Exact Mass: 439.2868476000001
Exact Mass Matches: 439.2868476000001
Found 361 metabolites which its exact mass value is equals to given mass value 439.2868476000001
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Leukotriene E4
C23H37NO5S (439.23923120000006)
Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4 activates contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney (PMID: 12607939, 12432945, 6311078). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways. Leukotriene E4 (LTE4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. Nasal blockage induced by CysLTs is mainly due to dilatation of nasal blood vessels, which can be induced by the nitric oxide produced through CysLT1 receptor activation. LTE4, activate contractile and inflammatory processes via specific interaction with putative seven transmembrane-spanning receptors that couple to G proteins and subsequent intracellular signaling pathways. LTE4 is metabolized from leukotriene C4 in a reaction catalyzed by gamma-glutamyl transpeptidase and a particulate dipeptidase from kidney. (PMID: 12607939, 12432945, 6311078)
LysoPE(15:0/0:0)
C20H42NO7P (439.26987520000006)
LysoPE(15:0/0:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms. [HMDB] LysoPE(15:0/0:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms.
LysoPE(0:0/15:0)
C20H42NO7P (439.26987520000006)
LysoPE(0:0/15:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms. [HMDB] LysoPE(0:0/15:0) is a lysophosphatidylethanolamine or a lysophospholipid. The term lysophospholipid (LPL) refers to any phospholipid that is missing one of its two O-acyl chains. Thus, LPLs have a free alcohol in either the sn-1 or sn-2 position. The prefix lyso- comes from the fact that lysophospholipids were originally found to be hemolytic however it is now used to refer generally to phospholipids missing an acyl chain. LPLs are usually the result of phospholipase A-type enzymatic activity on regular phospholipids such as phosphatidylcholine or phosphatidic acid, although they can also be generated by the acylation of glycerophospholipids or the phosphorylation of monoacylglycerols. Some LPLs serve important signaling functions such as lysophosphatidic acid. Lysophosphatidylethanolamines (LPEs) can function as plant growth regulators with several diverse uses. (LPEs) are approved for outdoor agricultural use to accelerate ripening and improve the quality of fresh produce. They are also approved for indoor use to preserve stored crops and commercial cut flowers. As a breakdown product of phosphatidylethanolamine (PE), LPE is present in cells of all organisms.
11-trans-LTE4
C23H37NO5S (439.23923120000006)
11-trans-LTE4 is also known as 11-trans-Leukotriene e4 or 11t-LTE4. 11-trans-LTE4 is considered to be practically insoluble (in water) and acidic. 11-trans-LTE4 is an eicosanoid lipid molecule
Dodecanoyl-sn-glycero-3-phosphocholine (isomer 1) (LPC(12:0) i1) † ‡
C20H42NO7P (439.26987520000006)
Dodecanoyl-sn-glycero-3-phosphocholine
C20H42NO7P (439.26987520000006)
3-Hydroxylinoleoylcarnitine
C25H45NO5 (439.32975600000003)
3-Hydroxylinoleoylcarnitine is an acylcarnitine. More specifically, it is an (9Z,12Z)-hydroxyoctadeca-9,12-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Hydroxylinoleoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine 3-Hydroxylinoleoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(9Z,12Z)-6-Hydroxyoctadeca-9,12-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(9Z,12Z)-6-Hydroxyoctadeca-9,12-dienoylcarnitine is an acylcarnitine. More specifically, it is an (9Z,12Z)-6-hydroxyoctadeca-9,12-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9Z,12Z)-6-Hydroxyoctadeca-9,12-dienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (9Z,12Z)-6-Hydroxyoctadeca-9,12-dienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(11E,13Z)-10-Hydroxyoctadeca-11,13-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(11E,13Z)-10-Hydroxyoctadeca-11,13-dienoylcarnitine