Exact Mass: 628.3306042
Exact Mass Matches: 628.3306042
Found 354 metabolites which its exact mass value is equals to given mass value 628.3306042
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Gambogic acid
Isolated from Gamboge resin (exudate of Garcinia morella). Gambogic acid is found in herbs and spices and fruits. Gambogic acid is found in fruits. Gambogic acid is isolated from Gamboge resin (exudate of Garcinia morella). Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM.
Lopinavir
C37H48N4O5 (628.3624517999999)
Lopinavir is only found in individuals that have used or taken this drug. It is an antiretroviral of the protease inhibitor class. It is marketed by Abbott as Kaletra, a co-formulation with a sub-therapeutic dose of ritonavir, as a component of combination therapy to treat HIV/AIDS.Lopinavir inhibits the HIV viral protease enzyme. This prevents cleavage of the gag-pol polyprotein and, therefore, improper viral assembly results. This subsequently results in non-infectious, immature viral particles. D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors CONFIDENCE standard compound; INTERNAL_ID 2288 Same as: D01425 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Capsicum annuum Fluorescent chlorophyll catabolite
Chlorophyll catabolite isolated from Capsicum annuum (ripe sweet pepper). Capsicum annuum Fluorescent chlorophyll catabolite is found in many foods, some of which are italian sweet red pepper, herbs and spices, orange bell pepper, and red bell pepper. Brassica napus fluorescent chlorophyll catabolite is found in brassicas. Chlorophyll catabolite isolated from Brassica napu
(3S,5R,6R,6'S)-6,7-Didehydro-5,6-dihydro-3,5,6'-trihydroxy-13,14,20-trinor-3'-oxo-beta,epsilon-caroten-19',11'-olide 3-acetate
(3S,5R,6R,6S)-6,7-Didehydro-5,6-dihydro-3,5,6-trihydroxy-13,14,20-trinor-3-oxo-beta,epsilon-caroten-19,11-olide 3-acetate is found in mollusks. (3S,5R,6R,6S)-6,7-Didehydro-5,6-dihydro-3,5,6-trihydroxy-13,14,20-trinor-3-oxo-beta,epsilon-caroten-19,11-olide 3-acetate is a constituent of the oyster Crassostrea gigas. Constituent of the oyster Crassostrea gigas. (3S,5R,6R,6S)-6,7-Didehydro-5,6-dihydro-3,5,6-trihydroxy-13,14,20-trinor-3-oxo-beta,epsilon-caroten-19,11-olide 3-acetate is found in mollusks.
LysoPI(20:0/0:0)
C29H57O12P (628.3587451999999)
LysoPI(20:0/0:0) is a lysophosphatidylinositol. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic. However, it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Lysophosphatidylinositols can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) or C-2 (sn-2) position. LysoPI(20:0/0:0), in particular, consists of one chain of arachidic acid at the C-1 position.
N-(N-(N-((Hexahydro-1H-azepin-1-yl)carbonyl)-L-leucyl)-D-tryptophyl)-D-tryptophan
Cholylglycyltyrosine
PA(10:0/20:3(5Z,8Z,11Z)-O(14R,15S))
PA(10:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(5Z,8Z,11Z)-O(14R,15S)/10:0)
PA(20:3(5Z,8Z,11Z)-O(14R,15S)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/10:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:3(5Z,8Z,14Z)-O(11S,12R))
PA(10:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(5Z,8Z,14Z)-O(11S,12R)/10:0)
PA(20:3(5Z,8Z,14Z)-O(11S,12R)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/10:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:3(5Z,11Z,14Z)-O(8,9))
PA(10:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(5Z,11Z,14Z)-O(8,9)/10:0)
PA(20:3(5Z,11Z,14Z)-O(8,9)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/10:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:3(8Z,11Z,14Z)-O(5,6))
PA(10:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:3(8Z,11Z,14Z)-O(5,6)/10:0)
PA(20:3(8Z,11Z,14Z)-O(5,6)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/10:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(20))
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/10:0)
PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/10:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(6E,8Z,11Z,14Z)-OH(5S))
PA(10:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/10:0)
PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/10:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/10:0)
PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/10:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/10:0)
PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/10:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(17))
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/10:0)
PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/10:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))
PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/10:0)
PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/10:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(5Z,8Z,11Z,13E)-OH(15S))
PA(10:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/10:0)
PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/10:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(5Z,8Z,10E,14Z)-OH(12S))
PA(10:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/10:0)
PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/10:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(5E,8Z,12Z,14Z)-OH(11R))
PA(10:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/10:0)
PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/10:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(10:0/20:4(5Z,7E,11Z,14Z)-OH(9))
PA(10:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(10:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one decanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(20:4(5Z,7E,11Z,14Z)-OH(9)/10:0)
PA(20:4(5Z,7E,11Z,14Z)-OH(9)/10:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/10:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of decanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
Gambogic_acid
beta-Guttiferin is a natural product found in Garcinia hanburyi with data available. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM.
