Exact Mass: 475.3298
Exact Mass Matches: 475.3298
Found 178 metabolites which its exact mass value is equals to given mass value 475.3298
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Netilmicin
Netilmicin is a semisynthetic 1-N-ethyl derivative of sisomycin, an aminoglycoside antibiotic with action similar to gentamicin, but less ear and kidney toxicity. [PubChem] Netilmicin inhibits protein synthesis in susceptible organisms by binding to the bacterial 30S ribosomal subunit and interfering with mRNA binding and the acceptor tRNA site. The bactericidal effect of netilmiicin is not fully understood. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic
Marckine
Alangimarckine
A member of the class of beta-carbolines that is tubulosan bearing methoxy groups at positions 10 and 11 as well as a hydroxy group at position 9.
Hydrocortamate
Hydrocortamate is a synthetic glucocorticoid used for its anti-inflammatory or immunosuppressive properties to treat inflammation due to corticosteroid-responsive dermatoses. Glucocorticoids are a class of steroid hormones characterised by an ability to bind with the cortisol receptor and trigger a variety of important cardiovascular, metabolic, immunologic and homeostatic effects. C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid
N-Docosahexaenoyl phenylalanine
N-docosahexaenoyl phenylalanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Docosahexaenoyl amide of Phenylalanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Docosahexaenoyl phenylalanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Docosahexaenoyl phenylalanine is therefore classified as a very long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
(7Z,10Z,13Z,16Z)-Docosatetraenoylcarnitine
(7Z,10Z,13Z,16Z)-Docosatetraenoylcarnitine is an acylcarnitine. More specifically, it is an (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (7Z,10Z,13Z,16Z)-Docosatetraenoylcarnitine is therefore classified as a very-long chain AC. As a very long-chain acylcarnitine (7Z,10Z,13Z,16Z)-Docosatetraenoylcarnitine is generally formed in the cytoplasm from very long acyl groups synthesized by fatty acid synthases or obtained from the diet. Very-long-chain fatty acids are generally too long to be involved in mitochondrial beta-oxidation. As a result peroxisomes are the main organelle where very-long-chain fatty acids are metabolized and their acylcarnitines synthesized (PMID: 18793625). Altered levels of very long-chain acylcarnitines can serve as useful markers for inherited disorders of peroxisomal metabolism. The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Adrenoylcarnitine
Z-Leu-leu-leu-al
Benzyl N-[(2S)-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-4-methylpentanoyl]-N-[(2S)-4-methyl-1-oxopentan-2-yl]carbamate
Z-LLNle-CHO
C27H41NO6_(7E)-11-Hydroxy-3-isobutyl-4,5,8,13,13-pentamethyl-3,3a,4,6a,9,10,11,11a,14a,15-decahydro-1H-[1,3]dioxolo[9,10]oxacyclododecino[2,3-d]isoindole-1,16(2H)-dione
Cys Ile Ile Lys
Cys Ile Lys Ile
Cys Ile Lys Leu
Cys Ile Leu Lys
Cys Lys Ile Ile
Cys Lys Ile Leu
Cys Lys Leu Ile
Cys Lys Leu Leu
Cys Leu Ile Lys
Cys Leu Lys Ile
Cys Leu Lys Leu
Cys Leu Leu Lys
Ile Cys Ile Lys
Ile Cys Lys Ile
Ile Cys Lys Leu
Ile Cys Leu Lys
Ile Ile Cys Lys
Ile Ile Lys Cys