is an acylcarnitine. More specifically, it is an (11E,13Z)-10-hydroxyoctadeca-11,13-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (11E,13Z)-10-Hydroxyoctadeca-11,13-dienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (11E,13Z)-10-Hydroxyoctadeca-11,13-dienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(12Z,15Z)-10-Hydroxyoctadeca-12,15-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(12Z,15Z)-10-Hydroxyoctadeca-12,15-dienoylcarnitine is an acylcarnitine. More specifically, it is an (12Z,15Z)-10-hydroxyoctadeca-12,15-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (12Z,15Z)-10-Hydroxyoctadeca-12,15-dienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (12Z,15Z)-10-Hydroxyoctadeca-12,15-dienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(11E,13E)-9-Hydroxyoctadeca-11,13-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(11E,13E)-9-Hydroxyoctadeca-11,13-dienoylcarnitine is an acylcarnitine. More specifically, it is an (11E,13E)-9-hydroxyoctadeca-11,13-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (11E,13E)-9-Hydroxyoctadeca-11,13-dienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (11E,13E)-9-Hydroxyoctadeca-11,13-dienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(8E,12Z)-10-Hydroxyoctadeca-8,12-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(8E,12Z)-10-Hydroxyoctadeca-8,12-dienoylcarnitine is an acylcarnitine. More specifically, it is an (8E,12Z)-10-hydroxyoctadeca-8,12-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (8E,12Z)-10-Hydroxyoctadeca-8,12-dienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (8E,12Z)-10-Hydroxyoctadeca-8,12-dienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(9S,10E,12Z)-9-Hydroxyoctadeca-10,12-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(9S,10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine is an acylcarnitine. More specifically, it is an (9S,10E,12Z)-9-hydroxyoctadeca-10,12-dienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (9S,10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (9S,10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Eicosapentaenoyl Histidine
N-eicosapentaenoyl histidine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is an Eicosapentaenoic acid amide of Histidine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Eicosapentaenoyl Histidine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Eicosapentaenoyl Histidine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-[2-(3,4-Dihydroxyphenyl)ethyl]icosa-5,8,11,14-tetraenamide
(5S,6R,7E,9E,11Z,14Z)-6-((R)-2-Amino-2-carboxyethylthio)-5-hydroxyicosa-7,9,11,14-tetraenoic acid
C23H37NO5S (439.23923120000006)
Nvp-aew541
(E,E)-Numismine|1,29-Seco-lunarin|1,29-seco-lunarine|Numismin|numismine
C25H33N3O4 (439.2470938000001)
18-demethyl-14-deacetylpubescenine|18-O-demethyl-14-O-deacetylpubescenine
11-[2-amino-3-(4'-O-methyl-alpha-ribopyranosyloxy)phenyl]undecanoic acid
NVP-AEW541
LPC 12:0
C20H42NO7P (439.26987520000006)
Acquisition and generation of the data is financially supported in part by CREST/JST.
1-lauroyl-sn-glycero-3-phosphocholine
C20H42NO7P (439.26987520000006)
A 1-O-acyl-sn-glycero-3-phosphocholine in which the acyl group is specified as lauroyl (dodecanoyl)
Ala Pro Pro Arg
C19H33N7O5 (439.25430480000006)
Ala Pro Arg Pro
C19H33N7O5 (439.25430480000006)
Ala Arg Pro Pro
C19H33N7O5 (439.25430480000006)
Gly His Lys Val
C19H33N7O5 (439.25430480000006)
Gly His Val Lys
C19H33N7O5 (439.25430480000006)
Gly Lys His Val
C19H33N7O5 (439.25430480000006)
Gly Lys Val His
C19H33N7O5 (439.25430480000006)
Gly Val His Lys
