Exact Mass: 600.3846432

Exact Mass Matches: 600.3846432

Found 388 metabolites which its exact mass value is equals to given mass value 600.3846432, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Neoxanthin

(1R,3S)-6-[(1M,3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

C40H56O4 (600.4178376)


Neoxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Neoxanthin is an intermediate in the synthesis of abscisic acid from violaxanthin. Neoxanthin has been detected, but not quantified in, several different foods, such as apples, paprikas, Valencia oranges, kiwis, globe artichokes, sparkleberries, hard wheat, and cinnamon. This could make neoxanthin a potential biomarker for the consumption of these foods. Neoxanthin has been shown to exhibit apoptotic and anti-proliferative functions (PMID: 15333710, 15333710). Neoxanthin is a carotenoid and xanthophyll. In plants, it is an intermediate in the biosynthesis of the plant hormone abscisic acid. It is produced from violaxanthin by the action of neoxanthin synthase. It is a major xanthophyll found in green leafy vegetables such as spinach. [Wikipedia] D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Violaxanthin

(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178376)


Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Thus, violaxanthin is considered to be an isoprenoid lipid molecule. Violaxanthin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Violaxanthin is an orange-coloured pigment that is found in brown algae and various plants (e.g. pansies). It is biosynthesized from the epoxidation of zeaxanthin. Violaxanthin is a food additive that is only approved for use in Australia and New Zealand (INS: 161e) (PMID: 29890662). 3 (violaxanthin, zeaxanthin and antheraxanthin) participate in series of photo-induced interconversions known as violaxanthin cycle; Xanthophyll; a carotene epoxide that is precursor to capsanthin; cleavage of 9-cis-epoxycarotenoids (violaxanthin) to xanthoxin, catalyzed by 9-cis-epoxycarotenoid dioxygenase, is the key regulatory step of abscisic acid biosynthesis; one of 3 xanthophylls involved in evolution of plastids of green plants (oxygen evolution). (all-E)-Violaxanthin is found in many foods, some of which are orange bell pepper, passion fruit, pepper (c. annuum), and italian sweet red pepper. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Nostoxanthin

Nostoxanthin

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.

   

Capsorubin

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-1,20-bis[(1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylicosa-2,4,6,8,10,12,14,16,18-nonaene-1,20-dione

C40H56O4 (600.4178376)


Capsorubin is found in herbs and spices. Capsorubin is a constituent of paprika (Capsicum annuum). Potential nutriceutical.Capsorubin is one of the main colouring constituant of paprika oleoresin (paprika extract). (Wikipedia). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Constituent of paprika (Capsicum annuum). Potential nutriceutical

   

Aphanizophyll

(3R,2S)-3,4-Didehydro-1,2-dihydro-beta,psi-carotene-3,4,1,2-tetrol

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Phorbol caprate, tiglate

Phorbol 12-tiglate 13-decanoate

C35H52O8 (600.3661992)


D009676 - Noxae > D002273 - Carcinogens > D010703 - Phorbol Esters

   

(2S,2S)-Oscillol

(2S,2S)-3,4,3,4-Tetradehydro-1,2,1,2-tetrahydro-psi,psi-carotene-1,2,1,2-tetrol

C40H56O4 (600.4178376)


   

cis-Neoxanthin

(1R,3S)-6-[(3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

C40H56O4 (600.4178376)


Cis-neoxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Cis-neoxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cis-neoxanthin can be found in ginkgo nuts and potato, which makes cis-neoxanthin a potential biomarker for the consumption of these food products. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

9-cis-Violaxanthin

9-cis-Violaxanthin

C40H56O4 (600.4178376)


The 9-cis-stereoisomer of violaxanthin.

   

Auroxanthin

2-[(2Z,4E,6E,8Z,10E,12Z,14Z)-15-(6-hydroxy-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-2-yl)-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaen-2-yl]-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-6-ol

C40H56O4 (600.4178376)


Isolated from Viola tricolor, Lonicera japonica, Delonix regia and other plants. Auroxanthin is found in many foods, some of which are yellow bell pepper, orange bell pepper, green bell pepper, and red bell pepper. Auroxanthin is found in pepper (c. annuum). Auroxanthin is isolated from Viola tricolor, Lonicera japonica, Delonix regia and other plants.

   

Capsanthin 3,6-epoxide

(2E,4E,6E,8Z,10E,12E,14E,16Z,18E)-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-(2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl)-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O4 (600.4178376)


Constituent of red paprika (Capsicum annuum). Capsanthin 3,6-epoxide is found in many foods, some of which are orange bell pepper, green bell pepper, herbs and spices, and pepper (c. frutescens). 3,6-Epoxy-5,6-dihydro-3,5-dihydroxy-b,k-caroten-6-one is found in herbs and spices. 3,6-Epoxy-5,6-dihydro-3,5-dihydroxy-b,k-caroten-6-one is a constituent of paprika.

   

beta-Carotenone

(8Z,10E,12E,14Z,16Z,18E,20E,22E,24E)-6,6,10,14,19,23,27,27-octamethyldotriaconta-8,10,12,14,16,18,20,22,24-nonaene-2,7,26,31-tetrone

C40H56O4 (600.4178376)


beta-Carotenone is found in fruits. beta-Carotenone is isolated from Triphasia trifolia (limeberry). Isolated from Triphasia trifolia (limeberry). beta-Carotenone is found in fruits.

   

Cucurbitachrome 1

2-[(2E,4E,6E,8E,10E,12E,14E,16E)-17-{2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl}-6,11,15-trimethylheptadeca-2,4,6,8,10,12,14,16-octaen-2-yl]-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-6-ol

C40H56O4 (600.4178376)


Constituent of ripe pods of red paprika (Capsicum annuum variety longum). Cucurbitachrome 1 is found in many foods, some of which are fruits, yellow bell pepper, orange bell pepper, and green bell pepper. Cucurbitachrome 2 is found in fruits. Cucurbitachrome 2 is a constituent of ripe pods of red paprika (Capsicum annuum var. longum).

   

Heteroxanthin

1-[(1E,3E,5E,7E,9E,11E,13E,15E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethylcyclohexane-1,2,4-triol

C40H56O4 (600.4178376)


Heteroxanthin is found in mollusks. Heteroxanthin is a constituent of Mytilus edulis (blue mussel). Constituent of Mytilus edulis (blue mussel)

   

Cycloviolaxanthin

1-[(1E,3Z,5E,7Z,9E,11E,13Z,15E,17E)-18-{2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-2-ol

C40H56O4 (600.4178376)


Isolated from red paprika Capsicum annuum variety longum nigrum. Cycloviolaxanthin is found in many foods, some of which are orange bell pepper, herbs and spices, italian sweet red pepper, and red bell pepper. Cycloviolaxanthin is found in herbs and spices. Cycloviolaxanthin is isolated from red paprika Capsicum annuum var. longum nigrum. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Cucurbitaxanthin B

1-[(1E,3Z,5E,7Z,9Z,11E,13E,15E,17E)-18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-2-ol

C40H56O4 (600.4178376)


Isolated from pumpkin (Cucurbita maxima) and from paprika fruits. Cucurbitaxanthin B is found in many foods, some of which are pepper (c. annuum), yellow bell pepper, green bell pepper, and pepper (c. frutescens). Cucurbitaxanthin B is found in fruits. Cucurbitaxanthin B is isolated from pumpkin (Cucurbita maxima) and from paprika fruits.

