Exact Mass: 640.3669876

Exact Mass Matches: 640.3669876

Found 195 metabolites which its exact mass value is equals to given mass value 640.3669876, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

N1,N5,N10-Tris-trans-p-coumaroylspermine

(2E)-N-{3-[(2E)-N-{4-[(2E)-N-(3-aminopropyl)-3-(4-hydroxyphenyl)prop-2-enamido]butyl}-3-(4-hydroxyphenyl)prop-2-enamido]propyl}-3-(4-hydroxyphenyl)prop-2-enimidate

C37H44N4O6 (640.3260683999999)


N1,N5,N10-Tris-trans-p-coumaroylspermine is found in herbs and spices. It is a constituent of Matricaria chamomilla (German chamomile). Constituent of Matricaria chamomilla (German chamomile). N1,N5,N10-Tris-trans-p-coumaroylspermine is found in herbs and spices.

   

PA(14:0/18:4(6Z,9Z,12Z,15Z))

[(2R)-2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-3-(tetradecanoyloxy)propoxy]phosphonic acid

C35H61O8P (640.4103835999999)


PA(14:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(14:1(9Z)/18:3(6Z,9Z,12Z))

[(2R)-2-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C35H61O8P (640.4103835999999)


PA(14:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(14:1(9Z)/18:3(9Z,12Z,15Z))

[(2R)-2-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-3-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C35H61O8P (640.4103835999999)


PA(14:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(6Z,9Z,12Z)/14:1(9Z))

[(2R)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C35H61O8P (640.4103835999999)


PA(18:3(6Z,9Z,12Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/14:1(9Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:3(9Z,12Z,15Z)/14:1(9Z))

[(2R)-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyloxy]-2-[(9Z)-tetradec-9-enoyloxy]propoxy]phosphonic acid

C35H61O8P (640.4103835999999)


PA(18:3(9Z,12Z,15Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/14:1(9Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(18:4(6Z,9Z,12Z,15Z)/14:0)

[(2R)-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyloxy]-2-(tetradecanoyloxy)propoxy]phosphonic acid

C35H61O8P (640.4103835999999)


PA(18:4(6Z,9Z,12Z,15Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/14:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.

   

PA(8:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

[(2R)-2-{[(5Z,7R,8E,10Z,13Z,15E,17S,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C33H53O10P (640.3376168)


PA(8:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/8:0)

[(2R)-3-{[(5Z,7S,8E,10Z,13Z,15E,17R,19Z)-7,17-dihydroxydocosa-5,8,10,13,15,19-hexaenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C33H53O10P (640.3376168)


PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/8:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

[(2R)-2-{[(4Z,7Z,10R,11E,13Z,15E,17S,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C33H53O10P (640.3376168)


PA(8:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/8:0)

[(2R)-3-{[(4Z,7Z,10S,11E,13Z,15E,17R,19Z)-10,17-dihydroxydocosa-4,7,11,13,15,19-hexaenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C33H53O10P (640.3376168)


PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/8:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

12-O-Methylnimbolinin B

12-O-Methylnimbolinin B

C36H48O10 (640.3247308)


   
   
   
   

23-Galloylarjunolic acid

(+)-23-Galloylarjunolic acid

C37H52O9 (640.3611142)


   

(9Z,12Z)-6-formyl-2,3,3a,4,5,8,9,11a-octahydro-10-(hydroxymethyl)-3-methylene-4-(2-methyl-1-oxobutoxy)-2-oxocyclodeca[b]furan-5-yl ester 9,12-Octadecadienoic acid

(9Z,12Z)-6-formyl-2,3,3a,4,5,8,9,11a-octahydro-10-(hydroxymethyl)-3-methylene-4-(2-methyl-1-oxobutoxy)-2-oxocyclodeca[b]furan-5-yl ester 9,12-Octadecadienoic acid

C38H56O8 (640.3974976000001)


   

Halocynthiaxanthin acetate

Halocynthiaxanthin acetate

C42H56O5 (640.4127526)


   

Crassostreaxanthin A acetate

Crassostreaxanthin A acetate

C42H56O5 (640.4127526)


   
   

cucurbitacin E 2,16-diacetate

cucurbitacin E 2,16-diacetate

C36H48O10 (640.3247308)