C19H33N7O5 (439.25430480000006)
Gly Val Lys His
C19H33N7O5 (439.25430480000006)
His Gly Lys Val
C19H33N7O5 (439.25430480000006)
His Gly Val Lys
C19H33N7O5 (439.25430480000006)
His Lys Gly Val
C19H33N7O5 (439.25430480000006)
His Lys Val Gly
C19H33N7O5 (439.25430480000006)
His Val Gly Lys
C19H33N7O5 (439.25430480000006)
His Val Lys Gly
C19H33N7O5 (439.25430480000006)
Ile Asn Pro Pro
C20H33N5O6 (439.24307180000005)
Ile Pro Asn Pro
C20H33N5O6 (439.24307180000005)
Ile Pro Pro Asn
C20H33N5O6 (439.24307180000005)
Lys Gly His Val
C19H33N7O5 (439.25430480000006)
Lys Gly Val His
C19H33N7O5 (439.25430480000006)
Lys His Gly Val
C19H33N7O5 (439.25430480000006)
Lys His Val Gly
C19H33N7O5 (439.25430480000006)
Lys Pro Pro Val
C21H37N5O5 (439.27945520000003)
Lys Pro Val Pro
C21H37N5O5 (439.27945520000003)
Lys Val Gly His
C19H33N7O5 (439.25430480000006)
Lys Val His Gly
C19H33N7O5 (439.25430480000006)
Lys Val Pro Pro
C21H37N5O5 (439.27945520000003)
Leu Asn Pro Pro
C20H33N5O6 (439.24307180000005)
Leu Pro Asn Pro
C20H33N5O6 (439.24307180000005)
Leu Pro Pro Asn
C20H33N5O6 (439.24307180000005)
Asn Ile Pro Pro
C20H33N5O6 (439.24307180000005)
Asn Leu Pro Pro
C20H33N5O6 (439.24307180000005)
Asn Pro Ile Pro
C20H33N5O6 (439.24307180000005)
Asn Pro Leu Pro
C20H33N5O6 (439.24307180000005)
Asn Pro Pro Ile
C20H33N5O6 (439.24307180000005)
Asn Pro Pro Leu
C20H33N5O6 (439.24307180000005)
Pro Ala Pro Arg
C19H33N7O5 (439.25430480000006)
Pro Ala Arg Pro
C19H33N7O5 (439.25430480000006)
Pro Ile Asn Pro
C20H33N5O6 (439.24307180000005)
Pro Ile Pro Asn
C20H33N5O6 (439.24307180000005)
Pro Lys Pro Val
C21H37N5O5 (439.27945520000003)
Pro Lys Val Pro
C21H37N5O5 (439.27945520000003)
Pro Leu Asn Pro
C20H33N5O6 (439.24307180000005)
Pro Leu Pro Asn
C20H33N5O6 (439.24307180000005)
Pro Asn Ile Pro
C20H33N5O6 (439.24307180000005)
Pro Asn Leu Pro
C20H33N5O6 (439.24307180000005)
Pro Asn Pro Ile
C20H33N5O6 (439.24307180000005)
Pro Asn Pro Leu
C20H33N5O6 (439.24307180000005)
Pro Pro Ala Arg
C19H33N7O5 (439.25430480000006)
Pro Pro Ile Asn
C20H33N5O6 (439.24307180000005)
Pro Pro Lys Val
C21H37N5O5 (439.27945520000003)
Pro Pro Leu Asn
C20H33N5O6 (439.24307180000005)
Pro Pro Asn Ile
C20H33N5O6 (439.24307180000005)
Pro Pro Asn Leu
C20H33N5O6 (439.24307180000005)
Pro Pro Gln Val
C20H33N5O6 (439.24307180000005)
Pro Pro Arg Ala
C19H33N7O5 (439.25430480000006)
Pro Pro Val Lys
C21H37N5O5 (439.27945520000003)
Pro Pro Val Gln
C20H33N5O6 (439.24307180000005)
Pro Gln Pro Val
C20H33N5O6 (439.24307180000005)
Pro Gln Val Pro
C20H33N5O6 (439.24307180000005)
Pro Arg Ala Pro
C19H33N7O5 (439.25430480000006)
Pro Arg Pro Ala
C19H33N7O5 (439.25430480000006)
Pro Val Lys Pro
C21H37N5O5 (439.27945520000003)
Pro Val Pro Lys
C21H37N5O5 (439.27945520000003)
Pro Val Pro Gln
C20H33N5O6 (439.24307180000005)
Pro Val Gln Pro
C20H33N5O6 (439.24307180000005)
Gln Pro Pro Val
C20H33N5O6 (439.24307180000005)
Gln Pro Val Pro
C20H33N5O6 (439.24307180000005)
Gln Val Pro Pro
C20H33N5O6 (439.24307180000005)
Arg Ala Pro Pro
C19H33N7O5 (439.25430480000006)
Arg Pro Ala Pro
C19H33N7O5 (439.25430480000006)
Arg Pro Pro Ala
C19H33N7O5 (439.25430480000006)
Val Gly His Lys
C19H33N7O5 (439.25430480000006)
Val Gly Lys His
C19H33N7O5 (439.25430480000006)
Val His Gly Lys
C19H33N7O5 (439.25430480000006)
Val His Lys Gly
C19H33N7O5 (439.25430480000006)
Val Lys Gly His
C19H33N7O5 (439.25430480000006)
Val Lys His Gly
C19H33N7O5 (439.25430480000006)
Val Lys Pro Pro
C21H37N5O5 (439.27945520000003)
Val Pro Lys Pro
C21H37N5O5 (439.27945520000003)
Val Pro Pro Lys
C21H37N5O5 (439.27945520000003)
Val Pro Pro Gln
C20H33N5O6 (439.24307180000005)
Val Pro Gln Pro
C20H33N5O6 (439.24307180000005)
Val Gln Pro Pro
C20H33N5O6 (439.24307180000005)
11-trans-LTE4
C23H37NO5S (439.23923120000006)
A leukotriene that is the 11-trans-isomer of leukotriene E4.