gambogellic acid
Gambogellic
2-N-(1-deoxy-1-beta-D-fructopyranosyl)neocephaeline
(2R,2R,3S,3S)-2,2,3,3-Tetrahydroxy-beta,beta-carotene-4,4-dione
(22S,25S)-1alpha,2beta,3alpha,5alpha-tetrahydroxy-furo-spirostane-26-yl O-beta-D-glucopyranoside|tupistroside C
3-(2,16,19,20-tetradehydro-17-oxocuran-10-yl)vobasan-17-oic acid methyl ester|vobatricine
11-oxoasiatic acid triacetate|2alpha,3beta,23-triacetoxy-11-oxo-urs-12-en-28-oic acid|2alpha,3beta,23-Triacetoxy-11-oxo-urs-12-en-28-saeure|2alpha,3beta,23-triacetoxyurs-11-oxo-12-ene-28-oic acid
7,13-dideacetyl-2,9,10-debenzoyl-2-tigloyl-7beta,9alpha-p-hydroxybenzylidenedioxy-taxchinin
3beta-detigloyoxy-2-methylbutanoyloxy xylogranatin B|xylogranatin C
(4aS,10aS)-6-{2-[2-(acetyloxy)-3-hydroxy-1-oxo-3-phenylpropyl]-3-hydroxy-5-methoxyphenoxy}-2,3,4,4a,10,10a-hexahydro-1,1,4a-trimethyl-7-(1-methylethyl)phenanthren-9(1H)-one|salicassin
(2R,3S,2R,3S)-2,3,2,3-tetrahydroxy-beta,beta-carotene-4,4-dione|2,2,3,3-Tetrahydroxy-beta,beta-carotene-4,4-dione|2,3,2,3-Tetrahydroxy-beta,beta-caroten-4,4-dion
Lopinavir
C37H48N4O5 (628.3624517999999)
D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Same as: D01425 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
13,17-O-Diacetyl-5-O-benzoyl-7-hydroxy-3-O-propanoyl-14-oxopremyrsinol
gambogic acid
Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM.
His Met Arg Trp
His Met Trp Arg
His Arg Met Trp
His Arg Trp Met
His Trp Met Arg
His Trp Arg Met
Lys Arg Tyr Tyr
Lys Tyr Arg Tyr
Lys Tyr Tyr Arg
Met His Arg Trp
Met His Trp Arg
Met Arg His Trp
Met Arg Trp His
Met Trp His Arg
Met Trp Arg His
Gln Arg Tyr Tyr
C29H40N8O8 (628.2968960000001)
Gln Tyr Arg Tyr
C29H40N8O8 (628.2968960000001)
Gln Tyr Tyr Arg
C29H40N8O8 (628.2968960000001)
Arg His Met Trp
Arg His Trp Met
Arg Lys Tyr Tyr
Arg Met His Trp
Arg Met Trp His
Arg Gln Tyr Tyr
C29H40N8O8 (628.2968960000001)
Arg Trp His Met
Arg Trp Met His
Arg Tyr Lys Tyr
Arg Tyr Gln Tyr
C29H40N8O8 (628.2968960000001)
Arg Tyr Tyr Lys
Arg Tyr Tyr Gln
C29H40N8O8 (628.2968960000001)
Trp His Met Arg
Trp His Arg Met
Trp Met His Arg
Trp Met Arg His
Trp Arg His Met
Trp Arg Met His
Tyr Lys Arg Tyr
Tyr Lys Tyr Arg
Tyr Gln Arg Tyr
C29H40N8O8 (628.2968960000001)
Tyr Gln Tyr Arg
C29H40N8O8 (628.2968960000001)
Tyr Arg Lys Tyr
Tyr Arg Gln Tyr
C29H40N8O8 (628.2968960000001)
Tyr Arg Tyr Lys
Tyr Arg Tyr Gln
C29H40N8O8 (628.2968960000001)
Tyr Tyr Lys Arg
Tyr Tyr Gln Arg
C29H40N8O8 (628.2968960000001)
Tyr Tyr Arg Lys
Tyr Tyr Arg Gln
C29H40N8O8 (628.2968960000001)
Ca-FCC-2
(3S,5R,6R,6'S)-6,7-Didehydro-5,6-dihydro-3,5,6'-trihydroxy-13,14,20-trinor-3'-oxo-beta,epsilon-caroten-19',11'-olide 3-acetate
