Exact Mass: 428.25894040000003
Exact Mass Matches: 428.25894040000003
Found 500 metabolites which its exact mass value is equals to given mass value 428.25894040000003
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Irbesartan
Irbesartan is an angiotensin receptor blocker (ARB) used mainly for the treatment of hypertension. It competes with angiotensin II for binding at the AT1 receptor subtype. Unlike ACE inhibitors, ARBs do not have the adverse effect of dry cough. The use of ARBs is pending revision due to findings from several clinical trials suggesting that this class of drugs may be associated with a small increased risk of cancer. C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2774 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Irbesartan (SR-47436) is an orally active Ang II type 1 (AT1) receptor blocker (ARB). Irbesartan can relax the blood vessels, low blood pressure and increase the supply of blood and oxygen to the heart. Irbesartan can be used for the research of high blood pressure, heart failure, and diabetic kidney disease[1].
Primolut depot
CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10390; ORIGINAL_PRECURSOR_SCAN_NO 10389 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10271; ORIGINAL_PRECURSOR_SCAN_NO 10269 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10375; ORIGINAL_PRECURSOR_SCAN_NO 10374 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10383; ORIGINAL_PRECURSOR_SCAN_NO 10381 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10318; ORIGINAL_PRECURSOR_SCAN_NO 10317 CONFIDENCE standard compound; INTERNAL_ID 655; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10339; ORIGINAL_PRECURSOR_SCAN_NO 10337 D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D011372 - Progestins C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone
4,4-Diapolycopenedial
12-epi-Scalaradial
Nonaethylene glycol monomethyl ether
C19H40O10 (428.26213400000006)
25-Hydroxyvitamin D3-26,23-lactone
This compound belongs to the family of Sesterterpene Lactones. These are sesterterpenes containing a lactone ring
2-Angeloyl-9-(3-methyl-2E-pentenoyl)-2b,9a-dihydroxy-4Z,10(14)-oplopadien-3-one
2-Angeloyl-9-(3-methyl-2E-pentenoyl)-2b,9a-dihydroxy-4Z,10(14)-oplopadien-3-one is found in tea. 2-Angeloyl-9-(3-methyl-2E-pentenoyl)-2b,9a-dihydroxy-4Z,10(14)-oplopadien-3-one is a constituent of Tussilago farfara (coltsfoot). Constituent of Tussilago farfara (coltsfoot). 2-Angeloyl-9-(3-methyl-2E-pentenoyl)-2b,9a-dihydroxy-4Z,10(14)-oplopadien-3-one is found in tea.
Spirostane-3,6-dione
Spirostane-3,6-dione is found in fruits. Spirostane-3,6-dione is isolated from fruits of Solanum torvum (pea eggplant). Isolated from fruits of Solanum torvum (pea eggplant). Spirostane-3,6-dione is found in fruits.
Schidigeragenin B
Schidigeragenin B is found in fruits. Genin from Yucca schidigera (Mojave yucca
[(8R,9S,10R,13S,14S,17S)-17-Acetyl-10,13-dimethyl-3-oxo-2,6,7,8,9,11,12,14,15,16-decahydro-1H-cyclopenta[a]phenanthren-17-yl] hexanoate
Bedoradrine
Calcifediol lactone
Falipamil
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Lotrafiban
MG(PGF2alpha/0:0/0:0)
MG(PGF2alpha/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(PGE1/0:0/0:0)
MG(PGE1/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(PGD1/0:0/0:0)
MG(PGD1/0:0/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/PGF2alpha/0:0)
MG(0:0/PGF2alpha/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/PGE1/0:0)
MG(0:0/PGE1/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
MG(0:0/PGD1/0:0)
MG(0:0/PGD1/0:0) is an oxidized monoacyglycerol (MG). Oxidized monoacyglycerols are glycerolipids in which the fatty acyl chain has undergone oxidation. As all oxidized lipids, oxidized monoacyglycerols belong to a group of biomolecules that have a role as signaling molecules. The biosynthesis of oxidized lipids is mediated by several enzymatic families, including cyclooxygenases (COX), lipoxygenases (LOX) and cytochrome P450s (CYP). Non-enzymatically oxidized lipids are produced by uncontrolled oxidation through free radicals and are considered harmful to human health (PMID: 33329396). As is the case with other lipids, monoacyglycerols can be substituted by different fatty acids, with varying lengths, saturation and degrees of oxidation attached at the C-1, C-2 and C-3 positions. Lipids are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. Similarly to what occurs with lipids, the fatty acid distribution at the C-1 and C-2 positions of glycerol within oxidized lipids is continually in flux, owing to lipid degradation and the continuous lipid remodeling that occurs while these molecules are in membranes. Oxidized MGs can be synthesized via three different routes. In one route, the oxidized MG is synthetized de novo following the same mechanisms as for MGs but incorporating an oxidized acyl chain (PMID: 33329396). An alternative is the transacylation of the non-oxidized acyl chains with an oxidized acylCoA (PMID: 33329396). The third pathway results from the oxidation of the acyl chain while still attached to the MG backbone, mainly through the action of LOX (PMID: 33329396).
JOKBBQPBIIZMJV-UHFFFAOYSA-N
Ingenol-3,4,5,20-diacetonide is a natural compound.
3-Oxo-21α-methoxy-24,25,26,27-tetranortirucall-7-ene-23(21)-lactone
Neoruscogenin
Neoruscogenin is a natural product found in Helleborus orientalis with data available. Neoruscogenin, a member of the steroidal sapogenin family, is a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORα (NR1F1)[1]. Neoruscogenin, a member of the steroidal sapogenin family, is a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORα (NR1F1)[1].