Platelet-activating factor
C20H42NO7P (439.26987520000006)
PC(O-6:0/6:0)[U]
C20H42NO7P (439.26987520000006)
PC(6:0/O-6:0)[U]
C20H42NO7P (439.26987520000006)
PC(O-12:0/O-1:0)
C21H46NO6P (439.30625860000004)
PC(O-12:0/O-1:0)[U]
C21H46NO6P (439.30625860000004)
1-Dodecanoyllysolecithin
C20H42NO7P (439.26987520000006)
Lysolauroyllecithin
C20H42NO7P (439.26987520000006)
PC(0:0/12:0)[U]
C20H42NO7P (439.26987520000006)
14,15-Leukotriene E4
C23H37NO5S (439.23923120000006)
14,15-LTE4
C23H37NO5S (439.23923120000006)
LPE(15:0)
C20H42NO7P (439.26987520000006)
Leukotriene E
C23H37NO5S (439.23923120000006)
A leukotriene that is (7E,9E,11Z,14Z)-icosa-7,9,11,14-tetraenoic acid substituted by a hydroxy group at position 5 (5S) and an L-cystein-S-yl group at position 6 (6R).
CAR 18:2;O
C25H45NO5 (439.32975600000003)
LPE 15:0
C20H42NO7P (439.26987520000006)
LPE O-15:1;O
C20H42NO7P (439.26987520000006)
(S)-2-[5-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1H-imidazol-2-y
C24H34BN3O4 (439.26422340000005)
bis(2-ethylhexyl) (Z)-but-2-enedioate,N-ethenyl-N-methylacetamide
C25H45NO5 (439.32975600000003)
tetradecyldimethyl(3-trimethoxysilylpropyl)ammonium chloride
C22H50ClNO3Si (439.3248300000001)
tert-butyl N-[1-hydroxy-4-[[4-methoxy-3-(3-methoxypropoxy)phenyl]methyl]-5-methylhexan-2-yl]carbamate
C24H41NO6 (439.29337260000005)
(2S)-1-{[{2[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}[(3-hydroxytricyclo[3.3.1.1(3,7)]dec-1-yl)amino]]acetyl}pyrrolidine-2-carbonitrile
C24H33N5O3 (439.2583268000001)
Benzenemethanaminium,N-hexadecyl-N,N-dimethyl-, bromide (1:1)
1-(1-([1,2,4]TRIAZOLO[1,5-A]PYRIDIN-6-YL)-1-((TERT-BUTYLDIMETHYLSILYL)OXY)PROPAN-2-YL)-3-(M-TOLYL)UREA
Propanedinitrile,[2-(2-propyl)-6-[2-(2,3,6,7-tetrahydro-2,2,7,7-tetramethyl-1H,5H-benzo[ij]quinolizin-9-yl)ethenyl]-4H-pyran
C29H33N3O (439.26234880000004)
(1R,3S,4S)-3-[6-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)-1H-BENZIMIDAZOL-2-YL]-2-AZABICYCLO[2.2.1]HEPTANE-2-CARBOXYLIC ACID 1,1-DIMETHYLETHYL ESTER
C24H34BN3O4 (439.26422340000005)
1,5-diphenyl-2-[3-(4-pyridin-2-ylpiperazin-1-yl)propyl]pyrazol-3-one
Temiverine hydrochloride hydrate
C24H38ClNO4 (439.24892180000006)
D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators
(1S)-1-{4-[(9AR)-Octahydro-2H-pyrido[1,2-A]pyrazin-2-YL]phenyl}-2-phenyl-1,2,3,4-tetrahydroisoquinolin-6-OL
C29H33N3O (439.26234880000004)
N-(2-phenylphenyl)-8-(4-pyridin-3-yltriazol-1-yl)octanamide
[3-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-2-hydroxypropyl] pentadecanoate
C20H42NO7P (439.26987520000006)
N-[2-(3,4-Dihydroxyphenyl)ethyl]icosa-5,8,11,14-tetraenamide
(9Z,12Z)-6-Hydroxyoctadeca-9,12-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(11E,13E)-9-Hydroxyoctadeca-11,13-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(8E,12Z)-10-Hydroxyoctadeca-8,12-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(11E,13Z)-10-Hydroxyoctadeca-11,13-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(12Z,15Z)-10-Hydroxyoctadeca-12,15-dienoylcarnitine
C25H45NO5 (439.32975600000003)
(9S,10E,12Z)-9-Hydroxyoctadeca-10,12-dienoylcarnitine
C25H45NO5 (439.32975600000003)
2-azaniumylethyl (2R)-3-(hexadecyloxy)-2-hydroxypropyl phosphate
C21H46NO6P (439.30625860000004)
2-dodecanoyl-sn-glycero-3-phosphocholine
C20H42NO7P (439.26987520000006)
A 2-acyl-sn-glycero-3-phosphocholine in which the acyl group is specified as dodecanoyl.