(3S,5R,6S)-3-ethanoyloxy-5,6-dihydroxy-5,67,8-tetradehydro-11,19-olide-20-nor-beta,epsilon-caroten-3-one
β-Alanine, N-[[2-[[[4-[[[(hexyloxy)carbonyl]amino]carbonyl]phenyl]amino]methyl]-1-methyl-1H-benzimidazol-5-yl]carbonyl]-N-2-pyridinyl-, ethyl ester
C34H40N6O6 (628.3009180000001)
9,9-Dimethyl-2,7-bis[N-(1-naphthyl)-N-phenylamino]fluorene
7-amino-6-[(2-aminoacetyl)amino]-2-[[4-carboxy-4-[2-(dodecanoylamino)propanoylamino]butanoyl]amino]-7-oxoheptanoic acid
Levalbuterol tartrate
C30H48N2O12 (628.3207087999999)
C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist
Cholylglycyltyrosine
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
3-[(2Z,3S,4S)-5-[(4-ethenyl-3-methyl-5-oxo-1,2-dihydropyrrol-2-yl)methyl]-2-[2-[(3-ethyl-5-formyl-4-methyl-1H-pyrrol-2-yl)methyl]-4-hydroxy-5-methoxycarbonyl-3-methyl-1H-cyclopenta[b]pyrrol-6-ylidene]-4-methyl-3,4-dihydropyrrol-3-yl]propanoic acid
N-[[(3S,9R,10R)-16-[[anilino(oxo)methyl]amino]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylcarbamic acid 2-methoxyethyl ester
1-[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3-(4-methoxyphenyl)urea
1-[(2S,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[[4-(trifluoromethyl)phenyl]methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3-(4-methoxyphenyl)urea
(3S)-2-tert-butylsulfinyl-3-(2-hydroxyethyl)-4-[3-(3-hydroxy-3-methylbut-1-ynyl)phenyl]-N-[(3R)-1-(phenylmethyl)-3-pyrrolidinyl]-1,3-dihydropyrrolo[3,4-c]pyridine-6-carboxamide
N-[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenylphenyl)methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3-(4-morpholinyl)propanamide
C37H48N4O5 (628.3624517999999)
N-[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-[[methyl-[(4-phenylphenyl)methyl]amino]methyl]-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-3-(4-morpholinyl)propanamide
C37H48N4O5 (628.3624517999999)
[(3R)-2-tert-butylsulfinyl-3-(2-hydroxyethyl)-4-[3-(3-hydroxy-3-methylbut-1-ynyl)phenyl]-1,3-dihydropyrrolo[3,4-c]pyridin-6-yl]-[4-(phenylmethyl)-1-piperazinyl]methanone
3-[(3S,4S)-2-[(4-ethenyl-3-methyl-5-oxo-1,2-dihydropyrrol-2-yl)methyl]-5-[2-[(3-ethyl-5-formyl-4-methyl-1H-pyrrol-2-yl)methyl]-5-methoxycarbonyl-3-methyl-4-oxo-1H-cyclopenta[b]pyrrol-6-yl]-3-methyl-3,4-dihydro-2H-pyrrol-4-yl]propanoic acid
[2-Hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] icosanoate
C29H57O12P (628.3587451999999)
[1-Decoxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] decanoate
C29H57O12P (628.3587451999999)
[1-[(2-hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-[(2-butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-propanoyloxypropan-2-yl] hexadecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-Hexanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] tridecanoate