Ile Lys Cys Ile
Ile Lys Cys Leu
Ile Lys Ile Cys
Ile Lys Leu Cys
Ile Leu Cys Lys
Ile Leu Lys Cys
Lys Cys Ile Ile
Lys Cys Ile Leu
Lys Cys Leu Ile
Lys Cys Leu Leu
Lys Ile Cys Ile
Lys Ile Cys Leu
Lys Ile Ile Cys
Lys Ile Leu Cys
Lys Leu Cys Ile
Lys Leu Cys Leu
Lys Leu Ile Cys
Lys Leu Leu Cys
Lys Met Val Val
Lys Val Met Val
Lys Val Val Met
Leu Cys Ile Lys
Leu Cys Lys Ile
Leu Cys Lys Leu
Leu Cys Leu Lys
Leu Ile Cys Lys
Leu Ile Lys Cys
Leu Lys Cys Ile
Leu Lys Cys Leu
Leu Lys Ile Cys
Leu Lys Leu Cys
Leu Leu Cys Lys
Leu Leu Lys Cys
Met Lys Val Val
Met Val Lys Val
Met Val Val Lys
Val Lys Met Val
Val Lys Val Met
Val Met Lys Val
Val Met Val Lys
Val Val Lys Met
Val Val Met Lys
MG-132
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015853 - Cysteine Proteinase Inhibitors C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C2160 - Proteasome Inhibitor D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D007976 - Leupeptins D000970 - Antineoplastic Agents C471 - Enzyme Inhibitor
hydrocortamate
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid
1-[[2-hydroxy-3-[4-(2-methoxyethyl)phenoxy]propyl]-propan-2-ylamino]-3-[4-(2-methoxyethyl)phenoxy]propan-2-ol
2-{4-[N-(5,6-diphenylpyrazin-2-yl)-N-isopropylamino]butyloxy}acetic acid tert-butyl ester
3-Pyridinemethanol, 4-[4-fluoro-2-(phenylmethoxy)phenyl]-a-methyl-2,6-bis(1-methylethyl)-5-(1-penten-1-yl)-
1-HYDROXY-N-[4-(2,4-DI-TERT-PENTYLPHENOXY)BUTYL]-2-NAPHTHAMIDE
Z-Leu-Leu-Nle-aldehyde
D004791 - Enzyme Inhibitors > D000091062 - Gamma Secretase Inhibitors and Modulators Z-LLNle-CHO (Z-Leu-Leu-Nle-CHO) is a γ-secretase inhibitor I. Z-LLNle-CHO induces caspase and ROS-dependent apoptosis by blocking the Akt-mediated pro-survival pathway. Z-LLNle-CHO can be used in cancer research, such as breast cancer and leukaemia[1][2].
2(3H)-Furanone, 5-hexyldihydro-4-methyl-, mixt. with 2-(diphenylmethoxy)-N,N-dimethylethanamine hydrochloride (1:1)
1-HYDROXY-N-(2-TETRADECYLOXYPHENYL)-2-NAPHTHALENECARBOXAMIDE
(2S,3R,4R,5R)-2-[(1S,2S,3R,4S,6R)-4-amino-3-[[(2S,3R)-3-amino-6-(aminomethyl)-3,4-dihydro-2H-pyran-2-yl]oxy]-6-(ethylamino)-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol
Benzyl N-[(2S)-2-[[(2S)-2-amino-4-methylpentanoyl]amino]-4-methylpentanoyl]-N-[(2S)-4-methyl-1-oxopentan-2-yl]carbamate
N-[4-methyl-1-[[4-methyl-1-[[(2S)-4-methyl-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]carbamic acid (phenylmethyl) ester
(8R,9R,10R)-10-(hydroxymethyl)-N-(4-methoxyphenyl)-9-[4-(4-methylpent-1-ynyl)phenyl]-1,6-diazabicyclo[6.2.0]decane-6-carboxamide
N-[(4S,7S,8S)-8-methoxy-4,7,10-trimethyl-5-(4-oxanylmethyl)-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]propanamide
N-[(4S,7R,8R)-8-methoxy-4,7,10-trimethyl-5-(4-oxanylmethyl)-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]propanamide
N-[(4S,7R,8S)-8-methoxy-4,7,10-trimethyl-5-(4-oxanylmethyl)-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]propanamide
N-[(5S,6S,9S)-5-methoxy-3,6,9-trimethyl-2-oxo-8-propyl-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-4-oxanecarboxamide
N-[(5R,6S,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-8-propyl-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-4-oxanecarboxamide
N-[(5S,6S,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-8-propyl-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-4-oxanecarboxamide