7-[3-(1-Azetidinylmethyl)cyclobutyl]-5-(4-phenylmethoxyphenyl)-4-pyrrolo[2,3-d]pyrimidinamine
1-decyl-2-acetyl-sn-glycero-3-phosphocholine
C20H42NO7P (439.26987520000006)
A 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine in which the alkyl group is specified as decyl.
N-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8S,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8R,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8S,9R)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
(5E,8E,11E,14E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]icosa-5,8,11,14-tetraenamide
N-[[(8R,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8S,9R)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[[(8R,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
3-(4-fluorophenyl)-1-[(2R)-1-hydroxypropan-2-yl]-1-[(2S,3S)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2R)-1-hydroxypropan-2-yl]-1-[(2S,3R)-3-methoxy-2-methyl-4-[methyl(oxan-4-ylmethyl)amino]butyl]urea
N-[(4S,7S,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
3-(4-fluorophenyl)-1-[(2S)-1-hydroxypropan-2-yl]-1-[(2S,3R)-3-methoxy-2-methyl-4-[methyl(oxan-4-ylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2S)-1-hydroxypropan-2-yl]-1-[(2R,3R)-3-methoxy-2-methyl-4-[methyl(oxan-4-ylmethyl)amino]butyl]urea
N-[(2S,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[[(8S,9S)-6-[(2S)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[(4S,7R,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(4R,7S,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(4R,7S,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(4R,7R,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(4R,7R,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(5S,6S,9S)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(5R,6S,9S)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(5S,6R,9S)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
[(8S,9S,10R)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
C29H33N3O (439.26234880000004)
[(8R,9R,10S)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
C29H33N3O (439.26234880000004)
[(8S,9R,10R)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
C29H33N3O (439.26234880000004)
1-[(1R)-2-[cyclopentyl(oxo)methyl]-1-(hydroxymethyl)-7-methoxy-1-spiro[3,9-dihydro-1H-pyrido[3,4-b]indole-4,3-azetidine]yl]-1-butanone
C25H33N3O4 (439.2470938000001)
(6S,7S,8R)-7-[4-(1-cyclohexenyl)phenyl]-8-(hydroxymethyl)-4-[2-(4-morpholinyl)-1-oxoethyl]-1,4-diazabicyclo[4.2.0]octan-2-one
C25H33N3O4 (439.2470938000001)
N-[(2S,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(2S,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(2R,3S)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(2R,3R)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(2R,3R)-5-[(2S)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(2R,3S)-5-[(2R)-1-hydroxypropan-2-yl]-3-methyl-2-(methylaminomethyl)-6-oxo-2,3,4,7-tetrahydro-1,5-benzoxazonin-9-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[[(8R,9S)-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-5-oxo-10-oxa-1,6,13,14-tetrazabicyclo[10.2.1]pentadeca-12(15),13-dien-9-yl]methyl]-N-methylcarbamic acid 2-methylpropyl ester
C21H37N5O5 (439.27945520000003)
N-[(4R,7R,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(4S,7R,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(4S,7S,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]-2-phenylacetamide
C25H33N3O4 (439.2470938000001)
N-[(4S,7S,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(4S,7R,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(4R,7S,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(4S,7S,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(4R,7S,8R)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(4S,7R,8S)-8-methoxy-4,5,7,10-tetramethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(5R,6R,9R)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(5R,6R,9S)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(5S,6S,9R)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
N-[(5R,6S,9R)-5-methoxy-3,6,8,9-tetramethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]benzamide
