-enoate
6-[2-dodecanoyloxy-3-[(Z)-tetradec-9-enoyl]oxypropoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid
3,4,5-trihydroxy-6-[2-tridecanoyloxy-3-[(Z)-tridec-9-enoyl]oxypropoxy]oxane-2-carboxylic acid
[1-tridecanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (Z)-tetradec-9-enoate
[1-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (Z)-hexadec-9-enoate
[2-[[(13Z,16Z)-docosa-13,16-dienoyl]amino]-3-hydroxynonyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-3-hydroxy-2-(tridecanoylamino)octadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]hexadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-2-(dodecanoylamino)-3-hydroxynonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-3-hydroxy-2-(tetradecanoylamino)heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-2-(hexadecanoylamino)-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-2-(heptadecanoylamino)-3-hydroxytetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]heptadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(4E,8E)-3-hydroxy-2-(pentadecanoylamino)hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
(1-heptanoyloxy-3-phosphonooxypropan-2-yl) (15Z,18Z)-hexacosa-15,18-dienoate
(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (13Z,16Z)-tetracosa-13,16-dienoate
(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (11Z,14Z)-icosa-11,14-dienoate
[1-[(Z)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-heptadec-9-enoate
[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (Z)-icos-11-enoate
(1-hexadecanoyloxy-3-phosphonooxypropan-2-yl) (9Z,12Z)-heptadeca-9,12-dienoate
[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (Z)-nonadec-9-enoate
(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (9Z,12Z)-nonadeca-9,12-dienoate
(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (9Z,12Z)-octadeca-9,12-dienoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] heptadecanoate
(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (13Z,16Z)-docosa-13,16-dienoate
[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (Z)-octadec-9-enoate
(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (11Z,14Z)-henicosa-11,14-dienoate
[(E)-2-[[(Z)-hexadec-7-enoyl]amino]-3-hydroxypentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]octadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxynonadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[2-[[(4Z,7Z)-hexadeca-4,7-dienoyl]amino]-3-hydroxypentadecyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (5E,8E)-icosa-5,8-dienoate
2-[[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-7-enoate
[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (11E,14E)-icosa-11,14-dienoate
[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(8E,11E,14E)-heptadeca-8,11,14-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(2R)-2-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropyl] (E)-heptadec-9-enoate
[(E,2S,3R)-2-[[(E)-hexadec-9-enoyl]amino]-3-hydroxypentadec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-1-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-heptadec-9-enoate
[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate
[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-hexadec-9-enoate
[(2S)-1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-heptadec-9-enoate
[(2R)-2-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-heptadec-9-enoate
[(2S,3R,4E,8E)-3-hydroxy-2-(tridecanoylamino)octadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-1-hexadecanoyloxy-3-phosphonooxypropan-2-yl] (9E,12E)-heptadeca-9,12-dienoate
[(2R)-3-phosphonooxy-2-tridecanoyloxypropyl] (11E,14E)-icosa-11,14-dienoate
[1-carboxy-3-[2-[(E)-dec-4-enoyl]oxy-3-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(E,2S,3R)-2-[[(E)-hexadec-9-enoyl]amino]-3-hydroxypentadec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] octadec-17-enoate
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-6-enoate
[(2S)-1-dodecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-pentadec-9-enoate
[1-carboxy-3-[2-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(2R)-2-[(E)-hexadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-heptadec-9-enoate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-octadec-7-enoate
2-[[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-[(E)-undec-4-enoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-2-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(2S,3R,4E,6E)-2-(hexadecanoylamino)-3-hydroxypentadeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (6E,9E)-octadeca-6,9-dienoate
[1-carboxy-3-[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (9E,12E)-octadeca-9,12-dienoate
[(2S)-2-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-tetradec-9-enoate
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-13-enoate
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (13E,16E)-docosa-13,16-dienoate
[(2S,3R,4E,6E)-3-hydroxy-2-(pentadecanoylamino)hexadeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2S,3R,4E,8E)-2-(dodecanoylamino)-3-hydroxynonadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-octadec-13-enoate
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-4-enoate
[1-carboxy-3-[3-[(7E,9E,11E,13E,15E)-octadeca-7,9,11,13,15-pentaenoyl]oxy-2-[(E)-undec-4-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(2R)-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-undecanoyloxypropyl] (E)-hexadec-7-enoate
[1-carboxy-3-[2-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[(7E,10E,13E,16E)-nonadeca-7,10,13,16-tetraenoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (9E,11E)-octadeca-9,11-dienoate
