Exact Mass: 463.34098900000004

Exact Mass Matches: 463.34098900000004

Found 113 metabolites which its exact mass value is equals to given mass value 463.34098900000004, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Gentamicin C2

Gentamicin C2 Pentaacetate Salt

C20H41N5O7 (463.30058360000004)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic C254 - Anti-Infective Agent > C258 - Antibiotic

   
   

Sagamicin

2-[4,6-Diamino-3-[3-amino-6-(methylaminomethyl)oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol

C20H41N5O7 (463.3005836)


Micronomicin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52093-21-7 (retrieved 2024-10-09) (CAS RN: 52093-21-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

gentamicin C2a

gentamicin C2a

C20H41N5O7 (463.30058360000004)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins

   

LysoPE(P-18:1(9Z)/0:0)

(2-aminoethoxy)[(2R)-2-hydroxy-3-[(1Z,9Z)-octadeca-1,9-dien-1-yloxy]propoxy]phosphinic acid

C23H46NO6P (463.30625860000004)


LysoPE(P-18:1(9Z)/0:0) is a phospho-ether lipid. Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodelling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine, and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin and choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0, and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.

   

3-Hydroxyarachidonoylcarnitine

3-{[(5Z,8Z,11Z,14Z)-3-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-4-(trimethylammonio)butanoic acid

C27H45NO5 (463.32975600000003)


3-Hydroxyarachidonoylcarnitine is an acylcarnitine. More specifically, it is an (8Z,11Z,14Z)-hydroxyicosa-5,8,11,14-tetraenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxyarachidonoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Hydroxyarachidonoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5Z,8S,9E,11Z,14Z)-8-Hydroxyicosa-5,9,11,14-tetraenoylcarnitine

3-[(8-hydroxyicosa-5,9,11,14-tetraenoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H45NO5 (463.32975600000003)


(5Z,8S,9E,11Z,14Z)-8-hydroxyicosa-5,9,11,14-tetraenoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,8S,9E,11Z,14Z)-8-hydroxyicosa-5,9,11,14-tetraenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,8S,9E,11Z,14Z)-8-hydroxyicosa-5,9,11,14-tetraenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z,8S,9E,11Z,14Z)-8-hydroxyicosa-5,9,11,14-tetraenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5Z,8Z,10E,12S,14Z)-12-Hydroxyicosa-5,8,10,14-tetraenoylcarnitine

3-[(12-hydroxyicosa-5,8,10,14-tetraenoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H45NO5 (463.32975600000003)


(5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z,8Z,10E,12S,14Z)-12-hydroxyicosa-5,8,10,14-tetraenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5E,7Z,11Z,14Z)-9-Hydroxyicosa-5,7,11,14-tetraenoylcarnitine

3-[(9-hydroxyicosa-5,7,11,14-tetraenoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H45NO5 (463.32975600000003)


(5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoylcarnitine is an acylcarnitine. More specifically, it is an (5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5E,7Z,11Z,14Z)-9-hydroxyicosa-5,7,11,14-tetraenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5Z,8Z,11Z,14Z)-3-Icosa-5,8,11,14-tetraenoylcarnitine

3-[(3-hydroxyicosa-5,8,11,14-tetraenoyl)oxy]-4-(trimethylazaniumyl)butanoate

C27H45NO5 (463.32975600000003)


(5Z,8Z,11Z,14Z)-3-Icosa-5,8,11,14-tetraenoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,8Z,11Z,14Z)-3-hydroxyicosa-5,8,11,14-tetraenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,8Z,11Z,14Z)-3-Icosa-5,8,11,14-tetraenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z,8Z,11Z,14Z)-3-Icosa-5,8,11,14-tetraenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5Z,14Z,17Z)-Henicosa-5,14,17-trienoylcarnitine

3-(henicosa-5,14,17-trienoyloxy)-4-(trimethylazaniumyl)butanoate

C28H49NO4 (463.36613940000007)