C25H33N3O4 (439.2470938000001)
3-(4-fluorophenyl)-1-[(2R)-1-hydroxypropan-2-yl]-1-[(2R,3S)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2S)-1-hydroxypropan-2-yl]-1-[(2R,3S)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2S)-1-hydroxypropan-2-yl]-1-[(2S,3S)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
3-(4-fluorophenyl)-1-[(2R)-1-hydroxypropan-2-yl]-1-[(2R,3R)-3-methoxy-2-methyl-4-[methyl(4-oxanylmethyl)amino]butyl]urea
[(8R,9R,10R)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
C29H33N3O (439.26234880000004)
[(8R,9S,10R)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
C29H33N3O (439.26234880000004)
[(8R,9S,10S)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
C29H33N3O (439.26234880000004)
[(8S,9R,10S)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
C29H33N3O (439.26234880000004)
[(8S,9S,10S)-9-[4-[(E)-2-phenylethenyl]phenyl]-6-(pyridin-3-ylmethyl)-1,6-diazabicyclo[6.2.0]decan-10-yl]methanol
C29H33N3O (439.26234880000004)
(2S,3S)-1-(cyclohexanecarbonyl)-2-(hydroxymethyl)-N-propan-2-yl-3-[4-[(E)-prop-1-enyl]phenyl]-1,6-diazaspiro[3.3]heptane-6-carboxamide
(1S,9R,10R,11R)-12-(cyclobutanecarbonyl)-10-(hydroxymethyl)-11-(piperidine-1-carbonyl)-5-[(E)-prop-1-enyl]-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-dien-6-one
C25H33N3O4 (439.2470938000001)
[(2R)-3-dodecoxy-2-methoxypropyl] 2-(trimethylazaniumyl)ethyl phosphate
C21H46NO6P (439.30625860000004)
(1R,9S,10S,11S)-12-(cyclobutanecarbonyl)-10-(hydroxymethyl)-11-(piperidine-1-carbonyl)-5-[(E)-prop-1-enyl]-7,12-diazatricyclo[7.2.1.02,7]dodeca-2,4-dien-6-one
C25H33N3O4 (439.2470938000001)
(2-Acetyloxy-3-decoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
C20H42NO7P (439.26987520000006)
(2-Hydroxy-3-tridecoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
C21H46NO6P (439.30625860000004)
3-O-Hexadecyl-sn-glycero-1-O-phosphoethanolamine
C21H46NO6P (439.30625860000004)
(2-Butanoyloxy-3-octoxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
C20H42NO7P (439.26987520000006)
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-octoxypropan-2-yl] heptanoate
C20H42NO7P (439.26987520000006)
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-nonoxypropan-2-yl] hexanoate
C20H42NO7P (439.26987520000006)
(3-Nonoxy-2-propanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phosphate
C20H42NO7P (439.26987520000006)
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-dodecoxypropan-2-yl] propanoate
C20H42NO7P (439.26987520000006)
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-tridecoxypropan-2-yl] acetate
C20H42NO7P (439.26987520000006)
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-undecoxypropan-2-yl] butanoate
C20H42NO7P (439.26987520000006)
[1-[2-Aminoethoxy(hydroxy)phosphoryl]oxy-3-decoxypropan-2-yl] pentanoate
C20H42NO7P (439.26987520000006)
2-[(2-Acetamido-3-hydroxytridecoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-(Hexanoylamino)-3-hydroxynonoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[[2-(Butanoylamino)-3-hydroxyundecoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[Hydroxy-[3-hydroxy-2-(pentanoylamino)decoxy]phosphoryl]oxyethyl-trimethylazanium
2-[[2-(Heptanoylamino)-3-hydroxyoctoxy]-hydroxyphosphoryl]oxyethyl-trimethylazanium
2-[Hydroxy-[3-hydroxy-2-(propanoylamino)dodecoxy]phosphoryl]oxyethyl-trimethylazanium
1-pentadecanoyl-glycero-3-phosphoethanolamine
C20H42NO7P (439.26987520000006)
3-hydroxylinoleoylcarnitine
C25H45NO5 (439.32975600000003)
An O-acylcarnitine having 3-hydroxylinoleoyl as the acyl substituent.
eoxin E4
C23H37NO5S (439.23923120000006)
A leukotriene that is the 14R-(S-cysteinyl),15S-hydroxy derivative of (5Z,8Z,10E,12E)-icosa-7,9,11,14-tetraenoic acid.
1-hexadecyl-sn-glycero-3-phosphoethanolamine
C21H46NO6P (439.30625860000004)
1-(2-methoxy-6Z-tetradecenyl)-sn-glycero-3-phosphoethanolamine
C20H42NO7P (439.26987520000006)
Denifanstat
Denifanstat (TVB-2640) is an orally active and potent Fatty Acid Synthase (FASN) inhibitor with an IC50 of 0.052 μM and an EC50 of 0.072 μM. Denifanstat has the potential for fatty liver disease and cancer research[1][2].