Andrastin D
A 3-oxo steroid that is andrastin C in which the acetoxy group at the 3beta position has undergone formal oxidative cleavage to afford the corresponding 3-oxo derivative. A farnesyltransferase inhibitor produced by Penicillium roqueforti, a filamentous fungus involved in the ripening of several kinds of blue cheeses. CONFIDENCE Penicillium bissettii
13-(6-hydroxy-2,8-dimethyl-3,4-dihydrochromen-2-yl)-2,6,10-trimethyltrideca-2,6,10-triene-4,5-diol
(2E,6E)-2-(10(S),11(S)-dihydroxygeranylgeranyl)-6-methyl-1,4-benzoquinone
17,18-Dihydro,17-hydroxy-(2,4,6-Trihydroxyphenyl)-5,8,11,14,17-eicosapentaen-1-one,9CI|2-(17-hydroxy-1-oxo-dodeca-5,8,11,14(all Z)-tetraenyl)-1,3,5-trihydroxybenzene|2-[17-hydroxy-1-oxo-dodeca-5,8,11,14(all Z)-tetraenyl]-1,3,5-trihydroxybenzene
3,6-Dihydroxy-2-(15-phenylpentadecanoyl)-2-cyclohexen-1-one
17-Hydroxy-2-(5-Hydoxy-3,7,11,15-tetramethyl-2,6,10,14-hexadecatetraenyl)-6-methyl-1,2-benzendiol|2-((2E,6E,10E,14Z)-5-hydroxy-15-hydroxymethyl-3,7,11-trimethylhexadeca-2,6,10,14-tetraenyl)-6-methylhydroquinone|2-<(2E,6E,10E,14Z)-5-hydroxy-15-hydroxymethyl-3,7,11-trimethylhexadeca-2,6,10,14-tetraenyl>-6-methylhydroquinone|2-[(2E,6E,10E,14Z)-5-hydroxy-15-hydroxymethyl-3,7,11-trimethylhexadeca-2,6,10,14-tetraenyl]-6-methylhydroquinone
(25R)-3beta-Hydroxy-5alpha-spirost-9(11)-en-12-on|(25R)-3beta-hydroxy-5alpha-spirost-9(11)-en-12-one|3beta-hydroxy-9(11)-en-12-oxo-(25R)-5alpha-spirostane|9(11)-dehydrohecogenin|9-dehydrohecogenin|Delta9(11)-22-isoallospirosten-3beta-ol-12-one|Delta9(11)-hecogenin
(25R)-17-Hydroxy-spirost-4-en-3-on|(25R)-17-hydroxy-spirost-4-en-3-one|(25R)-17alpha-hydroxyspirost-4-en-3-one|diosbulbisin A
12alpha-(2-methylbutyryloxy)-strictic acid methyl ester|12alpha-<2-methylbutyryloxy>-strictic acid methyl ester
4-hydroxy-3-(((1R,4aR,5S,6S,8aR)-6-hydroxy-5,8a-dimethyl-2-methylene-5-(4-methylpent-3-enyl)-decahydronaphthalen-1-yl)-methyl)-5,6-dimethyl-2H-pyran-2-one|BR-050
2-((2E,6E)-5-hydroxy-3,7,11,15-tetramethyl-12-oxohexadeca-2,6,14-trienyl)-6-methylhydroquinol|2-<(2E,6E)-5-hydroxy-3,7,11,15-tetramethyl-12-oxohexadeca-2,6,14-trienyl>-6-methylhydroquinol
3alpha-hydroxy-11-hydroxy-iso-iphionan-4-one-(alpha-xylopyranoside-2-O-acetate)|3alpha-hydroxy-11-hydroxy-iso-iphionan-4-one-
(5alpha,12beta,17beta)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-2-methyl-5-oxo-2,5-dihydrofuran-2-yl]gonan-3-one|cylindrictone B
(3E,11E)-6,19-epoxy-17,20-dihydroxycembra-3,6,8(19),11,15-pentaene 17-butanoate, 20-acetate
4,4,14-trimethyl-3,7,15-trimethyl-3,7-dioxochol-8-en-24-oic acid|4,4,14-trimethyl-3,7-dioxochol-8-en-24-oic acid|4,4,14alpha-trimethyl-3,7-dioxo-5alpha-chol-8-en-24-oic acid
20S,24-epoxy-25,26,27-trisnor-24-oxo-3,4-seco-dammar-4(28),22-dien-3-oic acid
3-Oxo-21|A-methoxy-24,25,26,27-tetranortirucall-7-ene-23(21)-lactone
1alpha-acetoxy-3beta,6,8alpha-trihydroxy-2alpha-methoxy-2beta,14beta-epoxy-[4.2.1.10,301.1,4]-tricyclomeliac-7-oate
(2R)-2,8-dimethyl-2-[(3E,7E)-4,8-dimethyl-13-hydroxy-12-hydroxymethyldeca-3,7,11-trienyl]chroman-6-ol|delta-amplexichromanol
erythro-23-O-methylneocyclocitrinol|threo-23-O-methylneocyclocitrinol
13,14-dihydroxy-15,16 dimethoxy-(-)-6alpha-hydroxy-5alpha,8alpha,9alpha,10alpha-cleroda-3-en-18-oic acid
2alpha-(4-methylsenecioyloxy)-15,16-epoxylabda-7,13(16),14-trien-18-oic acid|2alpha-<4-methylsenecioyloxy>-15,16-epoxylabda-7,13(16),14-trien-18-oic acid