   

Resibufogenin-3-succinoylargininester

Resibufogenin-3-succinoylargininester

C34H48N4O8 (640.3471968)


   
   

1beta,2beta,3,beta4,beta,5beta-pentahydroxy-spiro-25(27)-en-5-O-beta-D-glucopyranoside|Aspidoside A

1beta,2beta,3,beta4,beta,5beta-pentahydroxy-spiro-25(27)-en-5-O-beta-D-glucopyranoside|Aspidoside A

C33H52O12 (640.3458592)


   

anzurogenin C 24-O-beta-D-glucopyranoside (anzuroside)

anzurogenin C 24-O-beta-D-glucopyranoside (anzuroside)

C33H52O12 (640.3458592)


   
   

2beta,3beta,14alpha,20R,22R-pentahydroxy-24R-methyl-5beta-cholest-7-en-6-one-3-O-beta-D-glucopyranoside|lygodiumsteroside B

2beta,3beta,14alpha,20R,22R-pentahydroxy-24R-methyl-5beta-cholest-7-en-6-one-3-O-beta-D-glucopyranoside|lygodiumsteroside B

C34H56O11 (640.3822426)


   
   

milbemycin alpha21

milbemycin alpha21

C37H52O9 (640.3611142)


   

kidjoranin 3-O-beta-D-digitoxopyranoside|kidjoranin 3-O-beta-digitoxopyranoside

kidjoranin 3-O-beta-D-digitoxopyranoside|kidjoranin 3-O-beta-digitoxopyranoside

C36H48O10 (640.3247308)


   
   

Arg Phe Tyr Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-phenylpropanamido]-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanoic acid

C30H44N10O6 (640.3445124)


   
   

Phe Arg Arg Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-5-carbamimidamidopentanamido]-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanoic acid

C30H44N10O6 (640.3445124)


   

Phe Arg Tyr Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanoic acid

C30H44N10O6 (640.3445124)


   

Phe Tyr Arg Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-phenylpropanamido]-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanamido]-5-carbamimidamidopentanoic acid

C30H44N10O6 (640.3445124)


   

Arg Phe Arg Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-phenylpropanamido]-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanoic acid

C30H44N10O6 (640.3445124)


   

Arg Arg Phe Tyr

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-5-carbamimidamidopentanamido]-3-phenylpropanamido]-3-(4-hydroxyphenyl)propanoic acid

C30H44N10O6 (640.3445124)


   

Arg Arg Tyr Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanamido]-3-phenylpropanoic acid

C30H44N10O6 (640.3445124)


   

Arg Tyr Phe Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanamido]-3-phenylpropanamido]-5-carbamimidamidopentanoic acid

C30H44N10O6 (640.3445124)


   

Arg Tyr Arg Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanamido]-3-phenylpropanoic acid

C30H44N10O6 (640.3445124)


   

Tyr Phe Arg Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-3-phenylpropanamido]-5-carbamimidamidopentanamido]-5-carbamimidamidopentanoic acid

C30H44N10O6 (640.3445124)


   

Tyr Arg Phe Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanamido]-3-phenylpropanamido]-5-carbamimidamidopentanoic acid

C30H44N10O6 (640.3445124)


   

Tyr Arg Arg Phe

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanamido]-5-carbamimidamidopentanamido]-3-phenylpropanoic acid

C30H44N10O6 (640.3445124)


   

FKEAF

Phe Lys Glu Ala Phe

C32H44N6O8 (640.3220464000001)


   

PA(12:0/20:4(5Z,8Z,11Z,14Z))

1-dodecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-glycero-3-phosphate

C35H61O8P (640.4103835999999)


   

PA(14:1(9Z)/18:3(6Z,9Z,12Z))

1-(9Z-tetradecenoyl)-2-(6Z,9Z,12Z-octadecatrienoyl)-glycero-3-phosphate

C35H61O8P (640.4103835999999)


   

PA(14:1(9Z)/18:3(9Z,12Z,15Z))

1-(9Z-tetradecenoyl)-2-(9Z,12Z,15Z-octadecatrienoyl)-glycero-3-phosphate

C35H61O8P (640.4103835999999)


   

PA(18:3(6Z,9Z,12Z)/14:1(9Z))