11-{2-amino-3-[(3,4-dihydroxy-5-methoxyoxan-2-yl)oxy]phenyl}undecanoic acid
(1r,2r,3r,4r,5s,6r,8s,9r,10s,13r,16r,17r)-11-ethyl-16-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,5,6,8,17-pentol
(6s,9s)-3-[(2s)-butan-2-yl]-13-(hexan-2-yl)-5,8,11-trihydroxy-9-isopropyl-6-methyl-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-2-one
C23H41N3O5 (439.30460560000006)
(1r,4s,8r,9r,14s,20r)-4-hydroxy-4,9-diisopropyl-8-methyl-2,7,12-trioxa-17-azatricyclo[12.5.1.0¹⁷,²⁰]icosane-3,6,11-trione
11-ethyl-18-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,6,8,9,16-pentol
(1s,2r,3r,4s,5s,6s,8r,9r,10s,13s,16s,17r,18s)-11-ethyl-13-(hydroxymethyl)-6,18-dimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16-tetrol
(10r,12r,14r,26s)-10,12,14-trihydroxy-19,26-dimethyl-1-azacyclohexacosa-3,5,7,15,17,19,21,23-octaen-2-one
C27H37NO4 (439.27224420000005)
(3r,6s,9s)-13-(hexan-2-yl)-5,8,11-trihydroxy-9-isopropyl-6-methyl-3-(2-methylpropyl)-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-2-one
C23H41N3O5 (439.30460560000006)
3-isopropyl-14-(2-methoxyheptyl)-9,11-dimethyl-1,4-dioxa-9-azacyclotetradec-7-ene-2,5,10-trione
C24H41NO6 (439.29337260000005)
(4e)-n-[(2e)-3-chloro-2-(3-hydroxy-6-oxocyclohex-1-en-1-yl)prop-2-en-1-yl]-7-methoxytetradec-4-enimidic acid
C24H38ClNO4 (439.24892180000006)
7,8-dihydroxy-15-(3-hydroxy-3-methylbutyl)-1,10,16-trimethyl-14-azapentacyclo[11.6.1.0²,¹¹.0⁵,¹⁰.0¹⁷,²⁰]icosa-2,13,15,17(20)-tetraen-4-one
C27H37NO4 (439.27224420000005)
n-{2-[(2z)-4-hydroxy-3-[(3e)-4-methyl-6-(1,2,6-trimethylcyclohex-2-en-1-yl)hex-3-en-1-yl]but-2-ene-1-sulfonyl]ethyl}guanidine
C23H41N3O3S (439.2868476000001)
(3r,4s,5s,7r,9e,11r,12r)-12-ethyl-4-{[3-hydroxy-6-methyl-4-(methylamino)oxan-2-yl]oxy}-3,5,7,11-tetramethyl-1-oxacyclododec-9-ene-2,8-dione
C24H41NO6 (439.29337260000005)
(1s,2r,3r,4r,5s,6s,8r,9s,10s,13s,16s,17r,18r)-11-ethyl-13-(hydroxymethyl)-6,18-dimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16-tetrol
n-[3-chloro-2-(3-hydroxy-6-oxocyclohex-1-en-1-yl)prop-2-en-1-yl]-7-methoxytetradec-4-enimidic acid
C24H38ClNO4 (439.24892180000006)
11-ethyl-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16,18-pentol
3-[(2s,5r,6r)-6-[(2e,4r,6s)-4,6-dimethyloct-2-en-2-yl]-5-methyloxan-2-yl]-5-(4-hydroxyphenyl)pyridine-2,4-diol
C27H37NO4 (439.27224420000005)
(4e,7s)-n-[(2e)-3-chloro-2-[(3s)-3-hydroxy-6-oxocyclohex-1-en-1-yl]prop-2-en-1-yl]-7-methoxytetradec-4-enimidic acid
C24H38ClNO4 (439.24892180000006)
13-(methoxymethyl)-11-propyl-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,6,8,9,16,18-hexol
(1r,2r,3s,4s,5r,6s,8s,9s,10r,13s,16s,17s)-11-ethyl-4,6,16-trimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-2,3,8,13-tetrol
(1s,2r,3r,4s,5s,6s,8r,9s,10s,13s,16s,17r,18r)-11-ethyl-13-(hydroxymethyl)-6,18-dimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16-tetrol
13-(hexan-2-yl)-5,8,11-trihydroxy-9-isopropyl-6-methyl-3-(sec-butyl)-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-2-one