gutierrezianolic acid (angelate) methyl ester|gutierrezianolic acid methyl ester|methyl 6alpha-angeloyloxy-15,16-epoxy-labda-7,13(16),14-trien-17-oate
7alpha,21-dihydroxy-3-oxo-24,25,26,27-tetranorapotirucall-14,20(22)-dien-21,23-olide
3,4-dimethoxy-benzoic acid 11-oxo-dodecahydro-7,14-methano-dipyrido[1,2-a;1,2-e][1,5]diazocin-2-yl ester|Cineverin|Cineverin (13-Veratroyloxy-lupanin)
(3E,11E)-6,19-epoxy-17,20-dihydroxycembra-3,6,8(19),11,15-pentaene 17-acetate, 20-butanoate
5beta,11-dihydroxy-iphionan-4-one-11-O-(alpha-xylopyranoside-2-O-acetate)|5beta,11-dihydroxy-iphionan-4-one-11-O-
19-norpregna-1,3,5(10),20-tetraen-3-O-alpha-fucopyranoside
4,5-dioxo-seco-gamma-eudesmol-(alpha-xylopyranoside-2-O-acetate)|4,5-dioxo-seco-gamma-eudesmol-
irbesartan
C - Cardiovascular system > C09 - Agents acting on the renin-angiotensin system > C09C - Angiotensin ii receptor blockers (arbs), plain > C09CA - Angiotensin ii receptor blockers (arbs), plain C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C66930 - Angiotensin II Receptor Antagonist D057911 - Angiotensin Receptor Antagonists > D047228 - Angiotensin II Type 1 Receptor Blockers COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1074 CONFIDENCE standard compound; INTERNAL_ID 2094 CONFIDENCE standard compound; INTERNAL_ID 8187 Irbesartan (SR-47436) is an orally active Ang II type 1 (AT1) receptor blocker (ARB). Irbesartan can relax the blood vessels, low blood pressure and increase the supply of blood and oxygen to the heart. Irbesartan can be used for the research of high blood pressure, heart failure, and diabetic kidney disease[1].
Irbesartan (Avapro)
Irbesartan. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=138402-11-6 (retrieved 2024-07-09) (CAS RN: 138402-11-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Irbesartan (SR-47436) is an orally active Ang II type 1 (AT1) receptor blocker (ARB). Irbesartan can relax the blood vessels, low blood pressure and increase the supply of blood and oxygen to the heart. Irbesartan can be used for the research of high blood pressure, heart failure, and diabetic kidney disease[1].
Ala Glu Ile Pro
C19H32N4O7 (428.22708819999997)
Ala Glu Leu Pro
C19H32N4O7 (428.22708819999997)
Ala Glu Pro Ile
C19H32N4O7 (428.22708819999997)
Ala Glu Pro Leu
C19H32N4O7 (428.22708819999997)
Ala Ile Glu Pro
C19H32N4O7 (428.22708819999997)
Ala Ile Pro Glu
C19H32N4O7 (428.22708819999997)
Ala Lys Asn Pro
C18H32N6O6 (428.23832120000003)
Ala Lys Pro Asn
C18H32N6O6 (428.23832120000003)
Ala Leu Glu Pro
C19H32N4O7 (428.22708819999997)
Ala Leu Pro Glu
C19H32N4O7 (428.22708819999997)
Ala Asn Lys Pro
C18H32N6O6 (428.23832120000003)
Ala Asn Pro Lys
C18H32N6O6 (428.23832120000003)
Ala Pro Glu Ile
C19H32N4O7 (428.22708819999997)
Ala Pro Glu Leu
C19H32N4O7 (428.22708819999997)
Ala Pro Ile Glu
C19H32N4O7 (428.22708819999997)
Ala Pro Lys Asn
C18H32N6O6 (428.23832120000003)
Ala Pro Leu Glu
C19H32N4O7 (428.22708819999997)
Ala Pro Asn Lys
C18H32N6O6 (428.23832120000003)
Asp Pro Val Val
C19H32N4O7 (428.22708819999997)
Asp Val Pro Val
C19H32N4O7 (428.22708819999997)
Asp Val Val Pro
C19H32N4O7 (428.22708819999997)
Glu Ala Ile Pro
C19H32N4O7 (428.22708819999997)
Glu Ala Leu Pro
C19H32N4O7 (428.22708819999997)
Glu Ala Pro Ile
C19H32N4O7 (428.22708819999997)
Glu Ala Pro Leu
C19H32N4O7 (428.22708819999997)
Glu Ile Ala Pro
C19H32N4O7 (428.22708819999997)
Glu Ile Pro Ala
C19H32N4O7 (428.22708819999997)
Glu Leu Ala Pro
C19H32N4O7 (428.22708819999997)
Glu Leu Pro Ala