   

Capsanthin 5,6-epoxide

(2E,4E,6E,8E,10E,12E,14E,16Z,18E)-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O4 (600.4178376)


Constituent of red paprika (Capsicum annuum). Capsanthin 5,6-epoxide is found in many foods, some of which are italian sweet red pepper, pepper (c. frutescens), orange bell pepper, and green bell pepper. Capsanthin 5,6-epoxide is found in herbs and spices. Capsanthin 5,6-epoxide is a constituent of red paprika (Capsicum annuum).

   

Salmoxanthin

1-[(1E,3Z,5E,7Z,9E,11E,13E,15Z,17E)-18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-2,6,6-trimethylcyclohex-2-ene-1,4-diol

C40H56O4 (600.4178376)


Salmoxanthin is found in fishes. Salmoxanthin is a constituent of Oncorhynchus keta and other salmon species. Constituent of Oncorhynchus keta and other salmon subspecies Salmoxanthin is found in fishes.

   

Capsochrome

(2E,4Z,6Z,8E,10Z,12E,14E,16Z)-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-17-(6-hydroxy-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-2-yl)-4,8,12-trimethyloctadeca-2,4,6,8,10,12,14,16-octaen-1-one

C40H56O4 (600.4178376)


Constituent of red paprika (Capsicum annuum). Capsochrome is found in many foods, some of which are orange bell pepper, red bell pepper, pepper (c. annuum), and herbs and spices. Capsochrome is found in herbs and spices. Capsochrome is a constituent of red paprika (Capsicum annuum).

   

3'-N-Acetyl-4'-O-(14-methylheptadecanoyl)fusarochromanone

N-[4-(5-Amino-2,2-dimethyl-4-oxo-3,4-dihydro-2H-1-benzopyran-6-yl)-1-[(16-methylheptadecanoyl)oxy]-4-oxobutan-2-yl]ethanimidate

C35H56N2O6 (600.4138156)


3-N-Acetyl-4-O-(14-methylheptadecanoyl)fusarochromanone is produced by Fusarium equiseti. Production by Fusarium equiseti

   

4-[3-[3-[Bis[4-(2-methylpropyl)phenyl]methylamino]benzoyl]indol-1-yl]butanoic acid

4-{3-[3-({bis[4-(2-methylpropyl)phenyl]methyl}amino)benzoyl]-1H-indol-1-yl}butanoic acid

C40H44N2O3 (600.3351754)


   

1-O-Hexadecyl-2-O-ethylglycero-3-phosphoric acid 4-(N,N-dimethylamino)pyridinium butylester

1-O-Hexadecyl-2-O-ethylglycero-3-phosphoric acid 4-(N,N-dimethylamino)pyridinium butylester

C32H61N2O6P (600.4267015999999)


   

Siphonaxanthin

1-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-18-(4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl)-3-(hydroxymethyl)-7,12,16-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O4 (600.4178376)


   

(1R,3S,6S)-6-[18-[(1S,4S,6R)-4-Hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

(1R,3S,6S)-6-[18-[(1S,4S,6R)-4-Hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178376)


   

PA(8:0/20:3(5Z,8Z,11Z)-O(14R,15S))

[(2R)-3-(octanoyloxy)-2-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:3(5Z,8Z,11Z)-O(14R,15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:3(5Z,8Z,11Z)-O(14R,15S)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 14,15-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/8:0)

[(2R)-2-(octanoyloxy)-3-{[(5Z,8Z,11Z)-13-(3-pentyloxiran-2-yl)trideca-5,8,11-trienoyl]oxy}propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:3(5Z,8Z,11Z)-O(14R,15S)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,11Z)-O(14R,15S)/8:0), in particular, consists of one chain of one 14,15-epoxyeicosatrienoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:3(5Z,8Z,14Z)-O(11S,12R))

[(2R)-2-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:3(5Z,8Z,14Z)-O(11S,12R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:3(5Z,8Z,14Z)-O(11S,12R)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 11,12-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/8:0)

[(2R)-3-{[(5Z,8Z)-10-{3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl}deca-5,8-dienoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:3(5Z,8Z,14Z)-O(11S,12R)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,8Z,14Z)-O(11S,12R)/8:0), in particular, consists of one chain of one 11,12-epoxyeicosatrienoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:3(5Z,11Z,14Z)-O(8,9))

[(2R)-3-(octanoyloxy)-2-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:3(5Z,11Z,14Z)-O(8,9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:3(5Z,11Z,14Z)-O(8,9)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 8,9--epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(5Z,11Z,14Z)-O(8,9)/8:0)

[(2R)-2-(octanoyloxy)-3-{[(5Z)-7-{3-[(2Z,5Z)-undeca-2,5-dien-1-yl]oxiran-2-yl}hept-5-enoyl]oxy}propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:3(5Z,11Z,14Z)-O(8,9)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(5Z,11Z,14Z)-O(8,9)/8:0), in particular, consists of one chain of one 8,9--epoxyeicosatrienoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:3(8Z,11Z,14Z)-O(5,6))

[(2R)-3-(octanoyloxy)-2-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:3(8Z,11Z,14Z)-O(5,6)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:3(8Z,11Z,14Z)-O(5,6)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 5,6-epoxyeicosatrienoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:3(8Z,11Z,14Z)-O(5,6)/8:0)

[(2R)-2-(octanoyloxy)-3-[(4-{3-[(2Z,5Z,8Z)-tetradeca-2,5,8-trien-1-yl]oxiran-2-yl}butanoyl)oxy]propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:3(8Z,11Z,14Z)-O(5,6)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:3(8Z,11Z,14Z)-O(5,6)/8:0), in particular, consists of one chain of one 5,6-epoxyeicosatrienoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(20)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(20)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 20-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/8:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-20-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/8:0), in particular, consists of one chain of one 20-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

[(2R)-2-{[(5R,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(6E,8Z,11Z,14Z)-OH(5S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(6E,8Z,11Z,14Z)-OH(5S)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 5-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/8:0)

[(2R)-3-{[(5S,6E,8Z,11Z,14Z)-5-hydroxyicosa-6,8,11,14-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/8:0), in particular, consists of one chain of one 5-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

[(2R)-2-{[(5Z,8Z,11Z,14Z,19S)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(19S)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 19-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/8:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,19R)-19-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/8:0), in particular, consists of one chain of one 19-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,18R)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(18R)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 18-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/8:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,18S)-18-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/8:0), in particular, consists of one chain of one 18-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

[(2R)-2-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(17)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(17)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 17-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/8:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z)-17-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/8:0), in particular, consists of one chain of one 17-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

[(2R)-2-{[(5Z,8Z,11Z,14Z,16R)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(16R)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 16-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/8:0)

[(2R)-3-{[(5Z,8Z,11Z,14Z,16S)-16-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/8:0), in particular, consists of one chain of one 16-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

[(2R)-2-{[(5Z,8Z,11Z,13E,15S)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(5Z,8Z,11Z,13E)-OH(15S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(5Z,8Z,11Z,13E)-OH(15S)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 15-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/8:0)