[1-Heptanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] dodecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-nonanoyloxypropan-2-yl] decanoate
[1-butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-pentanoyloxypropan-2-yl] tetradecanoate
[1-Butanoyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] pentadecanoate
[1-[Hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxy-3-octanoyloxypropan-2-yl] undecanoate
[1-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[1-Acetyloxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropan-2-yl] heptadecanoate
[(1R,3S)-3-hydroxy-4-[(3E,5E,7E,9E,11Z)-11-[4-[(E)-2-[(1S)-1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]ethenyl]-5-oxofuran-2-ylidene]-3,10-dimethylundeca-1,3,5,7,9-pentaenylidene]-3,5,5-trimethylcyclohexyl] acetate
[2-[(5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoyl]oxy-3-phosphonooxypropyl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[1-[(4E,7E)-deca-4,7-dienoyl]oxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
[1-[(E)-dec-4-enoyl]oxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
[1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
methyl (2S)-2-[(2R,3E,12bS)-3-ethylidene-2,4,6,7,12,12b-hexahydro-1H-indolo[2,3-a]quinolizin-2-yl]-3-[(2R,3E)-3-ethylidene-2-(2-hydroxyethyl)-2,4-dihydro-1H-indolo[2,3-a]quinolizin-7-yl]propanoate
primary fluorescent chlorophyll catabolite
A member of the class of bilenes that is red chlorophyll catabolite in which a methylene group is introduced at position 1 via the reduction of a double bond. It is an intermediate of chlorophyll breakdown in plants.
(3S,5R,6R,6S)-6,7-Didehydro-5,6-dihydro-3,5,6-trihydroxy-13,14,20-trinor-3-oxo-beta,epsilon-caroten-19,11-olide 3-acetate
Capsicum annuum Fluorescent chlorophyll catabolite
1-eicosanoyl-glycero-3-phospho-(1-myo-inositol)
C29H57O12P (628.3587451999999)
(2z)-4-[(1s,2s,9r,14r,21s,23r)-16-hydroxy-8,8,12,25,25-pentamethyl-5-(3-methylbut-2-en-1-yl)-18,22-dioxo-3,7,24-trioxaheptacyclo[19.4.1.0²,¹⁹.0²,²³.0⁴,¹⁷.0⁶,¹⁵.0⁹,¹⁴]hexacosa-4,6(15),12,16,19-pentaen-23-yl]-2-methylbut-2-enoic acid
(1r,2r,4s,5s,6s,10r,11s,15r,16r,18s,19r)-4,18-bis(acetyloxy)-16-hydroxy-1,5,10,15-tetramethyl-6-(5-oxooxolan-3-yl)-13-oxapentacyclo[10.6.1.0²,¹⁰.0⁵,⁹.0¹⁵,¹⁹]nonadec-8-en-11-yl (2e)-2-methylbut-2-enoate
(2e)-4-[(2s,8r,19s)-14-hydroxy-8,23,23-trimethyl-5-(3-methylbut-2-en-1-yl)-16,20-dioxo-11-(prop-1-en-2-yl)-3,7,22-trioxaheptacyclo[17.4.1.1⁸,¹².0²,¹⁷.0²,²¹.0⁴,¹⁵.0⁶,¹³]pentacosa-4(15),5,13,17-tetraen-21-yl]-2-methylbut-2-enoic acid