[(E,2S,3R)-2-[[(E)-heptadec-9-enoyl]amino]-3-hydroxytetradec-8-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (13E,16E)-docosa-13,16-dienoate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-octadec-6-enoate
[(2R)-1-phosphonooxy-3-tridecanoyloxypropan-2-yl] (5E,8E)-icosa-5,8-dienoate
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-9-enoate
[(2S,3R,4E,8E)-3-hydroxy-2-(tetradecanoylamino)heptadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (9E,11E)-octadeca-9,11-dienoate
[(2R)-2-hexadecanoyloxy-3-phosphonooxypropyl] (9E,12E)-heptadeca-9,12-dienoate
[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (2E,4E)-octadeca-2,4-dienoate
[(2S,3R,4E,8E)-2-(hexadecanoylamino)-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] heptadecanoate
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-octadec-11-enoate
[(2S,3R,4E,6E)-2-(heptadecanoylamino)-3-hydroxytetradeca-4,6-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[1-carboxy-3-[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-[(E)-tridec-8-enoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[1-carboxy-3-[3-[(E)-dec-4-enoyl]oxy-2-[(4E,7E,10E,13E,16E)-nonadeca-4,7,10,13,16-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(2S,3R,4E,8E)-2-(heptadecanoylamino)-3-hydroxytetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-octadec-11-enoate
[(2S,3R,4E,14E)-3-hydroxy-2-(tridecanoylamino)octadeca-4,14-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2R)-1-pentadecanoyloxy-3-phosphonooxypropan-2-yl] (2E,4E)-octadeca-2,4-dienoate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-octadec-9-enoate
[(2R)-2-dodecanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropyl] (E)-pentadec-9-enoate
[(2R)-2-pentadecanoyloxy-3-phosphonooxypropyl] (6E,9E)-octadeca-6,9-dienoate
[(2S)-1-tridecanoyloxy-3-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (E)-tetradec-9-enoate
[1-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-hydroxypropan-2-yl] (6E,9E,12E,15E,18E,21E)-tetracosa-6,9,12,15,18,21-hexaenoate
[(2R)-2-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropyl] (E)-octadec-4-enoate
[(2R)-1-[(E)-hexadec-7-enoyl]oxy-3-phosphonooxypropan-2-yl] (E)-heptadec-9-enoate
[1-carboxy-3-[2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(E,2S,3R)-2-[[(E)-heptadec-9-enoyl]amino]-3-hydroxytetradec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-hexadec-9-enoate
[(2R,3S,4E,8E)-2-(decanoylamino)-3-hydroxyhenicosa-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
[1-carboxy-3-[3-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-2-[(5E,8E,11E)-tetradeca-5,8,11-trienoyl]oxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
[(2R)-1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] octadec-17-enoate
[(2S)-1-[(2R,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-3-undecanoyloxypropan-2-yl] (E)-hexadec-7-enoate
[(2S,3R,4E,8E)-3-hydroxy-2-(pentadecanoylamino)hexadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate
C36H71N2O6P (658.5049475999999)
2-[[3-[(10Z,13Z,16Z)-docosa-10,13,16-trienoxy]-2-hexanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
2-[[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-undecanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-nonanoyloxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-[(10Z,13Z,16Z)-docosa-10,13,16-trienoyl]oxy-3-pentanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[1-carboxy-3-[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-heptanoyloxypropoxy]propyl]-trimethylazanium
C39H64NO7+ (658.4682533999999)
2-[[3-heptanoyloxy-2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[3-[(11Z,14Z,17Z)-icosa-11,14,17-trienoxy]-2-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
2-[[2-decanoyloxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
2-[hydroxy-[2-[(11Z,14Z,17Z)-icosa-11,14,17-trienoyl]oxy-3-octoxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
2-[hydroxy-[2-hydroxy-3-[(14Z,17Z,20Z)-octacosa-14,17,20-trienoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
2-[[3-decoxy-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
2-[[3-dodecoxy-2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
2-[[2-butanoyloxy-3-[(10Z,13Z,16Z)-tetracosa-10,13,16-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
2-[[2-dodecanoyloxy-3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
2-[[2-acetyloxy-3-[(12Z,15Z,18Z)-hexacosa-12,15,18-trienoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
C36H69NO7P+ (658.4811393999998)
1-Palmityl-2-oleoyl-sn-glycero-3-phosphate(2-)
A 1-alkyl-2-acyl-sn-glycero-3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1-palmityl-2-oleoyl-sn-glycero-3-phosphate; major species at pH 7.3.
1-Oleoyl-2-pentadecanoyl-sn-glycero-3-phosphate(2-)
A 1,2-diacyl-sn-glycerol 3-phosphate(2-) obtained by deprotonation of the phosphate OH groups of 1-oleoyl-2-pentadecanoyl-sn-glycero-3-phosphate.
SM(31:2)
C36H71N2O6P (658.5049475999999)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MGMG(28:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
BisMePA(32:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
PEt(32:2)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
Co(0:0)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
MGDG(28:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
3-{5,9,12-trihydroxy-6,13-dimethyl-10-methylidene-2-oxo-14-[(5e,7e)-3,7,11-trimethyl-4-oxoheptadeca-5,7-dien-1-yl]-1-oxa-4,8,11-triazacyclotetradeca-4,8,11-trien-3-yl}propanimidic acid
C36H58N4O7 (658.4305277999999)