[(2R)-3-{[(5Z,8Z,11Z,13E,15R)-15-hydroxyicosa-5,8,11,13-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/8:0), in particular, consists of one chain of one 15-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

[(2R)-2-{[(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(5Z,8Z,10E,14Z)-OH(12S)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(5Z,8Z,10E,14Z)-OH(12S)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 12-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/8:0)

[(2R)-3-{[(5Z,8Z,10E,12R,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/8:0), in particular, consists of one chain of one 12-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

[(2R)-2-{[(5E,8Z,11R,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(5E,8Z,12Z,14Z)-OH(11R)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(5E,8Z,12Z,14Z)-OH(11R)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 11-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/8:0)

[(2R)-3-{[(5E,8Z,11S,12Z,14Z)-11-hydroxyicosa-5,8,12,14-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/8:0), in particular, consists of one chain of one 11-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(8:0/20:4(5Z,7E,11Z,14Z)-OH(9))

[(2R)-2-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-3-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(8:0/20:4(5Z,7E,11Z,14Z)-OH(9)) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(8:0/20:4(5Z,7E,11Z,14Z)-OH(9)), in particular, consists of one chain of one octanoyl at the C-1 position and one chain of 9-Hydroxyeicosatetraenoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/8:0)

[(2R)-3-{[(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoyl]oxy}-2-(octanoyloxy)propoxy]phosphonic acid

C31H53O9P (600.3427018)


PA(20:4(5Z,7E,11Z,14Z)-OH(9)/8:0) is an oxidized phosphatidic acid (PA). Oxidized phosphatidic acids are glycerophospholipids in which a phosphate moiety occupies a glycerol substitution site and at least one of the fatty acyl chains has undergone oxidation. As all oxidized lipids, oxidized phosphatidic acids belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with diacylglycerols, phosphatidic acids can have many different combinations of fatty acids of varying lengths, saturation and degrees of oxidation attached at the C-1 and C-2 positions. PA(20:4(5Z,7E,11Z,14Z)-OH(9)/8:0), in particular, consists of one chain of one 9-Hydroxyeicosatetraenoyl at the C-1 position and one chain of octanoyl at the C-2 position. Phospholipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with phospholipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. Oxidized PAs can be synthesized via three different routes. In one route, the oxidized PA is synthetized de novo following the same mechanisms as for PAs but incorporating oxidized acyl chains (PMID: 33329396). An alternative is the transacylation of one of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the PA backbone, mainly through the action of LOX (PMID: 33329396).

   

Neochrome

6-[(3E,5Z,7E,9Z,11E,15Z)-16-(6-hydroxy-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-2-yl)-3,7,12-trimethylheptadeca-1,3,5,7,9,11,13,15-octaen-1-ylidene]-1,5,5-trimethylcyclohexane-1,3-diol

C40H56O4 (600.4178376)


Neochrome is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Neochrome is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Neochrome can be found in kiwi, which makes neochrome a potential biomarker for the consumption of this food product. A pre-release version (v0.5) was included with the system disks of the first STs. A proper version 1.0 arrived later, and was bundled with several versions of the ST. Although not officially public domain, this version was often treated as such, and was never actually sold. As a result of this, NEOchrome enjoyed a relatively high level of popularity within the ST community, even in the face of more advanced packages such as DEGAS Elite and Deluxe Paint .

   

cis-Violaxanthin

6-[(1E,3Z,5E,7E,9E,11E,13E,15E,17E)-18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178376)


Cis-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Cis-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cis-violaxanthin can be found in ginkgo nuts and potato, which makes cis-violaxanthin a potential biomarker for the consumption of these food products.

   

Luteoxanthin

2-[(2E,4E,6E,8E,10E,12E,14E,16E)-17-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-6,11,15-trimethylheptadeca-2,4,6,8,10,12,14,16-octaen-2-yl]-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-6-ol

C40H56O4 (600.4178376)


Luteoxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Luteoxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Luteoxanthin can be found in a number of food items such as yellow bell pepper, pepper (c. annuum), green bell pepper, and apple, which makes luteoxanthin a potential biomarker for the consumption of these food products.

   

(13Z)-Violaxanthin

6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178376)


(all-e)-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone (all-e)-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (all-e)-violaxanthin can be found in a number of food items such as pepper (c. annuum), mango, yellow bell pepper, and red bell pepper, which makes (all-e)-violaxanthin a potential biomarker for the consumption of these food products.

   

9-cis-violaxanthin

(1R,6R)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178376)


9-cis-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. 9-cis-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 9-cis-violaxanthin can be found in a number of food items such as tree fern, naranjilla, chanterelle, and alfalfa, which makes 9-cis-violaxanthin a potential biomarker for the consumption of these food products. Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Violaxanthin is an extremely weak basic (essentially neutral) compound (based on its pKa).

   

(3S,3S,4R,4R)-Crustaxanthin

(3S,3S,4R,4R)-Crustaxanthin

C40H56O4 (600.4178376)


   

Corbiculaxanthin

(3S,3S,4R,5R,6R)-6,7-didehydro-3,4,3,5-tetrol

C40H56O4 (600.4178376)


   

Lilixanthin

(3S,4R,3S,5R)-3,4,3-Trihydroxy-beta,kappa-caroten-6-one

C40H56O4 (600.4178376)


   

Capsoneoxanthin

(3S,5R,6R,3S,5R)-3,5,3-Trihydroxy-6,7-didehydro-5,6-dihydro-beta,kappa-caroten-6-one

C40H56O4 (600.4178376)


   
   

Distolasteroside D6

Distolasteroside D6

C32H56O10 (600.3873276)


   
   
   

Mimulaxanthin

(3S,3S,5R,5R,6R,6R)-6,6,7,7-Tetradehydro-5,5,6,6-tetrahydro-3,3,5,5-tetrahydroxy-beta,beta-carotene

C40H56O4 (600.4178376)


   
   
   

3-O-Geranylforbesione

3-O-Geranylforbesione

C38H48O6 (600.3450708)


   

siphonaxanthin

(3R,3R,6R)-7,8-Dihydro-8-oxo-beta,epsilon-carotene-3,3,19-triol

C40H56O4 (600.4178376)


   
   
   
   
   

Argentinic acid C

Argentinic acid C

C36H56O7 (600.4025826)


   

Sativalanosteronyl glucoside

Sativalanosteronyl glucoside

C36H56O7 (600.4025826)


   
   
   

(3S,5Xi,8Xi,3S,5R)-5,8-epoxy-3,3-dihydroxy-5,8-dihydro-beta,kappa-caroten-6-one|(3S,5Xi,8Xi,3S,5R)-5,8-Epoxy-3,3-dihydroxy-5,8-dihydro-beta,kappa-carotin-6-on

(3S,5Xi,8Xi,3S,5R)-5,8-epoxy-3,3-dihydroxy-5,8-dihydro-beta,kappa-caroten-6-one|(3S,5Xi,8Xi,3S,5R)-5,8-Epoxy-3,3-dihydroxy-5,8-dihydro-beta,kappa-carotin-6-on

C40H56O4 (600.4178376)


   
   

milbemycins VM48640

milbemycins VM48640

C35H52O8 (600.3661992)


   

13-O-myristyl-20-O-acetyl-12-deoxyphorbol

13-O-myristyl-20-O-acetyl-12-deoxyphorbol

C36H56O7 (600.4025826)