4-[12-hydroxy-8,8,21,21-tetramethyl-5,17-bis(3-methylbut-2-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaen-19-yl]-2-methylbut-2-enoic acid
(2e)-4-[(1s,2s,8r,17s,19r)-12-hydroxy-8,21,21-trimethyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaen-19-yl]-2-methylbut-2-enoic acid
2-hydroxy-3-({7-[3-(nona-4,6-dien-1-yl)oxiran-2-yl]hepta-4,6-diynoyl}oxy)propyl 7-[3-(nona-4,6-dien-1-yl)oxiran-2-yl]hepta-4,6-diynoate
(1r,2s,4r,6r,9r,10r,11r,12s,14r,15r,18r)-14-(acetyloxy)-6-(5-hydroxy-2-oxo-5h-furan-3-yl)-10-(2-methoxy-2-oxoethyl)-7,9,11,15-tetramethyl-3,17-dioxapentacyclo[9.6.1.0²,⁹.0⁴,⁸.0¹⁵,¹⁸]octadec-7-en-12-yl (2e)-2-methylbut-2-enoate
(2z)-4-[(1r,2r,17r,19s)-12-hydroxy-8,8,21,21-tetramethyl-5,17-bis(3-methylbut-2-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaen-19-yl]-2-methylbut-2-enoic acid
(2r,3r,4s,5s,6e,8r)-8-{6-[(2s,3s)-3-(acetyloxy)pentan-2-yl]-3,5-dimethyl-4-oxopyran-2-yl}-2-(6-ethyl-3,5-dimethyl-4-oxopyran-2-yl)-5-hydroxy-4,6-dimethylnon-6-en-3-yl acetate
(2s,3s,4r,5r)-2-{[(1r)-1-{[(2r,3r,11bs)-3-ethyl-9,10-dimethoxy-1h,2h,3h,4h,6h,7h,11bh-pyrido[2,1-a]isoquinolin-2-yl]methyl}-6-hydroxy-7-methoxy-3,4-dihydro-1h-isoquinolin-2-yl]oxy}-2-methyloxane-3,4,5-triol
(1r,2s,4s,6r,9r,10r,11r,12s,14r,15r,18r)-14-(acetyloxy)-6-[(5s)-5-hydroxy-2-oxo-5h-furan-3-yl]-10-(2-methoxy-2-oxoethyl)-7,9,11,15-tetramethyl-3,17-dioxapentacyclo[9.6.1.0²,⁹.0⁴,⁸.0¹⁵,¹⁸]octadec-7-en-12-yl (2e)-2-methylbut-2-enoate
2-{[1-({3-ethyl-9,10-dimethoxy-1h,2h,3h,4h,6h,7h,11bh-pyrido[2,1-a]isoquinolin-2-yl}methyl)-6-hydroxy-7-methoxy-3,4-dihydro-1h-isoquinolin-2-yl]methyl}oxane-2,3,4,5-tetrol
(2s,3r,4s,5r,6s)-6-{[(2s,3r,4s,5s,6r)-2-{[(3r)-3,7-dimethylocta-1,6-dien-3-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-4,5-dihydroxy-2-methyloxan-3-yl (2e,6r)-6-hydroxy-2,6-dimethylocta-2,7-dienoate
(1'r,2s,3r,4's,5s,6s,8'r,10'e,13'r,14'e,16'z,21'r,24's)-6-[(2e)-but-2-en-2-yl]-3,24'-dihydroxy-18',21'-dimethoxy-5,11',13',22'-tetramethyl-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one
(1r,2r,4r,6s,8s,11r,12s,13r,16r,17r,19s,20r)-17-(acetyloxy)-4-ethoxy-19-hydroxy-1,9,11,16-tetramethyl-8-(2-oxo-5h-furan-3-yl)-5,14-dioxapentacyclo[11.6.1.0²,¹¹.0⁶,¹⁰.0¹⁶,²⁰]icos-9-en-12-yl (2e)-2-methylbut-2-enoate
6-(but-2-en-2-yl)-3,24'-dihydroxy-18',21'-dimethoxy-5,11',13',22'-tetramethyl-3',7',19'-trioxaspiro[oxane-2,6'-tetracyclo[15.6.1.1⁴,⁸.0²⁰,²⁴]pentacosane]-10',14',16',22'-tetraen-2'-one
5-(acetyloxy)-3-(2-hydroxy-5-oxo-2h-furan-3-yl)-6-[6-(2-methoxy-2-oxoethyl)-1,5,5-trimethyl-4-oxocyclohex-2-en-1-yl]-3a-methyl-7-methylidene-hexahydroindeno[1,7a-b]oxiren-4-yl 2-methylbutanoate
