Exact Mass: 640.3822426
Exact Mass Matches: 640.3822426
Found 225 metabolites which its exact mass value is equals to given mass value 640.3822426
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
PA(14:0/18:4(6Z,9Z,12Z,15Z))
PA(14:0/18:4(6Z,9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:0/18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of myristic acid at the C-1 position and one chain of stearidonic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:1(9Z)/18:3(6Z,9Z,12Z))
PA(14:1(9Z)/18:3(6Z,9Z,12Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/18:3(6Z,9Z,12Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of gamma-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(14:1(9Z)/18:3(9Z,12Z,15Z))
PA(14:1(9Z)/18:3(9Z,12Z,15Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(14:1(9Z)/18:3(9Z,12Z,15Z)), in particular, consists of one chain of myristoleic acid at the C-1 position and one chain of alpha-linolenic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(6Z,9Z,12Z)/14:1(9Z))
PA(18:3(6Z,9Z,12Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(6Z,9Z,12Z)/14:1(9Z)), in particular, consists of one chain of gamma-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:3(9Z,12Z,15Z)/14:1(9Z))
PA(18:3(9Z,12Z,15Z)/14:1(9Z)) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:3(9Z,12Z,15Z)/14:1(9Z)), in particular, consists of one chain of alpha-linolenic acid at the C-1 position and one chain of myristoleic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(18:4(6Z,9Z,12Z,15Z)/14:0)
PA(18:4(6Z,9Z,12Z,15Z)/14:0) is a phosphatidic acid. It is a glycerophospholipid in which a phosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PA(18:4(6Z,9Z,12Z,15Z)/14:0), in particular, consists of one chain of stearidonic acid at the C-1 position and one chain of myristic acid at the C-2 position. Phosphatidic acids are quite rare but are extremely important as intermediates in the biosynthesis of triacylglycerols and phospholipids.
PA(8:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S))
PA(8:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of Resolvin D5 at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/8:0)
PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,8E,10Z,13Z,15E,19Z)-2OH(7S, 17S)/8:0), in particular, consists of one chain of one Resolvin D5 at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17))
PA(8:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of Protectin DX at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/8:0)
PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,11E,13Z,15E,19Z)-2OH(10S,17)/8:0), in particular, consists of one chain of one Protectin DX at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
(9Z,12Z)-6-formyl-2,3,3a,4,5,8,9,11a-octahydro-10-(hydroxymethyl)-3-methylene-4-(2-methyl-1-oxobutoxy)-2-oxocyclodeca[b]furan-5-yl ester 9,12-Octadecadienoic acid
1beta,2beta,3,beta4,beta,5beta-pentahydroxy-spiro-25(27)-en-5-O-beta-D-glucopyranoside|Aspidoside A
anzurogenin C 24-O-beta-D-glucopyranoside (anzuroside)
2beta,3beta,14alpha,20R,22R-pentahydroxy-24R-methyl-5beta-cholest-7-en-6-one-3-O-beta-D-glucopyranoside|lygodiumsteroside B
(E)-(24R)-242-O-beta-(4-O-methyl-D-xylopyranosyl)-24-ethyl-5alpha-cholest-22-ene-3beta,4beta,6alpha,15beta,16beta,242-hexol|certonardoside J3