   

(+)-garcinialiptone

(+)-garcinialiptone

C38H48O6 (600.3450708)


   

Neoxanthin

(1R,3S)-6-[(3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenylidene]-1,5,5-trimethyl-cyclohexane-1,3-diol

C40H56O4 (600.4178376)


9-cis-neoxanthin is a neoxanthin in which all of the double bonds have trans geometry except for that at the 9 position, which is cis. It is a 9-cis-epoxycarotenoid and a neoxanthin. Neoxanthin is a natural product found in Hibiscus syriacus, Cladonia rangiferina, and other organisms with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   
   
   

3-oxolanosta-8,24(31)-dien-21-oic acid 21-O-beta-D-xylopyranoside|fomitoside D

3-oxolanosta-8,24(31)-dien-21-oic acid 21-O-beta-D-xylopyranoside|fomitoside D

C36H56O7 (600.4025826)


   
   

3-O-Carboxyacetyl-quercinsaeure-dimethylester

3-O-Carboxyacetyl-quercinsaeure-dimethylester

C36H56O7 (600.4025826)


   

milbemycins VM44867

milbemycins VM44867

C35H52O8 (600.3661992)


   

3-(4-Hydroxycinnamoyl)-3alpha-3-Hydroxy-7,9(11)-multifloradien-29-oic acid|bryocoumaric acid

3-(4-Hydroxycinnamoyl)-3alpha-3-Hydroxy-7,9(11)-multifloradien-29-oic acid|bryocoumaric acid

C39H52O5 (600.3814542)


   
   
   

3beta,24,26-triacetoxy-5alpha-lanosta-7,9(11)-dien-25-ol|ganoderiol A triacetate

3beta,24,26-triacetoxy-5alpha-lanosta-7,9(11)-dien-25-ol|ganoderiol A triacetate

C36H56O7 (600.4025826)


   
   

PRASINOXANTHIN(SH)

PRASINOXANTHIN(SH)

C40H56O4 (600.4178376)


   

isophytolaccinic acid A

isophytolaccinic acid A

C35H52O8 (600.3661992)


   
   

oxy-guttiferone M

oxy-guttiferone M

C38H48O6 (600.3450708)


   

oxy-guttiferone K

oxy-guttiferone K

C38H48O6 (600.3450708)


   
   
   
   
   
   

rel-(1R,3S,5R,7S,8R)-1-(3,4-dihydroxybenzoyl)-6,6-dimethyl-5-(3-methylbut-2-en-1-yl)-3-[5-methyl-2-(1-methylethenyl)hex-4-en-1-yl]-8-(2-methylprop-1-en-1-yl)tricyclo[3,3,1,13,7]decane-2,4,9-trione

rel-(1R,3S,5R,7S,8R)-1-(3,4-dihydroxybenzoyl)-6,6-dimethyl-5-(3-methylbut-2-en-1-yl)-3-[5-methyl-2-(1-methylethenyl)hex-4-en-1-yl]-8-(2-methylprop-1-en-1-yl)tricyclo[3,3,1,13,7]decane-2,4,9-trione

C38H48O6 (600.3450708)


   

21-(E)-coumaroyloxy-5alpha-cycloart-24-ene-3,23-dione

21-(E)-coumaroyloxy-5alpha-cycloart-24-ene-3,23-dione

C39H52O5 (600.3814542)


   
   

7,8-didehydro-25-anhydrocimigenol-3-beta-D-xylopyranoside

7,8-didehydro-25-anhydrocimigenol-3-beta-D-xylopyranoside

C35H52O8 (600.3661992)


   

Cimicifugoside H-1

Cimicifugoside H-1

C35H52O8 (600.3661992)


   

Webbiaxanthin

5,5-Dihydroxy-5,6,5,6-tetrahydro-beta,beta-carotene-3,3-dione

C40H56O4 (600.4178376)


   
   

12-hydroxyabieta-8,11,13-trien-7beta-yl 7-oxoabieta-8,11,13-trien-12-yl peroxide|obtusanol A

12-hydroxyabieta-8,11,13-trien-7beta-yl 7-oxoabieta-8,11,13-trien-12-yl peroxide|obtusanol A

C40H56O4 (600.4178376)


   
   
   

(25S)-26-O-beta-D-xylopyranosyl-5alpha-cholestane-3beta,6alpha,8,15beta,16beta,26-hexaol|lysastroside A

(25S)-26-O-beta-D-xylopyranosyl-5alpha-cholestane-3beta,6alpha,8,15beta,16beta,26-hexaol|lysastroside A

C32H56O10 (600.3873276)


   

oxy-guttiferone K2

oxy-guttiferone K2

C38H48O6 (600.3450708)


   
   
   
   

preprasinoxanthin

preprasinoxanthin

C40H56O4 (600.4178376)


   
   
   
   
   
   
   

4,4-dihydroxyzeaxanthin

4,4-dihydroxyzeaxanthin

C40H56O4 (600.4178376)


   
   

1,12,23-trihydroxy-1,6,12,17,23,28-hexazacyclotritriacontane-2,5,13,16,24,27-hexone

NCGC00180673-03!1,12,23-trihydroxy-1,6,12,17,23,28-hexazacyclotritriacontane-2,5,13,16,24,27-hexone

C27H48N6O9 (600.3482597999999)


   
   
   

Violaxanthin

(1S,4S,6R)-1-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-4-ol

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Cucurbitachrome 1 is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Cucurbitachrome 1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitachrome 1 can be found in a number of food items such as italian sweet red pepper, herbs and spices, fruits, and red bell pepper, which makes cucurbitachrome 1 a potential biomarker for the consumption of these food products. (all-e)-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone (all-e)-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (all-e)-violaxanthin can be found in a number of food items such as orange bell pepper, green bell pepper, passion fruit, and yellow bell pepper, which makes (all-e)-violaxanthin a potential biomarker for the consumption of these food products.

   

(all-E)-Neochrome

(all-E)-Neochrome

C40H56O4 (600.4178376)


   

(all-E)-Neoxanthin

(all-E)-Neoxanthin

C40H56O4 (600.4178376)


   

Desferrioxamine E

Desferrioxamine E

C27H48N6O9 (600.3482597999999)


A cyclic hydroxamic acid siderophore that is produced by several bacterial species and exhibits antitumour activity.