C19H32N4O7 (428.22708819999997)
Glu Pro Ala Ile
C19H32N4O7 (428.22708819999997)
Glu Pro Ala Leu
C19H32N4O7 (428.22708819999997)
Glu Pro Ile Ala
C19H32N4O7 (428.22708819999997)
Glu Pro Leu Ala
C19H32N4O7 (428.22708819999997)
Gly Lys Lys Pro
Gly Lys Pro Lys
Gly Lys Pro Gln
C18H32N6O6 (428.23832120000003)
Gly Lys Gln Pro
C18H32N6O6 (428.23832120000003)
Gly Pro Lys Lys
Gly Pro Lys Gln
C18H32N6O6 (428.23832120000003)
Gly Pro Gln Lys
C18H32N6O6 (428.23832120000003)
Gly Gln Lys Pro
C18H32N6O6 (428.23832120000003)
Gly Gln Pro Lys
C18H32N6O6 (428.23832120000003)
Ile Ala Glu Pro
C19H32N4O7 (428.22708819999997)
Ile Ala Pro Glu
C19H32N4O7 (428.22708819999997)
Ile Glu Ala Pro
C19H32N4O7 (428.22708819999997)
Ile Glu Pro Ala
C19H32N4O7 (428.22708819999997)
Ile Ile Pro Ser
Ile Ile Ser Pro
Ile Leu Pro Ser
Ile Leu Ser Pro
Ile Pro Ala Glu
C19H32N4O7 (428.22708819999997)
Ile Pro Glu Ala
C19H32N4O7 (428.22708819999997)
Ile Pro Ile Ser
Ile Pro Leu Ser
Ile Pro Ser Ile
Ile Pro Ser Leu
Ile Pro Thr Val
Ile Pro Val Thr
Ile Ser Ile Pro
Ile Ser Leu Pro
Ile Ser Pro Ile
Ile Ser Pro Leu
Ile Thr Pro Val
Ile Thr Val Pro
Ile Val Pro Thr
Ile Val Thr Pro
Lys Ala Asn Pro
C18H32N6O6 (428.23832120000003)
Lys Ala Pro Asn
C18H32N6O6 (428.23832120000003)
Lys Gly Lys Pro
Lys Gly Pro Lys
Lys Gly Pro Gln
C18H32N6O6 (428.23832120000003)
Lys Gly Gln Pro
C18H32N6O6 (428.23832120000003)
Lys Lys Gly Pro
Lys Lys Pro Gly
Lys Asn Ala Pro
C18H32N6O6 (428.23832120000003)
Lys Asn Pro Ala
C18H32N6O6 (428.23832120000003)
Lys Pro Ala Asn
C18H32N6O6 (428.23832120000003)
Lys Pro Gly Lys
Lys Pro Gly Gln
C18H32N6O6 (428.23832120000003)
Lys Pro Lys Gly
Lys Pro Asn Ala
C18H32N6O6 (428.23832120000003)
Lys Pro Gln Gly
C18H32N6O6 (428.23832120000003)
Lys Gln Gly Pro
C18H32N6O6 (428.23832120000003)
Lys Gln Pro Gly
C18H32N6O6 (428.23832120000003)
Leu Ala Glu Pro
C19H32N4O7 (428.22708819999997)
Leu Ala Pro Glu
C19H32N4O7 (428.22708819999997)
Leu Glu Ala Pro
C19H32N4O7 (428.22708819999997)
Leu Glu Pro Ala
C19H32N4O7 (428.22708819999997)
Leu Ile Pro Ser
Leu Ile Ser Pro
Leu Leu Pro Ser
Leu Leu Ser Pro
Leu Pro Ala Glu
C19H32N4O7 (428.22708819999997)
Leu Pro Glu Ala
C19H32N4O7 (428.22708819999997)
Leu Pro Ile Ser
Leu Pro Leu Ser
Leu Pro Ser Ile
Leu Pro Ser Leu
Leu Pro Thr Val
Leu Pro Val Thr
Leu Ser Ile Pro
Leu Ser Leu Pro
Leu Ser Pro Ile
Leu Ser Pro Leu
Leu Thr Pro Val
Leu Thr Val Pro
Leu Val Pro Thr
Leu Val Thr Pro
Asn Ala Lys Pro
C18H32N6O6 (428.23832120000003)
Asn Ala Pro Lys
C18H32N6O6 (428.23832120000003)
Asn Lys Ala Pro
C18H32N6O6 (428.23832120000003)
Asn Lys Pro Ala
C18H32N6O6 (428.23832120000003)
Asn Pro Ala Lys
C18H32N6O6 (428.23832120000003)
Asn Pro Lys Ala
C18H32N6O6 (428.23832120000003)
Pro Ala Glu Ile
C19H32N4O7 (428.22708819999997)
Pro Ala Glu Leu
C19H32N4O7 (428.22708819999997)
Pro Ala Ile Glu
C19H32N4O7 (428.22708819999997)
Pro Ala Lys Asn
C18H32N6O6 (428.23832120000003)
Pro Ala Leu Glu
C19H32N4O7 (428.22708819999997)
Pro Ala Asn Lys
C18H32N6O6 (428.23832120000003)
Pro Asp Val Val
C19H32N4O7 (428.22708819999997)
Pro Glu Ala Ile
C19H32N4O7 (428.22708819999997)
Pro Glu Ala Leu
C19H32N4O7 (428.22708819999997)
Pro Glu Ile Ala
C19H32N4O7 (428.22708819999997)
Pro Glu Leu Ala
C19H32N4O7 (428.22708819999997)
Pro Gly Lys Lys
Pro Gly Lys Gln
C18H32N6O6 (428.23832120000003)
Pro Gly Gln Lys
C18H32N6O6 (428.23832120000003)
Pro Ile Ala Glu
C19H32N4O7 (428.22708819999997)
Pro Ile Glu Ala
C19H32N4O7 (428.22708819999997)
Pro Ile Ile Ser
Pro Ile Leu Ser