2-(acetyloxy)-12,15-dihydroxy-9-(4-hydroxyphenyl)-17-(2-hydroxypropan-2-yl)-14,19-dimethyl-4,8,10-trioxapentacyclo[9.7.1.0²,⁵.0⁷,¹⁹.0¹³,¹⁷]nonadec-13-en-18-yl 2-methylbut-2-enoate
n-{2-[({11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl}methoxy)carbonyl]phenyl}ethanimidic acid
(1r,2r,4s,5s,6s,10r,11s,12r,15r,16r,18s,19r)-4,18-bis(acetyloxy)-16-hydroxy-1,5,10,15-tetramethyl-6-[(3r)-5-oxooxolan-3-yl]-13-oxapentacyclo[10.6.1.0²,¹⁰.0⁵,⁹.0¹⁵,¹⁹]nonadec-8-en-11-yl (2e)-2-methylbut-2-enoate
ajacine
{"Ingredient_id": "HBIN014949","Ingredient_name": "ajacine","Alias": "NA","Ingredient_formula": "C34H48N2O9","Ingredient_Smile": "CCN1CC2(CCC(C34C2C(C(C31)(C5(CC(C6CC4C5C6OC)OC)O)O)OC)OC)COC(=O)C7=CC=CC=C7NC(=O)C","Ingredient_weight": "628.8 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "781","TCMSP_id": "NA","TCM_ID_id": "7100;12307;12308","PubChem_id": "101667972","DrugBank_id": "NA"}
allogambogic acid
{"Ingredient_id": "HBIN015220","Ingredient_name": "allogambogic acid","Alias": "NA","Ingredient_formula": "C38H44O8","Ingredient_Smile": "CC(=CCCC1(C=CC2=C(C(=C3C(=C2O1)C(=O)C4=CC5CC6C4(O3)C(C5=O)(OC6(C)C)CC=C(C)C(=O)O)CC=C(C)C)O)C)C","Ingredient_weight": "628.7 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "23602","TCMSP_id": "NA","TCM_ID_id": "7006","PubChem_id": "6444544","DrugBank_id": "NA"}
(2e)-4-[(8s)-12-hydroxy-8,21,21-trimethyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaen-19-yl]-2-methylbut-2-enoic acid
(2z)-4-[(1s,2s,8s,11s,12s,19s,21r)-14-hydroxy-8,23,23-trimethyl-5-(3-methylbut-2-en-1-yl)-16,20-dioxo-11-(prop-1-en-2-yl)-3,7,22-trioxaheptacyclo[17.4.1.1⁸,¹².0²,¹⁷.0²,²¹.0⁴,¹⁵.0⁶,¹³]pentacosa-4(15),5,13,17-tetraen-21-yl]-2-methylbut-2-enoic acid
6-({2-[(3,7-dimethylocta-1,6-dien-3-yl)oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl}oxy)-4,5-dihydroxy-2-methyloxan-3-yl 6-hydroxy-2,6-dimethylocta-2,7-dienoate
(1s,2s,4s,6r,8s,11s,12r,13s,16s,17s,19r,20s)-17-(acetyloxy)-4-ethoxy-19-hydroxy-1,9,11,16-tetramethyl-8-(2-oxo-5h-furan-3-yl)-5,14-dioxapentacyclo[11.6.1.0²,¹¹.0⁶,¹⁰.0¹⁶,²⁰]icos-9-en-12-yl (2e)-2-methylbut-2-enoate
(1s,2r,4r,5r,6s,8r,10s,11s,12r,14r,15r,16r,19s,21r)-21-(acetyloxy)-6-(furan-3-yl)-12,19-dihydroxy-5,11,15-trimethyl-16-(2-methylpropanoyl)-3-oxo-9,17-dioxahexacyclo[13.3.3.0¹,¹⁴.0²,¹¹.0⁵,¹⁰.0⁸,¹⁰]henicosan-4-yl acetate
(1r,2r,4r,6s,8r,11r,12s,13r,16r,17r,19s,20r)-17-(acetyloxy)-4-ethoxy-19-hydroxy-1,9,11,16-tetramethyl-8-(2-oxo-5h-furan-3-yl)-5,14-dioxapentacyclo[11.6.1.0²,¹¹.0⁶,¹⁰.0¹⁶,²⁰]icos-9-en-12-yl (2e)-2-methylbut-2-enoate
n-[2-({[(1r,2r,3r,4s,5r,6s,8r,9r,10r,13r,16s,17r,18s)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methoxy}carbonyl)phenyl]ethanimidic acid