   

1,12,23-trihydroxy-1,6,12,17,23,28-hexazacyclotritriacontane-2,5,13,16,24,27-hexone [IIN-based on: CCMSLIB00000846839]

NCGC00180673-03!1,12,23-trihydroxy-1,6,12,17,23,28-hexazacyclotritriacontane-2,5,13,16,24,27-hexone [IIN-based on: CCMSLIB00000846839]

C27H48N6O9 (600.3482597999999)


   

1,12,23-trihydroxy-1,6,12,17,23,28-hexazacyclotritriacontane-2,5,13,16,24,27-hexone [IIN-based: Match]

NCGC00180673-03!1,12,23-trihydroxy-1,6,12,17,23,28-hexazacyclotritriacontane-2,5,13,16,24,27-hexone [IIN-based: Match]

C27H48N6O9 (600.3482597999999)


   

Asn Arg Arg Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-5-carbamimidamidopentanamido]-5-carbamimidamidopentanoic acid

C22H44N14O6 (600.3568084000001)


   

Arg Asn Arg Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanamido]-5-carbamimidamidopentanoic acid

C22H44N14O6 (600.3568084000001)


   

Arg Arg Asn Arg

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanamido]-5-carbamimidamidopentanoic acid

C22H44N14O6 (600.3568084000001)


   

Arg Arg Arg Asn

(2S)-2-[(2S)-2-[(2S)-2-[(2S)-2-amino-5-carbamimidamidopentanamido]-5-carbamimidamidopentanamido]-5-carbamimidamidopentanamido]-3-carbamoylpropanoic acid

C22H44N14O6 (600.3568084000001)


   

LAREL

Leu Ala Arg Glu Leu

C26H48N8O8 (600.3594928)


   

RNLAK

Arg-Asn-Leu-Ala-Lys

C25H48N10O7 (600.3707258)


   

KRNLA

Lys-Arg-Asn-Leu-Ala

C25H48N10O7 (600.3707258)


   

Capsanthin 3,6-epoxide

(3S,5R,6R,3S,5R)-3,6-Epoxy-5,3-dihydroxy-5,6-dihydro-beta,kappa-caroten-6-one

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Cycloviolaxanthin

Cycloviolaxanthin

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Cucurbitaxanthin B

(3S,5R,6S,3S,5R,6R)-5,6:3,6-Diepoxy-5,6,5,6-tetrahydro-beta,beta-carotene-3,5-diol

C40H56O4 (600.4178376)


   
   

Salmoxanthin/ Trollixanthin

Salmoxanthin/ Trollixanthin

C40H56O4 (600.4178376)


   
   
   

Capsanthin monoepoxide

(2E,4Z,6E,8E,10E,12E,14E,16Z,18E)-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-19-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-4,8,13,17-tetramethylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one

C40H56O4 (600.4178376)


   

Heteroxanthin

1-[(1E,3E,5E,7E,9E,11E,13E,15E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-yn-1-yl]-2,6,6-trimethylcyclohexane-1,2,4-triol

C40H56O4 (600.4178376)


   

Auroxanthin

2-[(2Z,4E,6E,8Z,10E,12Z,14Z)-15-(6-hydroxy-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-2-yl)-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaen-2-yl]-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-6-ol

C40H56O4 (600.4178376)


   

Salmoxanthin

1-[(1E,3Z,5E,7Z,9E,11E,13E,15Z,17E)-18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-2,6,6-trimethylcyclohex-2-ene-1,4-diol

C40H56O4 (600.4178376)


   

Capsochrome

(2E,4Z,6Z,8E,10Z,12E,14E,16Z)-1-(4-hydroxy-1,2,2-trimethylcyclopentyl)-17-(6-hydroxy-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-2-yl)-4,8,12-trimethyloctadeca-2,4,6,8,10,12,14,16-octaen-1-one

C40H56O4 (600.4178376)


   

3'-N-Acetyl-4'-O-(14-methylheptadecanoyl)fusarochromanone

4-(5-amino-2,2-dimethyl-4-oxo-3,4-dihydro-2H-1-benzopyran-6-yl)-2-acetamido-4-oxobutyl 16-methylheptadecanoate

C35H56N2O6 (600.4138156)


   

beta-Carotenone

(8Z,10E,12E,14Z,16Z,18E,20E,22E,24E)-6,6,10,14,19,23,27,27-octamethyldotriaconta-8,10,12,14,16,18,20,22,24-nonaene-2,7,26,31-tetrone

C40H56O4 (600.4178376)


   

Cucurbitachrome 1

2-[(2E,4E,6E,8E,10E,12E,14E,16E)-17-{2-hydroxy-2,6,6-trimethyl-7-oxabicyclo[2.2.1]heptan-1-yl}-6,11,15-trimethylheptadeca-2,4,6,8,10,12,14,16-octaen-2-yl]-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-6-ol

C40H56O4 (600.4178376)


   

Capsorubin

(3S,5R,3S,5R)-3,3-Dihydroxy-kappa,kappa-carotene-6,6-dione

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(3S,4S,2S)-4-Hydroxymyxol

(3S,4S,2S)-3,4-Didehydro-1,2-dihydro-beta,psi-carotene-3,4,1,2-tetrol

C40H56O4 (600.4178376)


   

(3S,4R,2S)-4-Hydroxymyxol

(3S,4R,2S)-3,4-Didehydro-1,2-dihydro-beta,psi-carotene-3,4,1,2-tetrol

C40H56O4 (600.4178376)


   

Crustaxanthin

beta,beta-Carotene-3,4,3,4-tetrol

C40H56O4 (600.4178376)


   

(3S,4R,3S,4R)-Crustaxanthin

(3S,4R,3S,4R)-beta,beta-Carotene-3,4,3,4-tetrol

C40H56O4 (600.4178376)


   

(3R,4R,3S,4R)-Crustaxanthin

(3R,4R,3S,4R)-beta,beta-Carotene-3,4,3,4-tetrol

C40H56O4 (600.4178376)


   

(3S,4R,3R,4R)-Crustaxanthin

(3S,4R,3R,4R)-beta,beta-Carotene-3,4,3,4-tetrol

C40H56O4 (600.4178376)


   

6-Epiheteroxanthin

(3S,5R,6S,3R)-7,8-Didehydro-5,6-dihydro-beta,beta-carotene-3,5,6,3-tetrol

C40H56O4 (600.4178376)


   

neochrome

(3S,5R,6R,3S,5R,8RS)-5,8-Epoxy-6,7-didehydro-5,6,5,8-tetrahydro-beta,beta-carotene-3,5,3-triol

C40H56O4 (600.4178376)


   

(8R)-Luteoxanthin

(3S,5R,6S,3S,5R,8R)-5,6:5,8-Diepoxy-5,6,5,8-tetrahydro-beta,beta-carotene-3,3-diol

C40H56O4 (600.4178376)


   

(8S)-Luteoxanthin

(3S,5R,6S,3S,5R,8S)-5,6:5,8-Diepoxy-5,6,5,8-tetrahydro-beta,beta-carotene-3,3-diol

C40H56O4 (600.4178376)


   

(8R,8R)-Auroxanthin

(3S,5R,8R,3S,5R,8R)-5,8:5,8-Diepoxy-5,8,5,8-tetrahydro-beta,beta-carotene-3,3-diol

C40H56O4 (600.4178376)


   

(8R,8S)-Auroxanthin

(3S,5R,8R,3S,5R,8S)-5,8,5,8-tetrahydro-beta,beta-carotene-3,3diol

C40H56O4 (600.4178376)


   

(8S,8S)-Auroxanthin

(3S,5R,8S,3S,5R,8S)-5,8:5,8-Diepoxy-5,8,5,8-tetrahydro-beta,beta-carotene-3,3-diol

C40H56O4 (600.4178376)


   

Cucurbitachrome A

(3S,5R,8RS,3S,5R,6R)-5,8:3,6-Diepoxy-5,8,5,6-tetrahydro-beta,beta-carotene-3,5-diol

C40H56O4 (600.4178376)


   

9Z,9Z-Tetrahydroastaxanthin

9Z,9Z-(3R,5S,6S,3R,5S,6S)-3,3-dihydroxy-5,6,5,6-tetrahydro-beta,beta-carotene-4,4-dione