3-O-beta-D-xylopyranosyl-3beta,6alpha,16beta,20(S),24(R),25-hexahydroxycycloartane
23xi,24xi-cycloartan-3beta,6alpha,16beta-23,24,25-hexaol 3-O-beta-D-xylopyranoside|cycloorbicoside D|cycloorbigenin C 3-O-beta-D-xylopyranoside
(20R,24R,25S,22E)-3-O-(2,4-di-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-22-ene-3beta,4beta,6beta,8,15alpha,26-hexaol|asperoside B
Arg Phe Tyr Arg
Phe Arg Arg Tyr
Phe Arg Tyr Arg
Phe Tyr Arg Arg
Arg Phe Arg Tyr
Arg Arg Phe Tyr
Arg Arg Tyr Phe
Arg Tyr Phe Arg
Arg Tyr Arg Phe
Tyr Phe Arg Arg
Tyr Arg Phe Arg
Tyr Arg Arg Phe
PA(14:1(9Z)/18:3(6Z,9Z,12Z))
PA(14:1(9Z)/18:3(9Z,12Z,15Z))
PA(18:3(6Z,9Z,12Z)/14:1(9Z))
PA(18:3(9Z,12Z,15Z)/14:1(9Z))
PA(18:4(6Z,9Z,12Z,15Z)/14:0)
PA(14:0/18:4(6Z,9Z,12Z,15Z))
Hellebrigenin-3-(14-hydroxy-6Z-tetradecenoate)
Halocynthiaxanthin 3-acetate
1(2H)-Phthalazinone, 4-((4-chlorophenyl)methyl)-2-(((2R)-1-(4-(4-(3-(hexahydro-1H-azepin-1-yl)propoxy)phenyl)butyl)-2-pyrrolidinyl)methyl)-
1-[(3S,9R,10R)-9-[[cyclohexylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(4-fluorophenyl)urea
C36H53FN4O5 (640.3999779999999)
1-[(3R,9R,10R)-9-[[cyclohexylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]-3-(4-fluorophenyl)urea
C36H53FN4O5 (640.3999779999999)
[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (Z)-henicos-11-enoate
C30H57O12P (640.3587451999999)
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z,17Z)-icosa-11,14,17-trienoate
[1-octanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[1-butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z)-docosa-10,13,16-trienoate
[1-decanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
(1-octanoyloxy-3-phosphonooxypropan-2-yl) (12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoate
(1-hexanoyloxy-3-phosphonooxypropan-2-yl) (14Z,17Z,20Z,23Z)-hexacosa-14,17,20,23-tetraenoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] (4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoate
(1-phosphonooxy-3-tetradecanoyloxypropan-2-yl) (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
(1-decanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[2-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]oxy-3-phosphonooxypropyl] (Z)-hexadec-9-enoate
[1-phosphonooxy-3-[(Z)-tetradec-9-enoyl]oxypropan-2-yl] (9Z,12Z,15Z)-octadeca-9,12,15-trienoate
[2-[(9Z,12Z)-hexadeca-9,12-dienoyl]oxy-3-phosphonooxypropyl] (9Z,12Z)-hexadeca-9,12-dienoate
[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexadecanoate
(1-dodecanoyloxy-3-phosphonooxypropan-2-yl) (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[1-carboxy-3-[3-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
2-[[3-[(4E,7E)-deca-4,7-dienoyl]oxy-2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate
[(2S,3S,6S)-6-[(2S)-2-decanoyloxy-3-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C30H56O12S (640.3492296000001)
[2-[(4E,7E)-hexadeca-4,7-dienoyl]oxy-3-phosphonooxypropyl] (4E,7E)-hexadeca-4,7-dienoate
[1-decanoyloxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
[(2R)-2-dodecanoyloxy-3-phosphonooxypropyl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
2-[[3-decanoyloxy-2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-icosa-7,10,13,16-tetraenoate
[(2R)-1-decanoyloxy-3-phosphonooxypropan-2-yl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[2-[(9E,11E,13E)-hexadeca-9,11,13-trienoyl]oxy-3-phosphonooxypropyl] (E)-hexadec-7-enoate