(5Z,14Z,17Z)-Henicosa-5,14,17-trienoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,14Z,17Z)-henicosa-5,14,17-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,14Z,17Z)-Henicosa-5,14,17-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z,14Z,17Z)-Henicosa-5,14,17-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(10E)-11-(3,4-Dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine

3-{[11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoyl]oxy}-4-(trimethylazaniumyl)butanoate

C27H45NO5 (463.32975600000003)


(10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine is an acylcarnitine. More specifically, it is an (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

11-{3,4-Dimethyl-5-[(1E)-prop-1-en-1-yl]furan-2-yl}undecanoylcarnitine

3-({11-[3,4-dimethyl-5-(prop-1-en-1-yl)furan-2-yl]undecanoyl}oxy)-4-(trimethylazaniumyl)butanoate

C27H45NO5 (463.32975600000003)


11-{3,4-dimethyl-5-[(1E)-prop-1-en-1-yl]furan-2-yl}undecanoylcarnitine is an acylcarnitine. More specifically, it is an 11-{3,4-dimethyl-5-[(1E)-prop-1-en-1-yl]furan-2-yl}undecanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 11-{3,4-dimethyl-5-[(1E)-prop-1-en-1-yl]furan-2-yl}undecanoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 11-{3,4-dimethyl-5-[(1E)-prop-1-en-1-yl]furan-2-yl}undecanoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-Oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoylcarnitine

3-({10-[3-(oct-2-en-1-yl)oxiran-2-yl]deca-5,8-dienoyl}oxy)-4-(trimethylazaniumyl)butanoate

C27H45NO5 (463.32975600000003)


(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoylcarnitine is an acylcarnitine. More specifically, it is an (5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5Z,8Z)-10-[(2S,3R)-3-[(2Z)-oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

Chenodeoxycholylalanine

2-(4-{5,9-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}pentanamido)propanoic acid

C27H45NO5 (463.32975600000003)


Chenodeoxycholylalanine belongs to a class of molecules known as bile acid-amino acid conjugates. These are bile acid conjugates that consist of a primary bile acid such as cholic acid, doxycholic acid and chenodeoxycholic acid, conjugated to an amino acid. Chenodeoxycholylalanine consists of the bile acid chenodeoxycholic acid conjugated to the amino acid Alanine conjugated at the C24 acyl site.Bile acids play an important role in regulating various physiological systems, such as fat digestion, cholesterol metabolism, vitamin absorption, liver function, and enterohepatic circulation through their combined signaling, detergent, and antimicrobial mechanisms (PMID: 34127070). Bile acids also act as detergents in the gut and support the absorption of fats through the intestinal membrane. These same properties allow for the disruption of bacterial membranes, thereby allowing them to serve a bacteriocidal or bacteriostatic function. In humans (and other mammals) bile acids are normally conjugated with the amino acids glycine and taurine by the liver. This conjugation catalyzed by two liver enzymes, bile acid CoA ligase (BAL) and bile acid CoA: amino acid N-acyltransferase (BAT). Glycine and taurine bound BAs are also referred to as bile salts due to their decreased pKa and complete ionization resulting in these compounds being present as anions in vivo. Unlike glycine and taurine-conjugated bile acids, these recently discovered bile acids, such as Chenodeoxycholylalanine, are produced by the gut microbiota, making them secondary bile acids (PMID: 32103176) or microbially conjugated bile acids (MCBAs) (PMID: 34127070). Evidence suggests that these bile acid-amino acid conjugates are produced by microbes belonging to Clostridia species (PMID: 32103176). These unusual bile acid-amino acid conjugates are found in higher frequency in patients with inflammatory bowel disease (IBD), cystic fibrosis (CF) and in infants (PMID: 32103176). Chenodeoxycholylalanine appears to act as an agonist for the farnesoid X receptor (FXR) and it can also lead to reduced expression of bile acid synthesis genes (PMID: 32103176). It currently appears that microbially conjugated bile acids (MCBAs) or amino acid-bile acid conjugates are only conjugated to cholic acid, deoxycholic acid and chenodeoxycholic acid (PMID: 34127070). It has been estimated that if microbial conjugation of bile acids is very promiscuous and occurs for all potential oxidized, epimerized, and dehydroxylated states of each hydroxyl group present on cholic acid (C3, C7, C12) in addition to ring orientation, the total number of potential human bile acid conjugates could be over 2800 (PMID: 34127070).

