Exact Mass: 640.3934756
Exact Mass Matches: 640.3934756
Found 185 metabolites which its exact mass value is equals to given mass value 640.3934756
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PA(14:0/18:4(6Z,9Z,12Z,15Z))
PA(14:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:1(9Z)/18:3(6Z,9Z,12Z))
PA(14:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:1(9Z)/18:3(9Z,12Z,15Z))
PA(14:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(6Z,9Z,12Z)/14:1(9Z))
PA(18:3(6Z,9Z,12Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/14:1(9Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(9Z,12Z,15Z)/14:1(9Z))
PA(18:3(9Z,12Z,15Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/14:1(9Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:4(6Z,9Z,12Z,15Z)/14:0)
PA(18:4(6Z,9Z,12Z,15Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/14:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
(9Z,12Z)-6-formyl-2,3,3a,4,5,8,9,11a-octahydro-10-(hydroxymethyl)-3-methylene-4-(2-methyl-1-oxobutoxy)-2-oxocyclodeca[b]furan-5-yl ester 9,12-Octadecadienoic acid
1beta,2beta,3,beta4,beta,5beta-pentahydroxy-spiro-25(27)-en-5-O-beta-D-glucopyranoside|Aspidoside A
anzurogenin C 24-O-beta-D-glucopyranoside (anzuroside)
2beta,3beta,14alpha,20R,22R-pentahydroxy-24R-methyl-5beta-cholest-7-en-6-one-3-O-beta-D-glucopyranoside|lygodiumsteroside B
(E)-(24R)-242-O-beta-(4-O-methyl-D-xylopyranosyl)-24-ethyl-5alpha-cholest-22-ene-3beta,4beta,6alpha,15beta,16beta,242-hexol|certonardoside J3
3-O-beta-D-xylopyranosyl-3beta,6alpha,16beta,20(S),24(R),25-hexahydroxycycloartane
14beta,21alpha,29-trihydroxyserrat-3beta-yl dihydrocaffeate|lycophlegmarinol D
23xi,24xi-cycloartan-3beta,6alpha,16beta-23,24,25-hexaol 3-O-beta-D-xylopyranoside|cycloorbicoside D|cycloorbigenin C 3-O-beta-D-xylopyranoside
camelliagenine A, 22-beta,beta-dimethylacrylate 3, 20-diacetate
(20R,24R,25S,22E)-3-O-(2,4-di-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-22-ene-3beta,4beta,6beta,8,15alpha,26-hexaol|asperoside B
Arg Phe Tyr Arg
Phe Arg Arg Tyr
Phe Arg Tyr Arg
Phe Tyr Arg Arg
Arg Phe Arg Tyr
Arg Arg Phe Tyr
Arg Arg Tyr Phe
Arg Tyr Phe Arg
Arg Tyr Arg Phe
Tyr Phe Arg Arg
Tyr Arg Phe Arg
Tyr Arg Arg Phe
PA(14:1(9Z)/18:3(6Z,9Z,12Z))
PA(14:1(9Z)/18:3(9Z,12Z,15Z))
PA(18:3(6Z,9Z,12Z)/14:1(9Z))
PA(18:3(9Z,12Z,15Z)/14:1(9Z))
PA(18:4(6Z,9Z,12Z,15Z)/14:0)
PA(14:0/18:4(6Z,9Z,12Z,15Z))
Hellebrigenin-3-(14-hydroxy-6Z-tetradecenoate)
Halocynthiaxanthin 3-acetate
1(2H)-Phthalazinone, 4-((4-chlorophenyl)methyl)-2-(((2R)-1-(4-(4-(3-(hexahydro-1H-azepin-1-yl)propoxy)phenyl)butyl)-2-pyrrolidinyl)methyl)-
1-[(3S,9R,10R)-9-[[cyclohexylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(4-fluorophenyl)urea
C36H53FN4O5 (640.3999779999999)
1-[(3R,9R,10R)-9-[[cyclohexylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(4-fluorophenyl)urea
C36H53FN4O5 (640.3999779999999)
[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-henicos-11-enoate
C30H57O12P (640.3587451999999)
[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
(1-octanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
(1-hexanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
(1-decanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-hexadec-9-enoate
[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexadecanoate
(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate
[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C30H56O12S (640.3492296000001)
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E)-hexadeca-4,7-dienoate
[1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
2-[[3-decanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate
[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-hexadec-7-enoate
[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C30H56O12S (640.3492296000001)