C23H41N3O5 (439.30460560000006)
11-ethyl-13-(hydroxymethyl)-6,8-dimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,9,16,18-tetrol
3-[6-(4,6-dimethyloct-2-en-2-yl)-5-methyloxan-2-yl]-5-(4-hydroxyphenyl)pyridine-2,4-diol
C27H37NO4 (439.27224420000005)
(1s,2r,3r,4r,5s,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16,18-pentol
(3e,17e)-5,16,22-trihydroxy-6,11,15-triazaspiro[bicyclo[17.3.1]tricosane-2,1'-cyclohexane]-1(23),3,5,15,17,19,21-heptaen-4'-one
C25H33N3O4 (439.2470938000001)
(1s,2e,4r,7r,9s,10s,11e,13z,15s,21s)-18-[(2e)-hex-2-en-1-yl]-2,11-dimethyl-8-oxa-17-azatetracyclo[13.6.0.0⁴,¹⁰.0⁷,⁹]henicosa-2,5,11,13,16-pentaene-16,20,21-triol
C27H37NO4 (439.27224420000005)
(1s,2r,3r,4s,5s,6s,8r,9s,10s,13s,16s,17r,18s)-11-ethyl-13-(hydroxymethyl)-6,18-dimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16-tetrol
(5s)-5-(6-aminopurin-9-yl)-1-(4-hydroxy-3-methoxyphenyl)dodecan-3-one
C24H33N5O3 (439.2583268000001)
(1s,2r,3r,4s,5s,6s,8r,9r,10s,13s,16s,17r,18s)-11-ethyl-6-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16,18-pentol
(3s,7e,14s)-3-isopropyl-14-[(2s)-2-methoxyheptyl]-9,11-dimethyl-1,4-dioxa-9-azacyclotetradec-7-ene-2,5,10-trione
C24H41NO6 (439.29337260000005)
11-ethyl-13-(hydroxymethyl)-6,18-dimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,8,9,16-tetrol
13-(hexan-2-yl)-5,8,11-trihydroxy-9-isopropyl-6-methyl-3-(2-methylpropyl)-1-oxa-4,7,10-triazacyclotrideca-4,7,10-trien-2-one
C23H41N3O5 (439.30460560000006)
(1r,5r,7r,8s,10r,11r)-7,8-dihydroxy-15-(3-hydroxy-3-methylbutyl)-1,10,16-trimethyl-14-azapentacyclo[11.6.1.0²,¹¹.0⁵,¹⁰.0¹⁷,²⁰]icosa-2,13,15,17(20)-tetraen-4-one
C27H37NO4 (439.27224420000005)
5-hydroxy-3-{[7-(2-hydroxy-3-methoxy-3-methylbutyl)-2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methylidene}-6-methyl-1,6-dihydropyrazin-2-one
C25H33N3O4 (439.2470938000001)
(1r,2r,3r,4r,5r,6s,8r,9r,10r,13r,16r,17s,18s)-11-ethyl-18-methoxy-13-(methoxymethyl)-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,6,8,9,16-pentol
3-{6-[(2e)-4,6-dimethyloct-2-en-2-yl]-5-methyloxan-2-yl}-5-(4-hydroxyphenyl)pyridine-2,4-diol
C27H37NO4 (439.27224420000005)
5,16,22-trihydroxy-6,11,15-triazaspiro[bicyclo[17.3.1]tricosane-2,1'-cyclohexane]-1(23),3,5,15,17,19,21-heptaen-4'-one
C25H33N3O4 (439.2470938000001)
n-(2-{[(2s)-1-[(2s,3s)-3-decyl-4-oxooxetan-2-yl]nonan-2-yl]oxy}-2-oxoethyl)carboximidic acid
C25H45NO5 (439.32975600000003)
(1s,2r,3r,4s,5s,6s,8r,9s,10s,13s,16s,17r,18r)-11-ethyl-13-(hydroxymethyl)-6,8-dimethoxy-11-azahexacyclo[7.7.2.1²,⁵.0¹,¹⁰.0³,⁸.0¹³,¹⁷]nonadecane-4,9,16,18-tetrol
n-(2-{[(2s)-1-[(2s,3s)-3-(8-methylnonyl)-4-oxooxetan-2-yl]nonan-2-yl]oxy}-2-oxoethyl)carboximidic acid
C25H45NO5 (439.32975600000003)
(3z,6s)-3-({7-[(2s)-2-hydroxy-3-methoxy-3-methylbutyl]-2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl}methylidene)-6-methyl-6h-pyrazine-2,5-diol
C25H33N3O4 (439.2470938000001)