   

Deoxycholylalanine

2-(4-{5,16-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl}pentanamido)propanoic acid

C27H45NO5 (463.32975600000003)


Deoxycholylalanine belongs to a class of molecules known as bile acid-amino acid conjugates. These are bile acid conjugates that consist of a primary bile acid such as cholic acid, doxycholic acid and chenodeoxycholic acid, conjugated to an amino acid. Deoxycholylalanine consists of the bile acid deoxycholic acid conjugated to the amino acid Alanine conjugated at the C24 acyl site.Bile acids play an important role in regulating various physiological systems, such as fat digestion, cholesterol metabolism, vitamin absorption, liver function, and enterohepatic circulation through their combined signaling, detergent, and antimicrobial mechanisms (PMID: 34127070). Bile acids also act as detergents in the gut and support the absorption of fats through the intestinal membrane. These same properties allow for the disruption of bacterial membranes, thereby allowing them to serve a bacteriocidal or bacteriostatic function. In humans (and other mammals) bile acids are normally conjugated with the amino acids glycine and taurine by the liver. This conjugation catalyzed by two liver enzymes, bile acid CoA ligase (BAL) and bile acid CoA: amino acid N-acyltransferase (BAT). Glycine and taurine bound BAs are also referred to as bile salts due to their decreased pKa and complete ionization resulting in these compounds being present as anions in vivo. Unlike glycine and taurine-conjugated bile acids, these recently discovered bile acids, such as Deoxycholylalanine, are produced by the gut microbiota, making them secondary bile acids (PMID: 32103176) or microbially conjugated bile acids (MCBAs) (PMID: 34127070). Evidence suggests that these bile acid-amino acid conjugates are produced by microbes belonging to Clostridia species (PMID: 32103176). These unusual bile acid-amino acid conjugates are found in higher frequency in patients with inflammatory bowel disease (IBD), cystic fibrosis (CF) and in infants (PMID: 32103176). Deoxycholylalanine appears to act as an agonist for the farnesoid X receptor (FXR) and it can also lead to reduced expression of bile acid synthesis genes (PMID: 32103176). It currently appears that microbially conjugated bile acids (MCBAs) or amino acid-bile acid conjugates are only conjugated to cholic acid, deoxycholic acid and chenodeoxycholic acid (PMID: 34127070). It has been estimated that if microbial conjugation of bile acids is very promiscuous and occurs for all potential oxidized, epimerized, and dehydroxylated states of each hydroxyl group present on cholic acid (C3, C7, C12) in addition to ring orientation, the total number of potential human bile acid conjugates could be over 2800 (PMID: 34127070).

   

Gentamicin C2

2-[(4,6-diamino-3-{[3-amino-6-(1-aminoethyl)oxan-2-yl]oxy}-2-hydroxycyclohexyl)oxy]-5-methyl-4-(methylamino)oxane-3,5-diol

C20H41N5O7 (463.30058360000004)


   

Micronomicin

2-{[4,6-diamino-3-({3-amino-6-[(methylamino)methyl]oxan-2-yl}oxy)-2-hydroxycyclohexyl]oxy}-5-methyl-4-(methylamino)oxane-3,5-diol

C20H41N5O7 (463.30058360000004)


   

Peregrine

11-ethyl-4-hydroxy-6,8,16-trimethoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-yl acetate

C26H41NO6 (463.29337260000005)


   
   

Dihydrolycolucine

Dihydrolycolucine

C30H45N3O (463.356244)