[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2R)-2-decanoyloxy-3-phosphonooxypropyl] (7E,10E,13E,16E)-docosa-7,10,13,16-tetraenoate
[(2R)-1-phosphonooxy-3-tetradecanoyloxypropan-2-yl] (9E,11E,13E,15E)-octadeca-9,11,13,15-tetraenoate
[(2S,3S,6S)-6-[(2S)-3-decanoyloxy-2-undecanoyloxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid
C30H56O12S (640.3492296000001)
[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate
[(2R)-1-phosphonooxy-3-[(E)-tetradec-9-enoyl]oxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate
[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate
[1-[(E)-dec-4-enoyl]oxy-3-[(2S,5S,6S)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate
[1-carboxy-3-[2-[(3E,6E,9E)-dodeca-3,6,9-trienoyl]oxy-3-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxypropoxy]propyl]-trimethylazanium
[2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxy-3-phosphonooxypropyl] hexadecanoate
[1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-[(E)-undec-4-enoyl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[(2R)-3-phosphonooxy-2-[(E)-tetradec-9-enoyl]oxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate
[(2R)-3-phosphonooxy-2-tetradecanoyloxypropyl] (6E,9E,12E,15E)-octadeca-6,9,12,15-tetraenoate
[(2R)-1-dodecanoyloxy-3-phosphonooxypropan-2-yl] (5E,8E,11E,14E)-icosa-5,8,11,14-tetraenoate
2-[[3-[(E)-dec-4-enoyl]oxy-2-[(7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[2-[(3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoyl]oxy-3-octanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[3-hexanoyloxy-2-[(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-butanoyloxy-2-[(7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
(4as,6as,6br,8ar,9r,10r,11r,12ar,12br,14br)-10,11-dihydroxy-2,2,6a,6b,9,12a-hexamethyl-9-[(3,4,5-trihydroxybenzoyloxy)methyl]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
1-(5-{2-[(3,4-dihydroxy-5-methoxyoxan-2-yl)oxy]ethyl}-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,3,5,6,7-pentol
(1r,2r,3s,3as,3br,5s,5as,6r,7s,9ar,9bs,11ar)-1-[(2r,3e,5r)-5-(2-{[(2r,3r,4r,5r)-3,4-dihydroxy-5-methoxyoxan-2-yl]oxy}ethyl)-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-tetradecahydro-1h-cyclopenta[a]phenanthrene-2,3,5,6,7-pentol
4-(18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl)-3,5,5-trimethylcyclohex-3-en-1-yl acetate
(1r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(1s,4s,6r)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate
aspidoside a
{"Ingredient_id": "HBIN017153","Ingredient_name": "aspidoside a","Alias": "NA","Ingredient_formula": "C33H52O12","Ingredient_Smile": "CC1C2C(CC3C2(CCC4C3CCC5(C4(C(C(C(C5O)O)O)O)C)OC6C(C(C(C(O6)CO)O)O)O)C)OC17CCC(=C)CO7","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "1902","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}
(1r,2r,3r,3as,3bs,5r,7s,9ar,9br,11ar)-7-{[(2s,3r,4s,5r)-4,5-dihydroxy-3-methoxyoxan-2-yl]oxy}-1-[(2r,5r)-7-hydroxy-5-isopropylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,3,3b,5-tetrol
(2r,3r,4s,5s,6r)-2-{[(2r,3s,4s,6r)-6-{[(1s,3ar,3br,7s,9ar,9bs,11ar)-3a-hydroxy-1-[(1r)-1-hydroxyethyl]-9a,11a-dimethyl-1h,2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4-hydroxy-2-methyloxan-3-yl]oxy}-6-(hydroxymethyl)-4-methoxyoxane-3,5-diol