Pro Ile Ser Ile
Pro Ile Ser Leu
Pro Ile Thr Val
Pro Ile Val Thr
Pro Lys Ala Asn
C18H32N6O6 (428.23832120000003)
Pro Lys Gly Lys
Pro Lys Gly Gln
C18H32N6O6 (428.23832120000003)
Pro Lys Lys Gly
Pro Lys Asn Ala
C18H32N6O6 (428.23832120000003)
Pro Lys Gln Gly
C18H32N6O6 (428.23832120000003)
Pro Leu Ala Glu
C19H32N4O7 (428.22708819999997)
Pro Leu Glu Ala
C19H32N4O7 (428.22708819999997)
Pro Leu Ile Ser
Pro Leu Leu Ser
Pro Leu Ser Ile
Pro Leu Ser Leu
Pro Leu Thr Val
Pro Leu Val Thr
Pro Asn Ala Lys
C18H32N6O6 (428.23832120000003)
Pro Asn Lys Ala
C18H32N6O6 (428.23832120000003)
Pro Gln Gly Lys
C18H32N6O6 (428.23832120000003)
Pro Gln Lys Gly
C18H32N6O6 (428.23832120000003)
Pro Ser Ile Ile
Pro Ser Ile Leu
Pro Ser Leu Ile
Pro Ser Leu Leu
Pro Thr Ile Val
Pro Thr Leu Val
Pro Thr Val Ile
Pro Thr Val Leu
Pro Val Asp Val
C19H32N4O7 (428.22708819999997)
Pro Val Ile Thr
Pro Val Leu Thr
Pro Val Thr Ile
Pro Val Thr Leu
Pro Val Val Asp
C19H32N4O7 (428.22708819999997)
Gln Gly Lys Pro
C18H32N6O6 (428.23832120000003)
Gln Gly Pro Lys
C18H32N6O6 (428.23832120000003)
Gln Lys Gly Pro
C18H32N6O6 (428.23832120000003)
Gln Lys Pro Gly
C18H32N6O6 (428.23832120000003)
Gln Pro Gly Lys
C18H32N6O6 (428.23832120000003)
Gln Pro Lys Gly
C18H32N6O6 (428.23832120000003)
Ser Ile Ile Pro
Ser Ile Leu Pro
Ser Ile Pro Ile
Ser Ile Pro Leu
Ser Leu Ile Pro
Ser Leu Leu Pro
Ser Leu Pro Ile
Ser Leu Pro Leu
Ser Pro Ile Ile
Ser Pro Ile Leu
Ser Pro Leu Ile
Ser Pro Leu Leu
Thr Ile Pro Val
Thr Ile Val Pro
Thr Leu Pro Val
Thr Leu Val Pro
Thr Pro Ile Val
Thr Pro Leu Val
Thr Pro Val Ile
Thr Pro Val Leu
Thr Val Ile Pro
Thr Val Leu Pro
Thr Val Pro Ile
Thr Val Pro Leu
Val Asp Pro Val
C19H32N4O7 (428.22708819999997)
Val Asp Val Pro
C19H32N4O7 (428.22708819999997)
Val Ile Pro Thr
Val Ile Thr Pro
Val Leu Pro Thr
Val Leu Thr Pro
Val Pro Asp Val
C19H32N4O7 (428.22708819999997)
Val Pro Ile Thr
Val Pro Leu Thr
Val Pro Thr Ile
Val Pro Thr Leu
Val Pro Val Asp
C19H32N4O7 (428.22708819999997)
Val Thr Ile Pro
Val Thr Leu Pro
Val Thr Pro Ile
Val Thr Pro Leu
Val Val Asp Pro
C19H32N4O7 (428.22708819999997)
Val Val Pro Asp
C19H32N4O7 (428.22708819999997)
ZK118182 isopropyl ester
C23H37ClO5 (428.23293820000004)
2-Angeloyl-9-(3-methyl-2E-pentenoyl)-2b,9a-dihydroxy-4Z,10(14)-oplopadien-3-one
1,4,8,11-Tetrakis(aminocarbonylmethyl)-1,4,8,11-tetraazacyclotetradecane
Dicirenone
C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist > C2355 - Anti-Adrenal
5-(3,5-dimethyl-4-octoxyphenyl)-3-hexylthiophene-2-carbaldehyde
C27H40O2S (428.27488600000004)
11beta-hydroxy-D-homopregna-1,4-diene-3,20-dione 17a-butyrate
Bedoradrine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist
HEXOCYCLIUM METHYLSULFATE
C21H36N2O5S (428.23448060000004)
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent
(3R,4R,5S)-ethyl 4-acetamido-5-(diallylamino)-3-(pentan-3-yloxy)cyclohex-1-enecarboxylate
C22H37ClN2O4 (428.24417120000004)
[4-[3-(decyloxy)-2-hydroxypropoxy]-2-hydroxyphenyl] phenyl ketone
Umeclidinium
C29H34NO2+ (428.25894040000003)
C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent
2-Phenyl-1-[4-(2-piperidin-1-YL-ethoxy)-phenyl]-1,2,3,4-tetrahydro-isoquinolin-6-OL
C28H32N2O2 (428.24636519999996)
N~2~-[(Benzyloxy)carbonyl]-N-[(1S,2S)-2-hydroxy-1-(4-hydroxybenzyl)propyl]-L-leucinamide
prostaglandin F2alpha 1-glyceryl ester
A 1-monoglyceride resulting from the condensation of the carboxy group of prostaglandin F2alpha with the 1-hydroxy group of glycerol.