   
   

Phosphatidylethanolamine lyso alkenyl 18:1

Phosphatidylethanolamine lyso alkenyl 18:1

C23H46NO6P (463.30625860000004)


   
   

Alanine conjugated chenodeoxycholic acid

Alanine conjugated chenodeoxycholic acid

C27H45NO5 (463.32975600000003)


   

3-((4R)-4-((3R,5R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamido)propanoic acid

"3-((4R)-4-((3R,5R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamido)propanoic acid"

C27H45NO5 (463.32975600000003)


   

N-((4R)-4-((3R,5S,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)-N-methylglycine

"N-((4R)-4-((3R,5S,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)-N-methylglycine"

C27H45NO5 (463.32975600000003)


   

N-((4R)-4-((3R,5S,7S,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)-N-methylglycine

"N-((4R)-4-((3R,5S,7S,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)-N-methylglycine"

C27H45NO5 (463.32975600000003)


   

((R)-4-((3R,5R,6S,7R,8S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent-2-enoyl)glycine

"((R)-4-((3R,5R,6S,7R,8S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent-2-enoyl)glycine"

C26H41NO6 (463.29337260000005)


   

CAR 20:4;O

3-{[(5Z,8Z,11Z,14Z)-3-hydroxyicosa-5,8,11,14-tetraenoyl]oxy}-4-(trimethylazaniumyl)butanoate

C27H45NO5 (463.32975600000003)


   

AQ-RA 741

11-[[4-[4-(Diethylamino)butyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-B][1,4]benzodiazepin-6-one

C27H37N5O2 (463.2947102)


   

tert-butyl 2-[2-[(2-amino-2-cyclohexylacetyl)amino]-3,3-dimethylbutanoyl]-3,3a,4,5,6,6a-hexahydro-1H-cyclopenta[c]pyrrole-3-carboxylate

tert-butyl 2-[2-[(2-amino-2-cyclohexylacetyl)amino]-3,3-dimethylbutanoyl]-3,3a,4,5,6,6a-hexahydro-1H-cyclopenta[c]pyrrole-3-carboxylate

C26H45N3O4 (463.34098900000004)


   

(3β,5α,6α,16β)-Cevane-3,6,14,16,20-pentol

(3β,5α,6α,16β)-Cevane-3,6,14,16,20-pentol

C27H45NO5 (463.32975600000003)


   

Sarcoursodeoxycholic acid

Sarcoursodeoxycholic acid

C27H45NO5 (463.32975600000003)


D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids

   

3,7,12-Trihydroxycoprostanate

3,7,12-Trihydroxycoprostanate

C28H47O5- (463.3423312)


   
   
   

(5Z,14Z,17Z)-Henicosa-5,14,17-trienoylcarnitine

(5Z,14Z,17Z)-Henicosa-5,14,17-trienoylcarnitine

C28H49NO4 (463.36613940000007)


   

(5Z,8Z,11Z,14Z)-3-Icosa-5,8,11,14-tetraenoylcarnitine

(5Z,8Z,11Z,14Z)-3-Icosa-5,8,11,14-tetraenoylcarnitine

C27H45NO5 (463.32975600000003)


   

(5E,7Z,11Z,14Z)-9-Hydroxyicosa-5,7,11,14-tetraenoylcarnitine

(5E,7Z,11Z,14Z)-9-Hydroxyicosa-5,7,11,14-tetraenoylcarnitine

C27H45NO5 (463.32975600000003)


   

(5Z,8S,9E,11Z,14Z)-8-Hydroxyicosa-5,9,11,14-tetraenoylcarnitine

(5Z,8S,9E,11Z,14Z)-8-Hydroxyicosa-5,9,11,14-tetraenoylcarnitine

C27H45NO5 (463.32975600000003)


   

