Exact Mass: 624.3638301999999
Exact Mass Matches: 624.3638301999999
Found 277 metabolites which its exact mass value is equals to given mass value 624.3638301999999
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Dauricine
Dauricine is a bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). It has a role as a plant metabolite. It is a tertiary amino compound, a member of phenols, an aromatic ether, a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Dauricine is a natural product found in Nelumbo nucifera, Menispermum canadense, and Menispermum dauricum with data available. A bisbenzylisoquinoline alkaloid resulting from the formal oxidative dimerisation of 4-{[(1R)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl}phenol by attachment of the phenolic oxygen of one molecule to the benzene ring of the second (ortho to the phenolic hydroxy group of the latter). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1]. Dauricine, a bisbenzylisoquinoline alkaloid in Menispermum dauricum, possesses anti-inflammatory activity. Dauricine inhibits cell proliferation and invasion, and induces apoptosis by suppressing NF-κB activation in a dose- and time-dependent manner in colon cancer[1].
Caribenolide I
Neferine
Neferine is found in coffee and coffee products. Neferine is an alkaloid from the seed embryo of Nelumbo nucifera (East Indian lotus Alkaloid from the seed embryo of Nelumbo nucifera (East Indian lotus). Neferine is found in coffee and coffee products. Neferine is a major bisbenzylisoquinline alkaloid. Neferine strongly inhibits NF-κB activation. Neferine is a major bisbenzylisoquinline alkaloid. Neferine strongly inhibits NF-κB activation.
PG(a-13:0/i-12:0)
C31H61O10P (624.4002135999999)
PG(a-13:0/i-12:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(a-13:0/i-12:0), in particular, consists of one chain of anteisotridecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.
PG(i-12:0/a-13:0)
C31H61O10P (624.4002135999999)
PG(i-12:0/a-13:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/a-13:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of anteisotridecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.
PG(i-12:0/i-13:0)
C31H61O10P (624.4002135999999)
PG(i-12:0/i-13:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-12:0/i-13:0), in particular, consists of one chain of isododecanoic acid at the C-1 position and one chain of isotridecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.
PG(i-13:0/i-12:0)
C31H61O10P (624.4002135999999)
PG(i-13:0/i-12:0) is a phosphatidylglycerol - a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(i-13:0/i-12:0), in particular, consists of one chain of isotridecanoic acid at the C-1 position and one chain of isododecanoic acid at the C-2 position. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant (up to 11\\% of the total). It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for cardiolipin synthesis.
Cyclo(D-Trp-D-Asp-Pro-D-Ile-Leu)
C32H44N6O7 (624.3271314000001)
Dauricine
PA(8:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4))
PA(8:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 4-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/8:0)
PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(5Z,7Z,10Z,13Z,16Z,19Z)-OH(4)/8:0), in particular, consists of one chain of one 4-hydroxy-docosahexaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7))
PA(8:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 7-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/8:0)
PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,8Z,10Z,13Z,16Z,19Z)-OH(7)/8:0), in particular, consists of one chain of one 7-hydroxy-docosahexaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14))
PA(8:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 14-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/8:0)
PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,12E,16Z,19Z)-OH(14)/8:0), in particular, consists of one chain of one 14-hydroxy-docosahexaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17))
PA(8:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 17-hydroxy-docosahexaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/8:0)
PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:6(4Z,7Z,10Z,13E,15E,19Z)-OH(17)/8:0), in particular, consists of one chain of one 17-hydroxy-docosahexaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(8:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17))
PA(8:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 16,17-epoxy-docosapentaenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/8:0)
PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(22:5(4Z,7Z,10Z,13Z,19Z)-O(16,17)/8:0), in particular, consists of one chain of one 16,17-epoxy-docosapentaenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).
Neferin
Neferine is a member of isoquinolines. Neferine is a natural product found in Nelumbo nucifera with data available. Neferine is a major bisbenzylisoquinline alkaloid. Neferine strongly inhibits NF-κB activation. Neferine is a major bisbenzylisoquinline alkaloid. Neferine strongly inhibits NF-κB activation.