C40H56O4 (600.4178376)


   

Foliachrome

5,8-Epoxy-5,8-dihydro-beta,epsilon-carotene-3,3,6-triol

C40H56O4 (600.4178376)


   

Capsanthin 5,6-epoxide

(3S,5R,6S,3S,5R)-5,6-Epoxy-3,3-dihydroxy-5,6-dihydro-beta,kappa-caroten-6-one

C40H56O4 (600.4178376)


A epoxycarotenol that is capsanthin in which the 5,6-double bond has been epoxidised. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

9Z-Capsanthin-5,6-epoxide

(9Z,3S,5R,6S,3S,5R)-5,6-Epoxy-3,3-dihydroxy-5,6-dihydro-beta,kappa-caroten-6-one

C40H56O4 (600.4178376)


   

SILICON 2-ETHYLHEXANOATE, MIN. 90

SILICON 2-ETHYLHEXANOATE, MIN. 90

C32H60O8Si (600.4057240000001)


   
   

BETA-D-GALACTOSE PENTAPIVALATE

BETA-D-GALACTOSE PENTAPIVALATE

C31H52O11 (600.3509442)


   

1,2,3,4,6-Penta-O-pivaloyl-D-mannopyranose

1,2,3,4,6-Penta-O-pivaloyl-D-mannopyranose

C31H52O11 (600.3509442)


   

4-[3-[3-[Bis[4-(2-methylpropyl)phenyl]methylamino]benzoyl]indol-1-yl]butanoic acid

4-[3-[3-[Bis[4-(2-methylpropyl)phenyl]methylamino]benzoyl]indol-1-yl]butanoic acid

C40H44N2O3 (600.3351754)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D065088 - Steroid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D065088 - Steroid Synthesis Inhibitors > D058891 - 5-alpha Reductase Inhibitors

   

4-[4-(Dimethylamino)pyridin-1-ium-1-yl]butyl (2-ethoxy-3-hexadecoxypropyl) phosphate

4-[4-(Dimethylamino)pyridin-1-ium-1-yl]butyl (2-ethoxy-3-hexadecoxypropyl) phosphate

C32H61N2O6P (600.4267015999999)


   

3-beta-O-(E)-coumaroyl-D:C-friedooleana-7,9(11)-dien-29-oic acid

3-beta-O-(E)-coumaroyl-D:C-friedooleana-7,9(11)-dien-29-oic acid

C39H52O5 (600.3814542)


A pentacyclic triterpenoid that is the cinnamate ester obtained by the formal condensation of trans-4-coumaric acid with D:C-friedoolean-7,9(11)-dien-3beta-ol-29-oic acid. It is isolated from the stems of Lagenaria siceraria and exhibits cytotoxic activity against human hepatoma SK-Hep 1 cells.

   

(1S,2R,4S)-1-[(1E,3E,5E,7E,9E,11E,13E,15E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohexen-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-ynyl]-2,6,6-trimethylcyclohexane-1,2,4-triol

(1S,2R,4S)-1-[(1E,3E,5E,7E,9E,11E,13E,15E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohexen-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-ynyl]-2,6,6-trimethylcyclohexane-1,2,4-triol

C40H56O4 (600.4178376)


   

Cucurbitachrome B

Cucurbitachrome B

C40H56O4 (600.4178376)


   

Capsanthin-3,6-epoxide

Capsanthin-3,6-epoxide

C40H56O4 (600.4178376)


   

(1S,2R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E,19E,21E,23S)-23,24-dihydroxy-3,7,12,16,20,24-hexamethylpentacosa-1,3,5,7,9,11,13,15,17,19,21-undecaenyl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

(1S,2R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E,19E,21E,23S)-23,24-dihydroxy-3,7,12,16,20,24-hexamethylpentacosa-1,3,5,7,9,11,13,15,17,19,21-undecaenyl]-3,5,5-trimethylcyclohex-3-ene-1,2-diol

C40H56O4 (600.4178376)


   

(13Z)-Violaxanthin

6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-{4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl}-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178376)


(all-e)-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone (all-e)-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (all-e)-violaxanthin can be found in a number of food items such as pepper (c. annuum), mango, yellow bell pepper, and red bell pepper, which makes (all-e)-violaxanthin a potential biomarker for the consumption of these food products.

   
   

(3E,5E,7E,9E,11E,13E,15E,17E)-3-(hydroxymethyl)-1-(4-hydroxy-2,6,6-trimethylcyclohexen-1-yl)-18-(4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl)-7,12,16-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

(3E,5E,7E,9E,11E,13E,15E,17E)-3-(hydroxymethyl)-1-(4-hydroxy-2,6,6-trimethylcyclohexen-1-yl)-18-(4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl)-7,12,16-trimethyloctadeca-3,5,7,9,11,13,15,17-octaen-2-one

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

CID 157009854

CID 157009854

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

PA(8:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

PA(8:0/20:4(6E,8Z,11Z,14Z)-OH(5S))

C31H53O9P (600.3427018)


   

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/8:0)

PA(20:4(6E,8Z,11Z,14Z)-OH(5S)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:4(5Z,7E,11Z,14Z)-OH(9))

PA(8:0/20:4(5Z,7E,11Z,14Z)-OH(9))

C31H53O9P (600.3427018)


   

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/8:0)

PA(20:4(5Z,7E,11Z,14Z)-OH(9)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:3(5Z,8Z,11Z)-O(14R,15S))

PA(8:0/20:3(5Z,8Z,11Z)-O(14R,15S))

C31H53O9P (600.3427018)


   

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/8:0)

PA(20:3(5Z,8Z,11Z)-O(14R,15S)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:3(5Z,8Z,14Z)-O(11S,12R))

PA(8:0/20:3(5Z,8Z,14Z)-O(11S,12R))

C31H53O9P (600.3427018)


   

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/8:0)

PA(20:3(5Z,8Z,14Z)-O(11S,12R)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:3(5Z,11Z,14Z)-O(8,9))

PA(8:0/20:3(5Z,11Z,14Z)-O(8,9))

C31H53O9P (600.3427018)


   

PA(20:3(5Z,11Z,14Z)-O(8,9)/8:0)

PA(20:3(5Z,11Z,14Z)-O(8,9)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:3(8Z,11Z,14Z)-O(5,6))

PA(8:0/20:3(8Z,11Z,14Z)-O(5,6))

C31H53O9P (600.3427018)


   

PA(20:3(8Z,11Z,14Z)-O(5,6)/8:0)

PA(20:3(8Z,11Z,14Z)-O(5,6)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(20))

C31H53O9P (600.3427018)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/8:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(20)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(19S))

C31H53O9P (600.3427018)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/8:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(19S)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(18R))

C31H53O9P (600.3427018)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/8:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(18R)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(17))

C31H53O9P (600.3427018)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/8:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(17)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

PA(8:0/20:4(5Z,8Z,11Z,14Z)-OH(16R))

C31H53O9P (600.3427018)


   

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/8:0)

PA(20:4(5Z,8Z,11Z,14Z)-OH(16R)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

PA(8:0/20:4(5Z,8Z,11Z,13E)-OH(15S))

C31H53O9P (600.3427018)


   

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/8:0)

PA(20:4(5Z,8Z,11Z,13E)-OH(15S)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