(5Z,8Z,10E,12S,14Z)-12-Hydroxyicosa-5,8,10,14-tetraenoylcarnitine

(5Z,8Z,10E,12S,14Z)-12-Hydroxyicosa-5,8,10,14-tetraenoylcarnitine

C27H45NO5 (463.32975600000003)


   

(10E)-11-(3,4-Dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine

(10E)-11-(3,4-Dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine

C27H45NO5 (463.32975600000003)


   

11-{3,4-Dimethyl-5-[(1E)-prop-1-en-1-yl]furan-2-yl}undecanoylcarnitine

11-{3,4-Dimethyl-5-[(1E)-prop-1-en-1-yl]furan-2-yl}undecanoylcarnitine

C27H45NO5 (463.32975600000003)


   

(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-Oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoylcarnitine

(5Z,8Z)-10-[(2S,3R)-3-[(2Z)-Oct-2-en-1-yl]oxiran-2-yl]deca-5,8-dienoylcarnitine

C27H45NO5 (463.32975600000003)


   

beta-D-galactosyl-(1<->1)-sphinganine

beta-D-galactosyl-(1<->1)-sphinganine

C24H49NO7 (463.35088440000004)


   

N-((4R)-4-((3R,5S,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)-N-methylglycine

N-((4R)-4-((3R,5S,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl)-N-methylglycine

C27H45NO5 (463.32975600000003)


   

(1R,2S,3R,4R,6S)-4,6-diamino-3-[3-deoxy-4-C-methyl-3-(methylamino)-beta-L-arabinopyranosyloxy]-2-hydroxycyclohexyl 2,6-diamino-2,3,4,6,7-pentadeoxy-alpha-D-ribo-heptopyranoside

(1R,2S,3R,4R,6S)-4,6-diamino-3-[3-deoxy-4-C-methyl-3-(methylamino)-beta-L-arabinopyranosyloxy]-2-hydroxycyclohexyl 2,6-diamino-2,3,4,6,7-pentadeoxy-alpha-D-ribo-heptopyranoside

C20H41N5O7 (463.30058360000004)


   

N-[(3alpha,5beta,12alpha)-3,12-dihydroxy-7,24-dioxocholan-24-yl]glycine

N-[(3alpha,5beta,12alpha)-3,12-dihydroxy-7,24-dioxocholan-24-yl]glycine

C26H41NO6 (463.29337260000005)


   

3-((4R)-4-((3R,5R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamido)propanoic acid

3-((4R)-4-((3R,5R,9S,10S,12S,13R,14S,17R)-3,12-dihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamido)propanoic acid

C27H45NO5 (463.32975600000003)


   

((R)-4-((3R,5R,6S,7R,8S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent-2-enoyl)glycine

((R)-4-((3R,5R,6S,7R,8S,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pent-2-enoyl)glycine

C26H41NO6 (463.29337260000005)


   

HexCer 8:0;2O/9:0

HexCer 8:0;2O/9:0

C23H45NO8 (463.314501)


   

HexCer 9:0;2O/8:0

HexCer 9:0;2O/8:0

C23H45NO8 (463.314501)


   

HexCer 11:0;2O/6:0

HexCer 11:0;2O/6:0

C23H45NO8 (463.314501)


   

HexCer 14:0;2O/3:0

HexCer 14:0;2O/3:0

C23H45NO8 (463.314501)


   

HexCer 13:0;2O/4:0

HexCer 13:0;2O/4:0

C23H45NO8 (463.314501)


   

HexCer 15:0;2O/2:0

HexCer 15:0;2O/2:0

C23H45NO8 (463.314501)


   

HexCer 10:0;2O/7:0

HexCer 10:0;2O/7:0

C23H45NO8 (463.314501)


   

HexCer 12:0;2O/5:0

HexCer 12:0;2O/5:0

C23H45NO8 (463.314501)


   

2-aminoethyl [2-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] hydrogen phosphate

2-aminoethyl [2-hydroxy-3-[(9Z,12Z)-octadeca-9,12-dienoxy]propyl] hydrogen phosphate