(1r,2r,4r,6s,8s,11r,12s,13r,16r,17r,19s,20r)-17-(acetyloxy)-4-ethoxy-19-hydroxy-1,9,11,16-tetramethyl-8-[(3r)-2-oxo-3h-furan-3-yl]-5,14-dioxapentacyclo[11.6.1.0²,¹¹.0⁶,¹⁰.0¹⁶,²⁰]icos-9-en-12-yl (2e)-2-methylbut-2-enoate
4-[16-hydroxy-8,8,12,25,25-pentamethyl-5-(3-methylbut-2-en-1-yl)-18,22-dioxo-3,7,24-trioxaheptacyclo[19.4.1.0²,¹⁹.0²,²³.0⁴,¹⁷.0⁶,¹⁵.0⁹,¹⁴]hexacosa-4,6(15),12,16,19-pentaen-23-yl]-2-methylbut-2-enoic acid
4-[(1r,2s,8r,17s,19r)-12-hydroxy-8,21,21-trimethyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaen-19-yl]-2-methylbut-2-enoic acid
18-(acetyloxy)-6-(furan-3-yl)-16-hydroxy-12-(2-methoxy-2-oxoethyl)-7,11,13,13-tetramethyl-4-oxo-5,17-dioxapentacyclo[13.2.1.0¹,¹⁰.0²,⁷.0¹¹,¹⁶]octadec-2-en-14-yl 2-methylbutanoate
(1r,2s,6r,10s,11r,12s,13s,15r)-12-[(acetyloxy)methyl]-1,6-dihydroxy-8-(hydroxymethyl)-4,12,15-trimethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl (2e,4e,6r)-6-hydroxytetradeca-2,4-dienoate
(1s,6s,7s,10s,11r,12r,14s,15s,16r,18s)-18-(acetyloxy)-6-(furan-3-yl)-16-hydroxy-12-(2-methoxy-2-oxoethyl)-7,11,13,13-tetramethyl-4-oxo-5,17-dioxapentacyclo[13.2.1.0¹,¹⁰.0²,⁷.0¹¹,¹⁶]octadec-2-en-14-yl (2r)-2-methylbutanoate
ethyl (1r,2s,5s)-16-[(2z)-3-[(3e)-4,8-dimethylnona-3,7-dien-1-yl]-4-hydroxybut-2-en-1-yl]-10,14-dihydroxy-2-(prop-1-en-2-yl)-6,18-dioxapentacyclo[9.7.1.1¹,⁵.0⁷,¹⁹.0¹²,¹⁷]icosa-7(19),8,10,12,14,16-hexaene-5-carboxylate
(1r,2s,5r,7s,9s,11r,12r,15s,17s,18s,19s)-2-(acetyloxy)-12,15-dihydroxy-9-(4-hydroxyphenyl)-17-(2-hydroxypropan-2-yl)-14,19-dimethyl-4,8,10-trioxapentacyclo[9.7.1.0²,⁵.0⁷,¹⁹.0¹³,¹⁷]nonadec-13-en-18-yl (2e)-2-methylbut-2-enoate
(1s,3r)-3-hydroxy-4-[(3e,5e,7e,9e)-11-[(2z)-4-[(1e)-2-[(1s)-1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]ethenyl]-5-oxofuran-2-ylidene]-3,10-dimethylundeca-1,3,5,7,9-pentaen-1-ylidene]-3,5,5-trimethylcyclohexyl acetate
4-[12-hydroxy-8,21,21-trimethyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaen-19-yl]-2-methylbut-2-enoic acid
14-(acetyloxy)-6-(5-hydroxy-2-oxo-5h-furan-3-yl)-10-(2-methoxy-2-oxoethyl)-7,9,11,15-tetramethyl-3,17-dioxapentacyclo[9.6.1.0²,⁹.0⁴,⁸.0¹⁵,¹⁸]octadec-7-en-12-yl (2e)-2-methylbut-2-enoate
3-hydroxy-4-(11-{4-[2-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)ethenyl]-5-oxofuran-2-ylidene}-3,10-dimethylundeca-1,3,5,7,9-pentaen-1-ylidene)-3,5,5-trimethylcyclohexyl acetate
(2r,3s,4r,5r)-2-{[(1r)-1-{[(2r,3r,11bs)-3-ethyl-9,10-dimethoxy-1h,2h,3h,4h,6h,7h,11bh-pyrido[2,1-a]isoquinolin-2-yl]methyl}-8-hydroxy-7-methoxy-3,4-dihydro-1h-isoquinolin-2-yl]methyl}oxane-2,3,4,5-tetrol