6,12-dihydroxy-8-isopropyl-5-[(4-methoxyphenyl)methyl]-4,10,11,15-tetramethyl-14-(pent-4-yn-1-yl)-2-(sec-butyl)-1-oxa-4,7,10,13-tetraazacyclohexadeca-6,12-diene-3,9,16-trione
C35H52N4O7 (640.3835802000001)
7-[(4,5-dihydroxy-3-methoxyoxan-2-yl)oxy]-1-(5-ethyl-7-hydroxy-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,3,3b,5-tetrol
2-{[9,14-dihydroxy-7,7,12,16-tetramethyl-15-(4,5,6-trihydroxy-6-methylheptan-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol
7-[(4-hydroxy-3,5-dimethoxyoxan-2-yl)oxy]-1-(7-hydroxy-5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-3,3b,5,6-tetrol
4-{18-[2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl}-3,5,5-trimethylcyclohex-3-en-1-yl acetate
5-carbamimidamido-2-[(4-{[7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]pentanoic acid
(5s,8s,11s)-6,12-dihydroxy-8-isopropyl-5-[(4-methoxyphenyl)methyl]-4,10,11,15-tetramethyl-14-(pent-4-yn-1-yl)-2-(sec-butyl)-1-oxa-4,7,10,13-tetraazacyclohexadeca-6,12-diene-3,9,16-trione
C35H52N4O7 (640.3835802000001)
(1s,3as,5ar,7r,8s,9ar,9br,11ar)-1-[(2r,3r,5r)-2,3-dihydroxy-5,6-dimethylheptan-2-yl]-3a,8-dihydroxy-9a,11a-dimethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
(2s,3r,4s,5r)-2-{[(1s,3r,6s,8r,9s,11s,12s,14s,15r,16r)-9,14-dihydroxy-7,7,12,16-tetramethyl-15-[(2r,4s,5s)-4,5,6-trihydroxy-6-methylheptan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-yl]oxy}oxane-3,4,5-triol
(4as,6as,6br,8ar,9r,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-2,2,6a,6b,9,12a-hexamethyl-9-[(3,4,5-trihydroxybenzoyloxy)methyl]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(11s,14r,17s,20s,23r)-10,13,16,19-tetrahydroxy-11-isopropyl-17,21-dimethyl-14,20-bis(2-methylpropyl)-1,9,12,15,18,21-hexaazatricyclo[21.4.0.0³,⁸]heptacosa-3,5,7,9,12,15,18-heptaene-2,22-dione
(2s,3s,4r,5r,6s)-4,5-dihydroxy-6-[(2r)-2-hydroxy-3-[(13-methyltetradecyl)oxy]propoxy]-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(2s)-5-carbamimidamido-2-[(4-{[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]pentanoic acid
4,5-dihydroxy-6-{2-hydroxy-3-[(13-methyltetradecyl)oxy]propoxy}-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(1s,3br,4r,5ar,9as,9br,10r,11as)-1-[(2r,3s,5s)-2-(acetyloxy)-5-[(2s)-3,3-dimethyloxiran-2-yl]oxolan-3-yl]-4-hydroxy-3b,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,4h,5h,5ah,9bh,10h,11h-cyclopenta[a]phenanthren-10-yl hexanoate
(1r)-4-[(3e,5e,7e,9e,11e,13e,15e)-18-[(2s,3r,5r)-2,3-dimethyl-5-(2-oxopropyl)oxolan-2-yl]-3,7,12,16-tetramethyl-17-oxooctadeca-3,5,7,9,11,13,15-heptaen-1-yn-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl acetate
6-ethyl-21',24'-dihydroxy-5,11',13'-trimethyl-2'-oxo-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-22'-ylmethyl 2-methylbut-2-enoate
1-(2,3-dihydroxy-5,6-dimethylheptan-2-yl)-3a,8-dihydroxy-9a,11a-dimethyl-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one
10,13,16,19-tetrahydroxy-11-isopropyl-17,21-dimethyl-14,20-bis(2-methylpropyl)-1,9,12,15,18,21-hexaazatricyclo[21.4.0.0³,⁸]heptacosa-3,5,7,9,12,15,18-heptaene-2,22-dione
(2s,5s,8s,11s,14s,15r)-2-[(2s)-butan-2-yl]-6,12-dihydroxy-8-isopropyl-5-[(4-methoxyphenyl)methyl]-4,10,11,15-tetramethyl-14-(pent-4-yn-1-yl)-1-oxa-4,7,10,13-tetraazacyclohexadeca-6,12-diene-3,9,16-trione
C35H52N4O7 (640.3835802000001)