N-[(5S,6R,9S)-5-methoxy-3,6,9-trimethyl-2-oxo-8-propyl-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-4-oxanecarboxamide
N-[(5R,6R,9S)-5-methoxy-3,6,9-trimethyl-2-oxo-8-propyl-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-4-oxanecarboxamide
N-[(5R,6R,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-8-propyl-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-4-oxanecarboxamide
N-[(4R,7R,8R)-8-methoxy-4,7,10-trimethyl-5-(4-oxanylmethyl)-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]propanamide
N-[(4R,7S,8S)-8-methoxy-4,7,10-trimethyl-5-(4-oxanylmethyl)-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]propanamide
N-[(4S,7S,8R)-8-methoxy-4,7,10-trimethyl-5-(4-oxanylmethyl)-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]propanamide
N-[(4R,7S,8R)-8-methoxy-4,7,10-trimethyl-5-(4-oxanylmethyl)-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]propanamide
2-amino-2-methoxypropane-1,3-diol;(E)-7-[(1R,2R,3R,5S)-3,5-dihydroxy-2-[(3S)-3-hydroxyoct-1-enyl]cyclopentyl]hept-5-enoic acid
[3-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-2-hydroxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
(E)-3-hydroxy-2-[[(Z)-2-hydroxytetradec-9-enoyl]amino]dec-4-ene-1-sulfonic acid
(4E,8E)-3-hydroxy-2-(2-hydroxydodecanoylamino)dodeca-4,8-diene-1-sulfonic acid
(E)-3-hydroxy-2-[[(Z)-2-hydroxydodec-5-enoyl]amino]dodec-4-ene-1-sulfonic acid
(E)-3-hydroxy-2-[[(Z)-2-hydroxytridec-8-enoyl]amino]undec-4-ene-1-sulfonic acid
(E)-3-hydroxy-2-(tridecanoylamino)dodec-4-ene-1-sulfonic acid
3-hydroxy-2-[[(Z)-tetradec-9-enoyl]amino]undecane-1-sulfonic acid
(E)-3-hydroxy-2-(undecanoylamino)tetradec-4-ene-1-sulfonic acid
(E)-3-hydroxy-2-(pentadecanoylamino)dec-4-ene-1-sulfonic acid
3-hydroxy-2-[[(Z)-pentadec-9-enoyl]amino]decane-1-sulfonic acid
(E)-3-hydroxy-2-(tetradecanoylamino)undec-4-ene-1-sulfonic acid
(E)-2-(decanoylamino)-3-hydroxypentadec-4-ene-1-sulfonic acid
(E)-2-(dodecanoylamino)-3-hydroxytridec-4-ene-1-sulfonic acid
3-hydroxy-2-[[(Z)-tridec-9-enoyl]amino]dodecane-1-sulfonic acid
2-[[(4E,8E,12E)-2-(butanoylamino)-3-hydroxytetradeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[hydroxy-[(4E,8E,12E)-3-hydroxy-2-(propanoylamino)pentadeca-4,8,12-trienoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[(4E,8E,12E)-2-acetamido-3-hydroxyhexadeca-4,8,12-trienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
Tubulosine
A member of the class of beta-carbolines that is tubulosan bearing methoxy groups at positions 10 and 11 and a hydroxy group at the 8 position.
(1S,2S,3R,4S,6R)-4-amino-3-[(2S,3R)-3-amino-6-(aminomethyl)-3,4-dihydro-2H-pyran-2-yloxy]-6-(ethylamino)-2-hydroxycyclohexyl 3-deoxy-4-C-methyl-3-(methylamino)-beta-L-arabinopyranoside
(7Z,10Z,13Z,16Z)-docosatetraenoylcarnitine
An O-acylcarnitine having (7Z,10Z,13Z,16Z)-docosatetraenoyl as the acyl substituent.
N-tetracosanoyltaurine
A fatty acid-taurine conjugate derived from tetracosanoic acid.
Benzyl n-[(2s)-4-methyl-1-[[(2r)-4-methyl-1-[[(2s)-4-methyl-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]carbamate
N-hexanoylsphingosine 1-phosphate(2-)
A ceramide 1-phosphate(2-) in which the ceramide N-acyl group is specified as hexanoyl; major species at pH 7.3.