3-[[cyclopentyl-[[1-(phenylmethyl)-5-tetrazolyl]methyl]amino]methyl]-8-methyl-1H-quinolin-2-one
(1R,2S,3S,4S)-4-formyl-2-methoxy-3-[(2E)-6-methylhept-2-en-2-yl]cyclohexyl (2E)-3-(4-methoxyphenyl)acrylate
1-[3-methyl-2-[[2-(methylamino)-1-oxopropyl]amino]-1-oxobutyl]-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-2-pyrrolidinecarboxamide
4-{[(4-Fluorophenyl)methyl]({[4-(2-methylpropoxy)phenyl]methyl}carbamoyl)amino}-1-methylpiperidin-1-ium
N-[(1R,3S,4aR,9aS)-3-[2-(cyclopentylamino)-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]cyclobutanecarboxamide
N-[(1R,3R,4aS,9aR)-3-[2-(cyclopentylamino)-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]cyclobutanecarboxamide
N-[(1R,3R,4aR,9aS)-3-[2-(cyclopentylamino)-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b][1]benzofuran-6-yl]cyclobutanecarboxamide
N-[(1S,3S,4aR,9aS)-3-[2-(cyclopentylamino)-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]cyclobutanecarboxamide
N-[(1S,3R,4aR,9aS)-3-[2-(cyclopentylamino)-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]cyclobutanecarboxamide
N-[(1S,3S,4aR,9aS)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-2-cyclopropylacetamide
N-[(1R,3R,4aR,9aS)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-2-cyclopropylacetamide
N-[(1R,3R,4aS,9aR)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-2-cyclopropylacetamide
(1R)-1-(hydroxymethyl)-7-methoxy-2-(1-oxobutyl)-N-propan-2-yl-1-spiro[3,9-dihydro-1H-pyrido[3,4-b]indole-4,3-azetidine]carboxamide
N-[(1S,3S,4aS,9aR)-3-[2-(cyclopentylamino)-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]cyclobutanecarboxamide
N-[(1S,3R,4aS,9aR)-3-[2-(cyclopentylamino)-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]cyclobutanecarboxamide
N-[(1R,3S,4aS,9aR)-3-[2-(cyclopentylamino)-2-oxoethyl]-1-(hydroxymethyl)-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]cyclobutanecarboxamide
N-[(1R,3S,4aS,9aR)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-2-cyclopropylacetamide
N-[(1S,3R,4aR,9aS)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-2-cyclopropylacetamide
N-[(1S,3S,4aS,9aR)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-2-cyclopropylacetamide
N-[(1R,3S,4aR,9aS)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-2-cyclopropylacetamide
N-[(1S,3R,4aS,9aR)-1-(hydroxymethyl)-3-[2-oxo-2-(1-piperidinyl)ethyl]-3,4,4a,9a-tetrahydro-1H-pyrano[3,4-b]benzofuran-6-yl]-2-cyclopropylacetamide
(1S)-1-(hydroxymethyl)-7-methoxy-2-(1-oxobutyl)-N-propan-2-yl-1-spiro[3,9-dihydro-1H-pyrido[3,4-b]indole-4,3-azetidine]carboxamide
2,3-Dihydroxypropyl (2-hydroxy-3-tridecoxypropyl) hydrogen phosphate
C19H41O8P (428.25389160000003)
(all-E)-2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenedial
prostaglandin F2alpha 2-glyceryl ester
A 2-monoglyceride obtained by formal condensation of the carboxy group of prostaglandin F2alpha with the 2-hydroxy group of glycerol.
1-ethylidene-7-isopropyl-3-[(2-methylbut-2-enoyl)oxy]-4-methylidene-2-oxo-hexahydroinden-5-yl 3-methylpent-2-enoate
(2s,3r,4s,5r)-4,5-dihydroxy-2-({2-[(1r,4r)-4-methyl-3-oxo-4-(4-oxopentyl)cyclohexyl]propan-2-yl}oxy)oxan-3-yl acetate
2-(3,4-dimethylpent-3-en-1-yl)-3-hydroxy-n-(2-hydroxy-5-oxocyclopent-1-en-1-yl)-2-(methoxymethyl)-3,4-dihydro-1h-quinoline-6-carboximidic acid
methyl (1r,4s,4as,8ar)-1-[2-(furan-3-yl)ethyl]-5,5,8a-trimethyl-4-{[(2z)-2-methylbut-2-enoyl]oxy}-1,4,4a,6,7,8-hexahydronaphthalene-2-carboxylate
(1r,3r,4ar,5s,8ar)-5-[2-(furan-3-yl)ethyl]-1,4a,6-trimethyl-3-{[(2e)-3-methylpent-2-enoyl]oxy}-2,3,4,5,8,8a-hexahydronaphthalene-1-carboxylic acid
methyl 1-[2-(furan-3-yl)ethyl]-5,5,8a-trimethyl-4-[(2-methylbut-2-enoyl)oxy]-1,4,4a,6,7,8-hexahydronaphthalene-2-carboxylate
2-{[2-(3a-acetyl-3-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl)propan-2-yl]oxy}-4,5-dihydroxyoxan-3-yl acetate