23-O-beta-D-Glucopyranosyl-25-methyldolichosterone
teikagenin-3-O-beta-D-digitalosyl-20-O-beta-D-canaroside|teikaside A-Ia
26-O-beta-D-glucopyranosyl-22alpha-furosta-5,25(27)-diene-1beta,3beta,11alpha,22alpha,26-pentaol|26-[(beta-D-glucopyranosyl)oxy]-22alpha-hydroxyfurosta-5,25(27)-diene-1beta,3beta,11alpha-triol|helleboroside B
(25R)-spirost-7-ene-2alpha,3beta,5alpha,9alpha-tetrol 3-O-beta-D-glucopyranoside
14-deoxy-14alpha,15alpha-epoxyponasteroside A|brainesteroside A
3-O-beta-D-(2,3-di-O-methyl-beta-xylopyranosyl)-22E-27-nor-24-methyl-5alpha-cholesta-4,22-diene-3beta,6beta,8,15alpha,16beta,26-hexaol|leviusculoside J
(25S)-3beta,27-dihydroxy-5alpha-spirostan-6alpha-yl-O-beta-D-glucopyranoside
(5alpha)-pregna-16-en-3beta-ol-20-one 6-O-[alpha-L-rhamnopyranosyl-(1?3)-beta-D-quinovopyranoside]|torvpregnanoside A
7-Deepoxy,6-hydroxy,7-chloro,2,3,4,5-tetrahydro-Huratoxin
3-(3,4-Dihydroxybenzoyl)-2,3,27-Thrihydroxy-12-lupen-28-oic acid
2-hydroxythymol 3-O-(4-O-isovaleryl-beta-D-fucopyranosyl)-(1->3)-(4-O-angeloyl)-beta-D-quinovopyranoside
(25S)-22alpha,25-epoxy-3beta,11alpha-dihydroxyfurost-5-en-26-yl beta-D-glucopyranoside
3,4a,5,7,6,8-Hexamethoxy-4,6,7-triisopropyl-3,4a,4,9a-tetrahydrospiro[9H-xanthene-1(2H),2-[2H]-1-benzopyran]-2-one
2-hydroxythymol 3-O-(4-O-(2-methylbutyryl)-beta-D-fucopyranosyl)-(1->3)-(4-O-angeloyl)-beta-D-quinovopyranoside
calogenin 3-O-beta-D-digitalopyranoside-20-O-beta-D-canaropyranoside
Phe Phe Arg Arg
Phe Arg Phe Arg
Phe Arg Arg Phe
Met Arg Arg Tyr
Met Arg Tyr Arg
Met Tyr Arg Arg
Arg Phe Phe Arg
Arg Phe Arg Phe
Arg Met Arg Tyr
Arg Met Tyr Arg
Arg Arg Phe Phe
Arg Arg Met Tyr
Arg Arg Tyr Met
Arg Tyr Met Arg
Arg Tyr Arg Met
Tyr Met Arg Arg
Tyr Arg Met Arg
Tyr Arg Arg Met
PG(12:0/13:0)
C31H61O10P (624.4002135999999)
PG(13:0/12:0)
C31H61O10P (624.4002135999999)
PG 25:0
C31H61O10P (624.4002135999999)
Brainesteroside A
Mantuoluoside A
Mantuoluoside B
Spongipregnoloside A
ST 33:2_O7
Aspacoside A
Aspacoside B
Linkckoside F
1-(D-Mannosyloxy)-3,4-didenhydro-1,2-dihydro-8-apolycopen-8-oic acid
Methyl mannosyl-3,4-dehydro-apo-8-lycopenoate
Methyl glucosyl-3,4-dehydro-apo-8-lycopenoate
Chol-6-en-24-oic acid, 3,7-bis[(trimethylsilyl)oxy]-, phenylmethyl ester, (3α,5β)-
C37H60O4Si2 (624.4029919999999)
Testosterone enantate benzilic acid hydrazone
C40H52N2O4 (624.3926872000001)
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
3-[(21S,22S)-26-ethyl-4-hydroxy-16-(1-hydroxyethyl)-12-(hydroxymethyl)-17,19,21-trimethyl-11-(2-methylpropyl)-7,23,24,25-tetrazahexacyclo[18.2.1.15,8.110,13.115,18.02,6]hexacosa-1,3,5,8(26),9,11,13(25),14,16,18(24),19-undecaen-22-yl]propanoic acid
1-(1,3-benzodioxol-5-yl)-3-[(3S,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C34H48N4O7 (624.3522817999999)
N-[(3R,9S,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
1-(1,3-benzodioxol-5-yl)-3-[(3R,9R,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C34H48N4O7 (624.3522817999999)
N-[(3R,9R,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
N-[[(3R,9R,10R)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
C35H52N4O6 (624.3886652000001)
N-[(3R,9R,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
1-(1,3-benzodioxol-5-yl)-3-[(3R,9R,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C34H48N4O7 (624.3522817999999)