1-(6Z,9Z,12Z-octadecatrienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C35H61O8P (640.4103835999999)


   

PA(18:3(9Z,12Z,15Z)/14:1(9Z))

1-(9Z,12Z,15Z-octadecatrienoyl)-2-(9Z-tetradecenoyl)-glycero-3-phosphate

C35H61O8P (640.4103835999999)


   

PA(18:4(6Z,9Z,12Z,15Z)/14:0)

1-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-2-tetradecanoyl-glycero-3-phosphate

C35H61O8P (640.4103835999999)


   

PA(20:4(5Z,8Z,11Z,14Z)/12:0)

1-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-2-dodecanoyl-glycero-3-phosphate

C35H61O8P (640.4103835999999)


   

PA(14:0/18:4(6Z,9Z,12Z,15Z))

1-tetradecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C35H61O8P (640.4103835999999)


   

N1,N5,N10-Tris-trans-p-coumaroylspermine

(2E)-N-{3-[(2E)-N-{4-[(2E)-N-(3-aminopropyl)-3-(4-hydroxyphenyl)prop-2-enamido]butyl}-3-(4-hydroxyphenyl)prop-2-enamido]propyl}-3-(4-hydroxyphenyl)prop-2-enamide

C37H44N4O6 (640.3260683999999)


   

PA 32:4

1-tetradecanoyl-2-(6Z,9Z,12Z,15Z-octadecatetraenoyl)-glycero-3-phosphate

C35H61O8P (640.4103835999999)


   

PHHdiA-PG

1-hexadecanoyl-2-(4-hydroxy-6-carboxy-5E-hexenoyl)-sn-glycero-3-phospho-(1-sn-glycerol)

C29H53O13P (640.3223618)


   

Hellebrigenin-3-(14-hydroxy-6Z-tetradecenoate)

3beta,5beta,14beta-trihydroxy-19-oxo-bufa-20,22-dienolide-3beta-yl-(14-hydroxy-6Z-tetradecenoate)

C38H56O8 (640.3974976000001)


   

Halocynthiaxanthin 3-acetate

(3S,5R,6S,3R)-5,6-Epoxy-3-ethanoyloxy-3-hydroxy-7,8-didehydro-5,6,7,8-tetrahydro-beta,beta-caroten-8-one

C42H56O5 (640.4127526)


   

1(2H)-Phthalazinone, 4-((4-chlorophenyl)methyl)-2-(((2R)-1-(4-(4-(3-(hexahydro-1H-azepin-1-yl)propoxy)phenyl)butyl)-2-pyrrolidinyl)methyl)-

1(2H)-Phthalazinone, 4-((4-chlorophenyl)methyl)-2-(((2R)-1-(4-(4-(3-(hexahydro-1H-azepin-1-yl)propoxy)phenyl)butyl)-2-pyrrolidinyl)methyl)-

C39H49ClN4O2 (640.3543844)


   
   

3-[(21S,22S)-12-(dihydroxymethyl)-26-ethyl-4-hydroxy-16-(1-hydroxyethyl)-17,19,21-trimethyl-11-(2-methylpropyl)-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoic acid

3-[(21S,22S)-12-(dihydroxymethyl)-26-ethyl-4-hydroxy-16-(1-hydroxyethyl)-17,19,21-trimethyl-11-(2-methylpropyl)-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoic acid

C37H44N4O6 (640.3260683999999)


   

PA(8:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

PA(8:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))

C33H53O10P (640.3376168)


   

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/8:0)

PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/8:0)

C33H53O10P (640.3376168)


   

PA(8:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

PA(8:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))

C33H53O10P (640.3376168)


   

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/8:0)

PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/8:0)

C33H53O10P (640.3376168)


   

Kidjoranin-3-O-beta-digitoxopyranoside

Kidjoranin-3-O-beta-digitoxopyranoside

C36H48O10 (640.3247308)


A steroid glycoside isolated from the roots of Cynanchum auriculatum and has been shown to exhibit cytotoxicity against human tumour cell lines.