8-formyl-1-hydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl 2,3-dimethylbutanoate
(1r,3s,4r,6s,7s,8s,9s,10r,13s,14s,16r)-4,6,7,9,14,16-hexahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-3-yl acetate
n-[1-(2-benzyl-3-methoxy-4-methyl-5-oxo-2h-pyrrol-1-yl)-3-methyl-1-oxobutan-2-yl]-2-methylhexanimidic acid
2-{1-methoxy-4,8,12,12-tetramethyl-3,13-dioxatetracyclo[6.6.2.0²,⁶.0¹¹,¹⁵]hexadeca-2(6),4-dien-7-yl}ethenyl 3-methylbut-2-enoate
n-[(2r)-1-[(2s)-2-benzyl-3-methoxy-4-methyl-5-oxo-2h-pyrrol-1-yl]-3-methyl-1-oxobutan-2-yl]-2-methylhexanimidic acid
2,6,10,15,19,23-hexamethyltetracosa-2,4,6,8,10,12,14,16,18,20,22-undecaenedial
methyl 1-hydroxy-2,3b,6,6,9a,11,11a-heptamethyl-3,7-dioxo-4h,5h,5ah,8h,9h,9bh-cyclopenta[a]phenanthrene-3a-carboxylate
2-(2-hydroxy-1-methoxy-5,6-dimethylhept-5-en-2-yl)-n-(2-hydroxy-5-oxocyclopent-1-en-1-yl)-2,3-dihydro-1h-indole-5-carboximidic acid
17-(furan-3-yl)-6-(methoxycarbonyl)-2,10,14-trimethylheptadeca-2,6,10,14-tetraenoic acid
(2s,3r,4s,5r)-2-({2-[(3r,3ar,5r,7as)-3a-acetyl-3-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl]propan-2-yl}oxy)-4,5-dihydroxyoxan-3-yl acetate
4,5-dihydroxy-2-({2-[4-methyl-3-oxo-4-(4-oxopentyl)cyclohexyl]propan-2-yl}oxy)oxan-3-yl acetate
7-[2-hydroxy-6-(hydroxymethyl)-3-methyl-2-[2-methyl-3-(sec-butyl)oxiran-2-yl]-4a,5,8,8a-tetrahydro-1h-naphthalen-1-yl]hepta-2,4,6-trienoic acid
(1s,3r,4r,6r,7r,8s,9r,10r,13r,14r,16s)-4,6,7,9,14,16-hexahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-3-yl acetate
13-(furan-3-yl)-2-(5-methoxy-4-methyl-5-oxopent-3-en-1-yl)-6,10-dimethyltrideca-2,6,10-trienoic acid
(2s)-1-[(2s,5r)-5-[(2r)-1-ethoxy-1-oxopropan-2-yl]oxolan-2-yl]butan-2-yl (2s)-2-[(2s,5r)-5-[(2r)-2-hydroxypropyl]oxolan-2-yl]propanoate
methyl 5-[2-(furan-3-yl)ethyl]-1,4a-dimethyl-2-[(2-methylbut-2-enoyl)oxy]-6-methylidene-hexahydro-2h-naphthalene-1-carboxylate
(1s,3r,4r,6r,7r,8s,9r,10r,13r,14r,16s)-3,4,6,7,9,14-hexahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate
2-{5-[(acetyloxy)methyl]-11-methyl-14-oxabicyclo[11.2.1]hexadeca-1(15),4,10,13(16)-tetraen-8-yl}prop-2-en-1-yl butanoate
5-{10-hydroxy-2,6,15,19-tetramethyl-3,8-dioxatetracyclo[9.8.0.0²,⁷.0¹²,¹⁷]nonadeca-14,18-dien-9-yl}penta-2,4-dienoic acid
(1s,3r,4r,6r,7r,8s,9r,10r,13r,14r,16r)-4,6,7,9,14,16-hexahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-3-yl acetate
(1r,2s,3r,4r,6s,8s,9r,10r,13r,14r,16r)-2,4,6,9,14,16-hexahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-3-yl acetate
(1r,3r,4r,10s,14r,15r,17r,18s)-18-[(acetyloxy)methyl]-17-hydroxy-3-(methoxycarbonyl)-14-methyl-12λ⁵-azahexacyclo[10.6.1.1¹,⁴.0¹⁰,¹⁸.0¹⁵,¹⁹.0⁷,²⁰]icosa-7(20),12(19)-dien-12-ylium
[C25H34NO5]+ (428.24368540000006)
(1s,2s,5s,6s,7r,10r,11s)-6-[(2,5-dihydroxyphenyl)methyl]-5-hydroxy-5,7,11-trimethyl-13-oxatetracyclo[9.3.3.0¹,¹⁰.0²,⁷]heptadecan-12-one
(1s,13r)-4,6,7,9,14,16-hexahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-3-yl acetate
(2r)-2-[(2s)-2-hydroxy-1-methoxy-5,6-dimethylhept-5-en-2-yl]-n-(2-hydroxy-5-oxocyclopent-1-en-1-yl)-2,3-dihydro-1h-indole-5-carboximidic acid
n-[2-hydroxy-6-(2-methylpyridin-4-yl)phenyl]-13-sulfanyltridecanimidic acid
methyl 3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-4-(acetyloxy)-5-methoxybenzoate
(1r,2r,6r,10s,11r,13s,15r)-8-formyl-1-hydroxy-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-13-yl (2r)-2,3-dimethylbutanoate
2-[(2s,4r)-4-(6-ethyl-3,5-dimethyl-4-oxopyran-2-yl)-3-oxopentan-2-yl]-3,5-dimethyl-6-pentylpyran-4-one
2-[(1s,2r,5r,7s,8s,11s,12r)-7-(acetyloxy)-2,8,11-trihydroxy-2,8,12-trimethyl-15-oxabicyclo[10.2.1]pentadecan-5-yl]prop-2-enoic acid
(3r,6r,8r,11s,16as)-11-benzyl-9-hydroxy-3,6,8-trimethyl-3h,4h,5h,6h,8h,11h,14h,15h,16h,16ah-pyrrolo[2,1-c]1-oxa-4,7-diazacyclotetradecane-1,7,12-trione