1-(1,3-benzodioxol-5-yl)-3-[(3R,9R,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C34H48N4O7 (624.3522817999999)
N-[(3R,9S,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
N-[(3S,9R,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
1-(1,3-benzodioxol-5-yl)-3-[(3S,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C34H48N4O7 (624.3522817999999)
N-[[(3R,9R,10S)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
C35H52N4O6 (624.3886652000001)
1-(1,3-benzodioxol-5-yl)-3-[(3R,9S,10R)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C34H48N4O7 (624.3522817999999)
N-[[(3R,9R,10R)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
C35H52N4O6 (624.3886652000001)
N-[[(3S,9S,10R)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
C35H52N4O6 (624.3886652000001)
N-[[(3S,9S,10S)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
C35H52N4O6 (624.3886652000001)
N-[(3S,9R,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
1-(1,3-benzodioxol-5-yl)-3-[(3S,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C34H48N4O7 (624.3522817999999)
N-[[(3S,9S,10S)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
C35H52N4O6 (624.3886652000001)
N-[(3S,9S,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
1-(1,3-benzodioxol-5-yl)-3-[(3R,9S,10S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]urea
C34H48N4O7 (624.3522817999999)
N-[[(3R,9S,10R)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
C35H52N4O6 (624.3886652000001)
N-[(3R,9S,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
N-[(3S,9S,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
N-[(3S,9S,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
N-[(3S,9S,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
N-[(3S,9R,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
N-[[(3R,9S,10S)-16-[[4-(dimethylamino)-1-oxobutyl]amino]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-9-yl]methyl]-N-methylbenzamide
C35H52N4O6 (624.3886652000001)
N-[(3R,9R,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2R)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
N-[(3R,9S,10S)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
N-[(3R,9R,10R)-9-[[[4-(dimethylamino)-1-oxobutyl]-methylamino]methyl]-12-[(2S)-1-hydroxypropan-2-yl]-3,10-dimethyl-13-oxo-2,8-dioxa-12-azabicyclo[12.4.0]octadeca-1(14),15,17-trien-16-yl]benzamide
C35H52N4O6 (624.3886652000001)
[2-hydroxy-3-[hydroxy-(2,3,4,5,6-pentahydroxycyclohexyl)oxyphosphoryl]oxypropyl] (11Z,14Z)-icosa-11,14-dienoate
[1-nonanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
[1-propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoate
[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoate
[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-propanoyloxypropoxy)phosphoryl]oxypropan-2-yl] docosanoate
C31H61O10P (624.4002135999999)
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-pentanoyloxypropoxy)phosphoryl]oxypropan-2-yl] icosanoate
C31H61O10P (624.4002135999999)
[1-[(2-Acetyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tricosanoate
C31H61O10P (624.4002135999999)
[1-[(2-Hexanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] nonadecanoate
C31H61O10P (624.4002135999999)
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-nonanoyloxypropoxy)phosphoryl]oxypropan-2-yl] hexadecanoate