(1r,2s,4r,6r,9r,10r,11r,12s,14r,15r,18r)-14-(acetyloxy)-6-(2-hydroxy-5-oxo-2h-furan-3-yl)-10-(2-methoxy-2-oxoethyl)-7,9,11,15-tetramethyl-3,17-dioxapentacyclo[9.6.1.0²,⁹.0⁴,⁸.0¹⁵,¹⁸]octadec-7-en-12-yl (2e)-2-methylbut-2-enoate
3-[18-(4,5-dihydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-5,6-dihydroxy-2,4,4-trimethylcyclohex-2-en-1-one
3-[(9e,11e,13e,15e,17e)-18-(4,5-dihydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-5,6-dihydroxy-2,4,4-trimethylcyclohex-2-en-1-one
1,5,12,16,24,28-hexahydroxy-1,6,12,17,24,29-hexaazacyclopentatriaconta-5,16,28-triene-2,13,25-trione
n-[2-({[(1s,2r,3r,4s,5r,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-8,9-dihydroxy-4,6,16,18-tetramethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-13-yl]methoxy}carbonyl)phenyl]ethanimidic acid
2-{2-[(1r,2s,5s)-10,14-dihydroxy-5-(methoxycarbonyl)-2-(prop-1-en-2-yl)-6,18-dioxapentacyclo[9.7.1.1¹,⁵.0⁷,¹⁹.0¹²,¹⁷]icosa-7(19),8,10,12,14,16-hexaen-16-yl]ethylidene}-6,10-dimethylundeca-5,9-dienoic acid
(1r,2s,4r,6r,9r,10r,11r,12s,14r,15r,18r)-14-(acetyloxy)-6-[(5s)-5-hydroxy-2-oxo-5h-furan-3-yl]-10-(2-methoxy-2-oxoethyl)-7,9,11,15-tetramethyl-3,17-dioxapentacyclo[9.6.1.0²,⁹.0⁴,⁸.0¹⁵,¹⁸]octadec-7-en-12-yl (2e)-2-methylbut-2-enoate
(1ar,3r,3ar,4r,5r,6r,7as)-5-(acetyloxy)-3-[(2r)-2-hydroxy-5-oxo-2h-furan-3-yl]-6-[(1s,6r)-6-(2-methoxy-2-oxoethyl)-1,5,5-trimethyl-4-oxocyclohex-2-en-1-yl]-3a-methyl-7-methylidene-hexahydroindeno[1,7a-b]oxiren-4-yl (2r)-2-methylbutanoate
(5r,6s)-3-[(1e,3e,5e,7e,9e,11e,13e,15e,17e)-18-[(4s,5r)-4,5-dihydroxy-2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-5,6-dihydroxy-2,4,4-trimethylcyclohex-2-en-1-one
(2z)-4-[(1s,2s,8s,17s,19r)-12-hydroxy-8,21,21-trimethyl-5-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)-14,18-dioxo-3,7,20-trioxahexacyclo[15.4.1.0²,¹⁵.0²,¹⁹.0⁴,¹³.0⁶,¹¹]docosa-4(13),5,9,11,15-pentaen-19-yl]-2-methylbut-2-enoic acid
(2r,3s,4r,5r)-2-{[(1r)-1-{[(2r,3r,11bs)-3-ethyl-9,10-dimethoxy-1h,2h,3h,4h,6h,7h,11bh-pyrido[2,1-a]isoquinolin-2-yl]methyl}-6-hydroxy-7-methoxy-3,4-dihydro-1h-isoquinolin-2-yl]methyl}oxane-2,3,4,5-tetrol
1-hydroxy-3-({7-[3-(nona-4,6-dien-1-yl)oxiran-2-yl]hepta-4,6-diynoyl}oxy)propan-2-yl 7-[3-(nona-4,6-dien-1-yl)oxiran-2-yl]hepta-4,6-diynoate
(1r,2r,4s,5s,6s,10r,11s,12r,15r,16r,18s,19r)-4,18-bis(acetyloxy)-16-hydroxy-1,5,10,15-tetramethyl-6-[(3s)-5-oxooxolan-3-yl]-13-oxapentacyclo[10.6.1.0²,¹⁰.0⁵,⁹.0¹⁵,¹⁹]nonadec-8-en-11-yl (2e)-2-methylbut-2-enoate
(3s,6s,9s,12s,20as)-12-benzyl-1,4,7,10,13-pentahydroxy-6-[(1r)-1-hydroxyethyl]-3,9-bis(2-methylpropyl)-3h,6h,9h,12h,15h,18h,19h,20h,20ah-pyrrolo[1,2-a]1,4,7,10,13,16-hexaazacyclooctadecan-16-one
C32H48N6O7 (628.3584298000001)