   
   
   

1-[(3S,9R,10R)-9-[[cyclohexylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(4-fluorophenyl)urea

1-[(3S,9R,10R)-9-[[cyclohexylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(4-fluorophenyl)urea

C36H53FN4O5 (640.3999779999999)


   

1-[(3R,9R,10R)-9-[[cyclohexylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(4-fluorophenyl)urea

1-[(3R,9R,10R)-9-[[cyclohexylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(4-fluorophenyl)urea

C36H53FN4O5 (640.3999779999999)


   
   

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-henicos-11-enoate

[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-henicos-11-enoate

C30H57O12P (640.3587451999999)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C33H53O10P (640.3376168)


   
   
   
   

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonanoate

[1-Pentanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] nonanoate

C29H52O15 (640.3306042)


   

[2-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] heptanoate

[2-Heptanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropyl] heptanoate

C29H52O15 (640.3306042)


   

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octanoate

[1-Hexanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] octanoate

C29H52O15 (640.3306042)


   

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] dodecanoate

[1-Acetyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] dodecanoate

C29H52O15 (640.3306042)


   

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] undecanoate

[1-Propanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] undecanoate

C29H52O15 (640.3306042)


   

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] decanoate

[1-Butanoyloxy-3-[3,4,5-trihydroxy-6-[[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxymethyl]oxan-2-yl]oxypropan-2-yl] decanoate

C29H52O15 (640.3306042)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] (Z)-heptadec-9-enoate

C29H53O13P (640.3223618)


   

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

[1-hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tetradec-9-enoate

C29H53O13P (640.3223618)


   

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

(1-octanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate

C35H61O8P (640.4103835999999)


   

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

[1-butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-hexadec-9-enoate

C29H53O13P (640.3223618)


   

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

[1-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] (Z)-pentadec-9-enoate

C29H53O13P (640.3223618)


   

(1-hexanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

(1-hexanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate

C35H61O8P (640.4103835999999)


   

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

[1-heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-tridec-9-enoate

C29H53O13P (640.3223618)


   

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate

C33H53O10P (640.3376168)


   

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate

C35H61O8P (640.4103835999999)


   

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

(1-decanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate

C35H61O8P (640.4103835999999)


   

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-hexadec-9-enoate

[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-hexadec-9-enoate

C35H61O8P (640.4103835999999)


   

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C35H61O8P (640.4103835999999)


   

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate

[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate

C35H61O8P (640.4103835999999)


   

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexadecanoate

[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexadecanoate

C35H61O8P (640.4103835999999)


   

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate

C35H61O8P (640.4103835999999)


   

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

[1-acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] (Z)-octadec-9-enoate

C29H53O13P (640.3223618)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C35H61O8P (640.4103835999999)


   

2-[[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C34H59NO8P+ (640.3978084)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C35H61O8P (640.4103835999999)


   

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C30H56O12S (640.3492296000001)


   

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E)-hexadeca-4,7-dienoate

[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E)-hexadeca-4,7-dienoate

C35H61O8P (640.4103835999999)


   

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C35H61O8P (640.4103835999999)


   

2-[[3-decanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-decanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C34H59NO8P+ (640.3978084)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate

C35H61O8P (640.4103835999999)


   

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C35H61O8P (640.4103835999999)


   

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-hexadec-7-enoate

[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-hexadec-7-enoate

C35H61O8P (640.4103835999999)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C35H61O8P (640.4103835999999)


   

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate

C35H61O8P (640.4103835999999)


   

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate

C35H61O8P (640.4103835999999)


   

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid

C30H56O12S (640.3492296000001)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C35H61O8P (640.4103835999999)


   

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C35H61O8P (640.4103835999999)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C35H61O8P (640.4103835999999)


   

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexadecanoate

[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexadecanoate

C35H61O8P (640.4103835999999)


   

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-undec-4-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-undec-4-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate

C33H53O10P (640.3376168)


   

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C35H61O8P (640.4103835999999)


   

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate

C35H61O8P (640.4103835999999)


   

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate

C35H61O8P (640.4103835999999)


   

2-[[3-[(E)-dec-4-enoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(E)-dec-4-enoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C34H59NO8P+ (640.3978084)


   

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C34H59NO8P+ (640.3978084)


   

2-[[3-hexanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-hexanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C34H59NO8P+ (640.3978084)


   

2-[[3-butanoyloxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-butanoyloxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C34H59NO8P+ (640.3978084)