C31H61O10P (624.4002135999999)
[1-[(2-Butanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] henicosanoate
C31H61O10P (624.4002135999999)
[1-[(2-Heptanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] octadecanoate
C31H61O10P (624.4002135999999)
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-octanoyloxypropoxy)phosphoryl]oxypropan-2-yl] heptadecanoate
C31H61O10P (624.4002135999999)
[1-[(2-Dodecanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] tridecanoate
C31H61O10P (624.4002135999999)
[1-[(2-Decanoyloxy-3-hydroxypropoxy)-hydroxyphosphoryl]oxy-3-hydroxypropan-2-yl] pentadecanoate
C31H61O10P (624.4002135999999)
[1-Hydroxy-3-[hydroxy-(3-hydroxy-2-undecanoyloxypropoxy)phosphoryl]oxypropan-2-yl] tetradecanoate
C31H61O10P (624.4002135999999)
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-nonanoyloxypropan-2-yl] hexadecanoate
C31H61O10P (624.4002135999999)
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-octanoyloxypropan-2-yl] heptadecanoate
C31H61O10P (624.4002135999999)
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-pentanoyloxypropan-2-yl] icosanoate
C31H61O10P (624.4002135999999)
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-propanoyloxypropan-2-yl] docosanoate
C31H61O10P (624.4002135999999)
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-hexanoyloxypropan-2-yl] nonadecanoate
C31H61O10P (624.4002135999999)
[1-Butanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] henicosanoate
C31H61O10P (624.4002135999999)
[1-Acetyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] tricosanoate
C31H61O10P (624.4002135999999)
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-heptanoyloxypropan-2-yl] octadecanoate
C31H61O10P (624.4002135999999)
(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (7Z,10Z,13Z,16Z,19Z)-docosa-7,10,13,16,19-pentaenoate
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-dodecanoyloxypropan-2-yl] tridecanoate
C31H61O10P (624.4002135999999)
[1-Decanoyloxy-3-[2,3-dihydroxypropoxy(hydroxy)phosphoryl]oxypropan-2-yl] pentadecanoate
C31H61O10P (624.4002135999999)
[1-[2,3-Dihydroxypropoxy(hydroxy)phosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetradecanoate
C31H61O10P (624.4002135999999)
[1-[(Z)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoate
(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoate
[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoate
(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-dodecanoyloxypropan-2-yl] tridecanoate
C31H61O10P (624.4002135999999)
[(2R)-1-decanoyloxy-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropan-2-yl] pentadecanoate
C31H61O10P (624.4002135999999)
[1-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxy-3-phosphonooxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate
[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (5E,8E,11E,14E,17E)-icosa-5,8,11,14,17-pentaenoate
(1-pentadecanoyloxy-3-phosphonooxypropan-2-yl) (5E,7E,9E,11E,13E)-hexadeca-5,7,9,11,13-pentaenoate
[1-[(9E,12E)-pentadeca-9,12-dienoyl]oxy-3-phosphonooxypropan-2-yl] (9E,11E,13E)-hexadeca-9,11,13-trienoate
[(2R)-3-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-2-undecanoyloxypropyl] tetradecanoate