C23H46NO6P (463.30625860000004)


   

(E)-3-hydroxy-2-(2-hydroxytridecanoylamino)dec-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-(2-hydroxytridecanoylamino)dec-4-ene-1-sulfonic acid

C23H45NO6S (463.29674300000005)


   

3-hydroxy-2-[[(Z)-2-hydroxydodec-5-enoyl]amino]undecane-1-sulfonic acid

3-hydroxy-2-[[(Z)-2-hydroxydodec-5-enoyl]amino]undecane-1-sulfonic acid

C23H45NO6S (463.29674300000005)


   

3-hydroxy-2-[[(Z)-2-hydroxytridec-8-enoyl]amino]decane-1-sulfonic acid

3-hydroxy-2-[[(Z)-2-hydroxytridec-8-enoyl]amino]decane-1-sulfonic acid

C23H45NO6S (463.29674300000005)


   

(E)-3-hydroxy-2-(2-hydroxydodecanoylamino)undec-4-ene-1-sulfonic acid

(E)-3-hydroxy-2-(2-hydroxydodecanoylamino)undec-4-ene-1-sulfonic acid

C23H45NO6S (463.29674300000005)


   

2-(Decanoylamino)-3-hydroxytetradecane-1-sulfonic acid

2-(Decanoylamino)-3-hydroxytetradecane-1-sulfonic acid

C24H49NO5S (463.3331264000001)


   

3-Hydroxy-2-(tridecanoylamino)undecane-1-sulfonic acid

3-Hydroxy-2-(tridecanoylamino)undecane-1-sulfonic acid

C24H49NO5S (463.3331264000001)


   

2-(Dodecanoylamino)-3-hydroxydodecane-1-sulfonic acid

2-(Dodecanoylamino)-3-hydroxydodecane-1-sulfonic acid

C24H49NO5S (463.3331264000001)


   

3-Hydroxy-2-(tetradecanoylamino)decane-1-sulfonic acid

3-Hydroxy-2-(tetradecanoylamino)decane-1-sulfonic acid

C24H49NO5S (463.3331264000001)


   

3-Hydroxy-2-(undecanoylamino)tridecane-1-sulfonic acid

3-Hydroxy-2-(undecanoylamino)tridecane-1-sulfonic acid

C24H49NO5S (463.3331264000001)


   
   
   
   
   
   
   

cis-5-(6-Carboxyhexyl)-trans-4-(cis-1-octenyl)-2,ref.-3-diphenylisoxazolidine

cis-5-(6-Carboxyhexyl)-trans-4-(cis-1-octenyl)-2,ref.-3-diphenylisoxazolidine

C30H41NO3 (463.3086276)


   

(3S)-5beta-(6-Formylhexyl)-4alpha-[(E)-3-hydroxy-1-octenyl]-2,3alpha-diphenylisoxazolidine

(3S)-5beta-(6-Formylhexyl)-4alpha-[(E)-3-hydroxy-1-octenyl]-2,3alpha-diphenylisoxazolidine

C30H41NO3 (463.3086276)


   
   

2-[[(4E,8E)-2-(butanoylamino)-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-(butanoylamino)-3-hydroxytrideca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C22H44N2O6P+ (463.2936834)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-(pentanoylamino)dodeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-(pentanoylamino)dodeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C22H44N2O6P+ (463.2936834)


   

2-[hydroxy-[(4E,8E)-3-hydroxy-2-(propanoylamino)tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

2-[hydroxy-[(4E,8E)-3-hydroxy-2-(propanoylamino)tetradeca-4,8-dienoxy]phosphoryl]oxyethyl-trimethylazanium

C22H44N2O6P+ (463.2936834)


   

2-[[(4E,8E)-2-acetamido-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

2-[[(4E,8E)-2-acetamido-3-hydroxypentadeca-4,8-dienoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium

C22H44N2O6P+ (463.2936834)


   