PA(8:0/20:4(5Z,8Z,10E,14Z)-OH(12S))

C31H53O9P (600.3427018)


   

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/8:0)

PA(20:4(5Z,8Z,10E,14Z)-OH(12S)/8:0)

C31H53O9P (600.3427018)


   

PA(8:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

PA(8:0/20:4(5E,8Z,12Z,14Z)-OH(11R))

C31H53O9P (600.3427018)


   

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/8:0)

PA(20:4(5E,8Z,12Z,14Z)-OH(11R)/8:0)

C31H53O9P (600.3427018)


   

Benzyl ((2S)-3-(tert-butoxy)-1-(((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)propan-2-yl)amino)-1-oxobutan-2-yl)carbamate

Benzyl ((2S)-3-(tert-butoxy)-1-(((S)-3-cyclohexyl-1-oxo-1-(((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-yl)propan-2-yl)amino)propan-2-yl)amino)-1-oxobutan-2-yl)carbamate

C32H48N4O7 (600.3522817999999)


   

4-Hydroxymyxol

4-Hydroxymyxol

C40H56O4 (600.4178376)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   
   

beta-Carotene-3,4,34-tetrol

beta-Carotene-3,4,34-tetrol

C40H56O4 (600.4178376)


   

(1R,2R,4S)-1-[(1E,3E,5E,7E,9E,11E,13E,15E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohexen-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-ynyl]-2,6,6-trimethylcyclohexane-1,2,4-triol

(1R,2R,4S)-1-[(1E,3E,5E,7E,9E,11E,13E,15E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohexen-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15-octaen-17-ynyl]-2,6,6-trimethylcyclohexane-1,2,4-triol

C40H56O4 (600.4178376)


   

2,3-dihydroxypropyl [3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-hydroxypropyl] hydrogen phosphate

2,3-dihydroxypropyl [3-[(11Z,14Z,17Z,20Z,23Z)-hexacosa-11,14,17,20,23-pentaenoxy]-2-hydroxypropyl] hydrogen phosphate

C32H57O8P (600.3790852)


   

Mgdg O-16:2_8:0

Mgdg O-16:2_8:0

C33H60O9 (600.423711)


   

Mgdg O-19:2_5:0

Mgdg O-19:2_5:0

C33H60O9 (600.423711)


   

Mgdg O-20:2_4:0

Mgdg O-20:2_4:0

C33H60O9 (600.423711)


   

Mgdg O-21:2_3:0

Mgdg O-21:2_3:0

C33H60O9 (600.423711)


   

Mgdg O-17:2_7:0

Mgdg O-17:2_7:0

C33H60O9 (600.423711)


   

Mgdg O-22:2_2:0

Mgdg O-22:2_2:0

C33H60O9 (600.423711)


   

Mgdg O-8:0_16:2

Mgdg O-8:0_16:2

C33H60O9 (600.423711)


   

Mgdg O-18:2_6:0

Mgdg O-18:2_6:0

C33H60O9 (600.423711)


   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

[(4E,8E,12E)-3-hydroxy-2-(propanoylamino)tetracosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-(propanoylamino)tetracosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-2-(heptanoylamino)-3-hydroxyicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-(heptanoylamino)-3-hydroxyicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-2-acetamido-3-hydroxypentacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-acetamido-3-hydroxypentacosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-3-hydroxy-2-(octanoylamino)nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-(octanoylamino)nonadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

[3-hydroxy-2-[[(9Z,12Z,15Z)-octadeca-9,12,15-trienoyl]amino]nonyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-2-(butanoylamino)-3-hydroxytricosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-(butanoylamino)-3-hydroxytricosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-3-hydroxy-2-(nonanoylamino)octadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-(nonanoylamino)octadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-3-hydroxy-2-(pentanoylamino)docosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-(pentanoylamino)docosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-2-(hexanoylamino)-3-hydroxyhenicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-(hexanoylamino)-3-hydroxyhenicosa-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z)-octadeca-9,12-dienoyl]amino]non-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]dodeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]trideca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate

[2-[[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoyl]amino]-3-hydroxyundecyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-3-hydroxy-2-(undecanoylamino)hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-(undecanoylamino)hexadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-2-(decanoylamino)-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-(decanoylamino)-3-hydroxyheptadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(9Z,12Z)-hexadeca-9,12-dienoyl]amino]-3-hydroxyundec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-2-[[(9Z,12Z)-heptadeca-9,12-dienoyl]amino]-3-hydroxydec-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   
   

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-heptanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C32H56O10 (600.3873276)


   

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

[1-pentanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-octadeca-9,12-dienoate

C32H56O10 (600.3873276)


   

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

[1-butanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-nonadeca-9,12-dienoate

C32H56O10 (600.3873276)


   

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

[1-propanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-icosa-11,14-dienoate

C32H56O10 (600.3873276)


   

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

[1-hexanoyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (9Z,12Z)-heptadeca-9,12-dienoate

C32H56O10 (600.3873276)


   

[1-acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

[1-acetyloxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxypropan-2-yl] (11Z,14Z)-henicosa-11,14-dienoate

C32H56O10 (600.3873276)


   

[(E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

[(E)-3-hydroxy-2-[[(9Z,12Z)-nonadeca-9,12-dienoyl]amino]oct-4-enyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-3-hydroxy-2-(tridecanoylamino)tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-3-hydroxy-2-(tridecanoylamino)tetradeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E,12E)-2-(dodecanoylamino)-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E,12E)-2-(dodecanoylamino)-3-hydroxypentadeca-4,8,12-trienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (11Z,14Z,17Z)-icosa-11,14,17-trienoate

(1-nonanoyloxy-3-phosphonooxypropan-2-yl) (11Z,14Z,17Z)-icosa-11,14,17-trienoate

C32H57O8P (600.3790852)


   

(1-heptanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z)-docosa-10,13,16-trienoate

(1-heptanoyloxy-3-phosphonooxypropan-2-yl) (10Z,13Z,16Z)-docosa-10,13,16-trienoate

C32H57O8P (600.3790852)


   

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

[1-phosphonooxy-3-[(Z)-tridec-9-enoyl]oxypropan-2-yl] (9Z,12Z)-hexadeca-9,12-dienoate

C32H57O8P (600.3790852)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate

C32H57O8P (600.3790852)


   

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

(1-phosphonooxy-3-undecanoyloxypropan-2-yl) (9Z,12Z,15Z)-octadeca-9,12,15-trienoate

C32H57O8P (600.3790852)


   

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-1-[(1R)-4-hydroxy-1,2,2-trimethylcyclopentyl]-20-[(1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylicosa-2,4,6,8,10,12,14,16,18-nonaene-1,20-dione

(2E,4E,6E,8E,10E,12E,14E,16E,18E)-1-[(1R)-4-hydroxy-1,2,2-trimethylcyclopentyl]-20-[(1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl]-4,8,13,17-tetramethylicosa-2,4,6,8,10,12,14,16,18-nonaene-1,20-dione

C40H56O4 (600.4178376)


   

[(4E,8E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-2-[[(Z)-dodec-5-enoyl]amino]-3-hydroxypentadeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

[(4E,8E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

[(4E,8E)-3-hydroxy-2-[[(Z)-tridec-8-enoyl]amino]tetradeca-4,8-dienyl] 2-(trimethylazaniumyl)ethyl phosphate