C31H61O10P (624.4002135999999)
[(2S)-2-decanoyloxy-3-[[(2R)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxypropyl] pentadecanoate
C31H61O10P (624.4002135999999)
[1-[(E)-pentadec-9-enoyl]oxy-3-phosphonooxypropan-2-yl] (7E,9E,11E,13E)-hexadeca-7,9,11,13-tetraenoate
[(2R)-1-[[(2S)-2,3-dihydroxypropoxy]-hydroxyphosphoryl]oxy-3-undecanoyloxypropan-2-yl] tetradecanoate
C31H61O10P (624.4002135999999)
2-[[2-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoyl]oxy-3-propanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-butanoyloxy-3-[(4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[3-[(8Z,11Z,14Z,17Z,20Z,23Z)-hexacosa-8,11,14,17,20,23-hexaenoyl]oxy-2-hydroxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-acetyloxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
1-(9Z-octadecenoyl)-2-glutaryl-sn-glycero-3-phospho-(1-sn-glycerol)
1-(11Z,14Z-eicosadienoyl)-glycero-3-phospho-(1-myo-inositol)
(1's,2r,2's,5'r,6'r,10's,12's,14's)-5'-[(2s,3r,5r)-5,6-dihydroxy-5,6-dimethyl-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptan-2-yl]-6',10'-dimethyl-13'-oxaspiro[oxolane-2,11'-tetracyclo[7.5.0.0²,⁶.0¹²,¹⁴]tetradecan]-8'-en-5-one
methyl (2e,4e,6e,8e,10e,12e,14e,16e,18e,20e)-2,6,11,15,19,23-hexamethyl-23-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracosa-2,4,6,8,10,12,14,16,18,20-decaenoate
(1s,2s,4s,6r,7s,8r,9s,11r,12s,13r,14r,16r)-7,9,13-trimethyl-6-[3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)but-3-en-1-yl]-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icos-18-ene-6,11,14,16-tetrol
1-(2,3-dihydroxy-6-methyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}heptan-2-yl)-7,8-dihydroxy-9a,11a-dimethyl-1h,2h,4h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-5-one
(2s,4'as,9'as)-4',6',7-triisopropyl-3',4'a,5',6,7',8-hexamethoxy-3,4,9',9'a-tetrahydrospiro[1-benzopyran-2,1'-xanthen]-2'-one
(2r,3r,4r,5r,6s)-4-{[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-methyl-5-[(3-methylbutanoyl)oxy]oxan-2-yl]oxy}-5-hydroxy-6-(2-hydroxy-6-isopropyl-3-methylphenoxy)-2-methyloxan-3-yl (2z)-2-methylbut-2-enoate
6-(acetyloxy)-7,9-dihydroxy-1,7-dimethyl-8-[(2-methylbut-2-enoyl)oxy]-3-[(2-methylbutanoyl)oxy]-4-(2-methyloxiran-2-yl)-11-oxabicyclo[8.1.0]undecan-2-yl 2-methylbut-2-enoate
(1s,2s,3s,4s,5r,7s,8s,9s,10s)-5-(acetyloxy)-2,4-dihydroxy-4,10-dimethyl-9-{[(2z)-2-methylbut-2-enoyl]oxy}-8-{[(2r)-2-methylbutanoyl]oxy}-7-[(2r)-2-methyloxiran-2-yl]-11-oxabicyclo[8.1.0]undecan-3-yl (2z)-2-methylbut-2-enoate
5-(acetyloxy)-14-(butanoyloxy)-6,10-dihydroxy-3-isopropyl-6,10,14-trimethyl-11-(prop-2-enoyloxy)-15-oxatricyclo[6.6.1.0²,⁷]pentadecan-4-yl butanoate
(1r,3r,9r,10r,13r,15r,21s,23r)-23-{[(2r,3r,4r,5r,6s)-4,5-dihydroxy-3-methoxy-6-methyloxan-2-yl]oxy}-13-hydroxy-15-(hydroxymethyl)-3,10-dimethyl-16,25,26-trioxatricyclo[19.3.1.1⁹,¹²]hexacosa-4,6,18-trien-17-one
n-(1-{[(4e,10e,12z)-6,22-dihydroxy-16-methoxy-5,7-dimethyl-18-oxo-25-oxa-19-azatetracyclo[12.9.2.0¹⁵,¹⁹.0²⁰,²⁴]pentacosa-1(24),4,10,12,20,22-hexaen-8-yl]oxy}-1-oxopropan-2-yl)-4-methylpentanimidic acid
5-methyl-n-[(2r)-1-oxo-1-{[(5r,13s,14r,15r)-3,15,22-trihydroxy-5-methoxy-14,16-dimethyl-2-azabicyclo[18.3.1]tetracosa-1(24),2,6,8,10,16,20,22-octaen-13-yl]oxy}propan-2-yl]hexanimidic acid
C36H52N2O7 (624.3774321999999)