Micronomicin

(2R,3R,4R,5R)-2-[(1S,2S,3R,4S,6R)-4,6-diamino-3-[(2R,3R,6S)-3-amino-6-(methylaminomethyl)oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol

C20H41N5O7 (463.3005836)


Micronomicin is an antibiotic that belongs to the aminoglycoside class of organic compounds. Aminoglycosides are characterized by aminocyclitols linked to amino sugars, forming aminoglycoside antibiotics. These compounds are known for their broad-spectrum activity against various microorganisms, particularly bacteria. Micronomicin, specifically, features a structure where an aminocyclitol is connected to an amino sugar through a glycosidic bond. This structure is typical of aminoglycosides and contributes to their antimicrobial properties. The exact configuration and arrangement of atoms in micronomicin give it its specific antimicrobial profile. Micronomicin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=52093-21-7 (retrieved 2024-10-09) (CAS RN: 52093-21-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

3-hydroxyarachidonoylcarnitine

3-hydroxyarachidonoylcarnitine

C27H45NO5 (463.32975600000003)


An O-acylcarnitine having 3-hydroxyarachidonoyl as the acyl substituent.

   

lysophosphatidylethanolamine P-18:1

lysophosphatidylethanolamine P-18:1

C23H46NO6P (463.30625860000004)


A 1-(Z-alk-1-enyl)-sn-glycero-3-phosphoethanolamine in which the Z-alk-1-enyl group contains 18 carbons and has 1 additional double bond

   

Hex1SPH(18:0)

Hex1SPH(d18:0)

C24H49NO7 (463.35088440000004)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   

NA-Dopamine 22:6(4Z,7Z,10Z,13Z,16Z,19Z)

NA-Dopamine 22:6(4Z,7Z,10Z,13Z,16Z,19Z)

C30H41NO3 (463.3086276)


   
   

NA-Met 22:4(7Z,10Z,13Z,16Z)

NA-Met 22:4(7Z,10Z,13Z,16Z)

C27H45NO3S (463.311998)


   
   
   
   
   
   

NMI 8739

NMI 8739

C30H41NO3 (463.3086276)


NMI 8739 is a dopamine D2 autoreceptor agonist, which is an amine conjugate of the DHA carrier and the neurotransmitter dopamine.

   

(1s,12r,14r,15r,16s,17s,20s)-14-hydroxy-1,16,20-trimethyl-16-(4-methylpent-3-en-1-yl)-3-azapentacyclo[10.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]icosa-2(10),4,6,8-tetraen-17-yl acetate

(1s,12r,14r,15r,16s,17s,20s)-14-hydroxy-1,16,20-trimethyl-16-(4-methylpent-3-en-1-yl)-3-azapentacyclo[10.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]icosa-2(10),4,6,8-tetraen-17-yl acetate

C30H41NO3 (463.3086276)


   

(1s,2r,3r,4s,5s,6s,8r,9r,10r,13r,16s,17r,18r)-11-ethyl-4-hydroxy-6,8,16-trimethoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-yl acetate

(1s,2r,3r,4s,5s,6s,8r,9r,10r,13r,16s,17r,18r)-11-ethyl-4-hydroxy-6,8,16-trimethoxy-13-methyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecan-18-yl acetate

C26H41NO6 (463.29337260000005)


   

1-[(4ar,5r,7r,8as)-5-{[(1r,9r,11s,13r,17s)-11,14-dimethyl-6,14-diazatetracyclo[7.6.2.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6-trien-5-yl]methyl}-7-methyl-octahydro-2h-quinolin-1-yl]ethanone

1-[(4ar,5r,7r,8as)-5-{[(1r,9r,11s,13r,17s)-11,14-dimethyl-6,14-diazatetracyclo[7.6.2.0²,⁷.0¹³,¹⁷]heptadeca-2,4,6-trien-5-yl]methyl}-7-methyl-octahydro-2h-quinolin-1-yl]ethanone

C30H45N3O (463.356244)