C32H61N2O6P (600.4267015999999)


   

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (9E,11E,13E)-hexadeca-9,11,13-trienoate

(1-phosphonooxy-3-tridecanoyloxypropan-2-yl) (9E,11E,13E)-hexadeca-9,11,13-trienoate

C32H57O8P (600.3790852)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C32H57O8P (600.3790852)


   

[1-phosphonooxy-3-[(E)-tridec-8-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

[1-phosphonooxy-3-[(E)-tridec-8-enoyl]oxypropan-2-yl] (4E,7E)-hexadeca-4,7-dienoate

C32H57O8P (600.3790852)


   

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-hydroxypropoxy]propyl]-trimethylazanium

[1-carboxy-3-[3-[(5E,8E,11E,14E,17E,20E,23E)-hexacosa-5,8,11,14,17,20,23-heptaenoyl]oxy-2-hydroxypropoxy]propyl]-trimethylazanium

C36H58NO6+ (600.4263908)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (6E,9E,12E)-octadeca-6,9,12-trienoate

C32H57O8P (600.3790852)


   

2-[hydroxy-[(2R)-2-hydroxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(2R)-2-hydroxy-3-[(5E,8E,11E,14E)-tetracosa-5,8,11,14-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C32H59NO7P+ (600.4028934)


   

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-3-phosphonooxy-2-undecanoyloxypropyl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C32H57O8P (600.3790852)


   

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

[(2R)-1-phosphonooxy-3-undecanoyloxypropan-2-yl] (9E,12E,15E)-octadeca-9,12,15-trienoate

C32H57O8P (600.3790852)


   

2-[hydroxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-hydroxy-3-[(12Z,15Z,18Z,21Z)-tetracosa-12,15,18,21-tetraenoyl]oxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C32H59NO7P+ (600.4028934)


   

2-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoyl]oxy-3-propanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C31H55NO8P+ (600.36651)


   

2-[[2-butanoyloxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-butanoyloxy-3-[(8Z,11Z,14Z,17Z)-icosa-8,11,14,17-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C32H59NO7P+ (600.4028934)


   

2-[[2-acetyloxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-acetyloxy-3-[(10Z,13Z,16Z,19Z)-docosa-10,13,16,19-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C32H59NO7P+ (600.4028934)


   

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[2-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl]oxy-3-pentanoyloxypropoxy]phosphoryl]oxyethyl-trimethylazanium

C31H55NO8P+ (600.36651)


   

2-[[3-heptanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-heptanoyloxy-2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C31H55NO8P+ (600.36651)


   

2-[[2-hexanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-hexanoyloxy-3-[(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoxy]propoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C32H59NO7P+ (600.4028934)


   

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[2-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoyl]oxy-3-octoxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C32H59NO7P+ (600.4028934)


   

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[3-[(4Z,7Z,10Z,13Z)-hexadeca-4,7,10,13-tetraenoxy]-2-octanoyloxypropoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C32H59NO7P+ (600.4028934)


   

all-trans-neoxanthin

all-trans-neoxanthin

C40H56O4 (600.4178376)


A neoxanthin in which all of the double bonds have trans geometry. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

5,6:5,8-Diepoxy-5,6,5,8-tetrahydro-beta,beta-carotene-3,3-diol

5,6:5,8-Diepoxy-5,6,5,8-tetrahydro-beta,beta-carotene-3,3-diol

C40H56O4 (600.4178376)


   

all-trans-Violaxanthin

all-trans-Violaxanthin

C40H56O4 (600.4178376)


The all-trans-stereoisomer of violaxanthin.

   

FAHFA 14:4/O-26:7

FAHFA 14:4/O-26:7

C40H56O4 (600.4178376)


   

FAHFA 15:4/O-25:7

FAHFA 15:4/O-25:7

C40H56O4 (600.4178376)


   

FAHFA 15:5/O-25:6

FAHFA 15:5/O-25:6

C40H56O4 (600.4178376)


   

FAHFA 16:4/O-24:7

FAHFA 16:4/O-24:7

C40H56O4 (600.4178376)


   

FAHFA 16:5/O-24:6

FAHFA 16:5/O-24:6

C40H56O4 (600.4178376)


   

FAHFA 17:4/O-23:7

FAHFA 17:4/O-23:7

C40H56O4 (600.4178376)


   

FAHFA 17:5/O-23:6

FAHFA 17:5/O-23:6

C40H56O4 (600.4178376)


   

FAHFA 18:4/O-22:7

FAHFA 18:4/O-22:7

C40H56O4 (600.4178376)


   

FAHFA 18:5/O-22:6

FAHFA 18:5/O-22:6

C40H56O4 (600.4178376)


   

FAHFA 18:6/O-22:5

FAHFA 18:6/O-22:5

C40H56O4 (600.4178376)


   

FAHFA 19:4/O-21:7

FAHFA 19:4/O-21:7

C40H56O4 (600.4178376)


   

FAHFA 19:5/O-21:6

FAHFA 19:5/O-21:6

C40H56O4 (600.4178376)


   

FAHFA 19:6/O-21:5

FAHFA 19:6/O-21:5

C40H56O4 (600.4178376)


   

FAHFA 20:5/O-20:6

FAHFA 20:5/O-20:6

C40H56O4 (600.4178376)


   

FAHFA 20:6/O-20:5

FAHFA 20:6/O-20:5

C40H56O4 (600.4178376)


   

FAHFA 21:5/O-19:6

FAHFA 21:5/O-19:6

C40H56O4 (600.4178376)


   

FAHFA 21:6/O-19:5

FAHFA 21:6/O-19:5

C40H56O4 (600.4178376)


   

FAHFA 21:7/O-19:4

FAHFA 21:7/O-19:4

C40H56O4 (600.4178376)


   

FAHFA 22:5/O-18:6

FAHFA 22:5/O-18:6

C40H56O4 (600.4178376)


   

FAHFA 22:6/O-18:5

FAHFA 22:6/O-18:5

C40H56O4 (600.4178376)


   

FAHFA 22:7/O-18:4

FAHFA 22:7/O-18:4

C40H56O4 (600.4178376)


   

FAHFA 23:6/O-17:5

FAHFA 23:6/O-17:5

C40H56O4 (600.4178376)


   

FAHFA 23:7/O-17:4

FAHFA 23:7/O-17:4

C40H56O4 (600.4178376)


   

FAHFA 24:6/O-16:5

FAHFA 24:6/O-16:5

C40H56O4 (600.4178376)


   

FAHFA 24:7/O-16:4

FAHFA 24:7/O-16:4

C40H56O4 (600.4178376)


   

FAHFA 25:6/O-15:5

FAHFA 25:6/O-15:5

C40H56O4 (600.4178376)


   

FAHFA 25:7/O-15:4

FAHFA 25:7/O-15:4

C40H56O4 (600.4178376)


   

FAHFA 26:7/O-14:4

FAHFA 26:7/O-14:4

C40H56O4 (600.4178376)


   
   
   
   
   
   
   
   
   
   
   
   
   

PA P-16:1/14:1 or PA O-16:2/14:1

PA P-16:1/14:1 or PA O-16:2/14:1

C33H61O7P (600.4154685999999)