methyl 5-[2-(furan-3-yl)ethyl]-5,6-dimethyl-8a-{[(2-methylbut-2-enoyl)oxy]methyl}-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate
2-[(1s,2r,5r,7s,8s,11s,12r)-11-(acetyloxy)-2,7,8-trihydroxy-2,8,12-trimethyl-15-oxabicyclo[10.2.1]pentadecan-5-yl]prop-2-enoic acid
(1z,3s,3ar,5r,7s,7as)-1-ethylidene-7-isopropyl-3-{[(2z)-2-methylbut-2-enoyl]oxy}-4-methylidene-2-oxo-hexahydroinden-5-yl (2e)-3-methylpent-2-enoate
(7z)-7-(1-hydroxy-2-methylpropylidene)-2-(2-methoxypropan-2-yl)-5,5-bis(3-methylbut-2-en-1-yl)-1-benzofuran-4,6-dione
methyl (1e,3z,6s,7r)-6-[(2r)-2-(furan-3-yl)-2-{[(2r)-2-methylbutanoyl]oxy}ethyl]-6,7-dimethyl-10-methylidenecyclodeca-1,3-diene-1-carboxylate
2-[4-(6-ethyl-3,5-dimethyl-4-oxopyran-2-yl)-3-oxopentan-2-yl]-3,5-dimethyl-6-pentylpyran-4-one
2-oxatricyclo[20.2.2.1³,⁷]heptacosa-1(24),3,5,7(27),22,25-hexaene-5,21,24,25-tetrol
(21r)-2-oxatricyclo[20.2.2.1³,⁷]heptacosa-1(24),3,5,7(27),22,25-hexaene-5,21,24,25-tetrol
(1s,3r,4r,6r,7s,8s,9r,10r,13r,14r,16s)-4,6,7,9,14,16-hexahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-3-yl acetate
4,6,7,9,14,16-hexahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-3-yl acetate
7-(1-hydroxy-2-methylpropylidene)-2-(2-methoxypropan-2-yl)-5,5-bis(3-methylbut-2-en-1-yl)-1-benzofuran-4,6-dione
1-{6,7'-dihydroxy-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydro-2h-3',11'-dioxaspiro[naphthalene-1,4'-tricyclo[7.3.0.0²,⁶]dodecane]-1',6',8'-trien-12'-yl}propan-2-one
(2r,3r)-2-(3,4-dimethylpent-3-en-1-yl)-3-hydroxy-n-(2-hydroxy-5-oxocyclopent-1-en-1-yl)-2-(methoxymethyl)-3,4-dihydro-1h-quinoline-6-carboximidic acid
(2s,3r,4s,5r)-2-({2-[(3s,3as,5r,7as)-3-acetyl-3a-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl]propan-2-yl}oxy)-4,5-dihydroxyoxan-3-yl acetate
(2r,4s,5r,6s)-6-[(1s,9s,12s,19s)-12-ethyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6-trien-8-yl]-2,4,5-trihydroxyoxan-3-one
11-benzyl-9-hydroxy-3,6,8-trimethyl-3h,4h,5h,6h,8h,11h,14h,15h,16h,16ah-pyrrolo[2,1-c]1-oxa-4,7-diazacyclotetradecane-1,7,12-trione
2-({1-ethenyl-11a-methyl-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl}oxy)-6-methyloxane-3,4,5-triol
2-{[2-(3-acetyl-3a-hydroxy-7a-methyl-hexahydro-1h-inden-5-yl)propan-2-yl]oxy}-4,5-dihydroxyoxan-3-yl acetate
(3e)-4-[(2r,2'r,4'as,6'r,8'as)-4,6'-dihydroxy-6-(hydroxymethyl)-2',5',5',8'a-tetramethyl-3',4',4'a,6',7',8'-hexahydro-2'h,3h-spiro[1-benzofuran-2,1'-naphthalen]-7-yl]but-3-en-2-one
4-[4,6'-dihydroxy-6-(hydroxymethyl)-2',5',5',8'a-tetramethyl-3',4',4'a,6',7',8'-hexahydro-2'h,3h-spiro[1-benzofuran-2,1'-naphthalen]-7-yl]but-3-en-2-one
methyl (4ar,5s,6r,8as)-5-[2-(furan-3-yl)ethyl]-5,6-dimethyl-8a-({[(2z)-2-methylbut-2-enoyl]oxy}methyl)-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylate
(2s,3r,4r,4as,7r,8s,8as)-8-(acetyloxy)-2,4,7,8a-tetramethyl-6-oxo-hexahydropyrano[3,2-b]pyran-3-yl (4s)-4-hydroxyoctanoate
6-{12-ethyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2,4,6-trien-8-yl}-2,4,5-trihydroxyoxan-3-one
(1r,2s,3s,4r,8r,9s,10r)-2,8,9-trihydroxy-6-oxo-4-pentyl-5,11-dioxabicyclo[8.1.0]undecan-3-yl (2e)-2,4-dimethylhex-2-enoate
(1e,3s,3ar,5r,7r,7as)-1-ethylidene-3-[(2-methylbutanoyl)oxy]-4-methylidene-2-oxo-7-(prop-1-en-2-yl)-hexahydroinden-5-yl (2e)-3-methylpent-2-enoate
1-{7-hydroxy-8,9-dimethoxy-17-oxa-5,15-diazahexacyclo[13.4.3.0¹,¹⁶.0⁴,¹².0⁶,¹¹.0¹²,¹⁶]docosa-6(11),7,9-trien-5-yl}propan-1-one
(1s,2r,4s,5r,6s,7s,9r)-5-hydroxy-2,6,10,10-tetramethyl-7-{[(2e)-3-phenylprop-2-en-1-yl]oxy}-11-oxatricyclo[7.2.1.0¹,⁶]dodecan-4-yl acetate
1-[(1r,2r,4as,6r,8as,12'r)-6,7'-dihydroxy-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydro-2h-3',11'-dioxaspiro[naphthalene-1,4'-tricyclo[7.3.0.0²,⁶]dodecane]-1',6',8'-trien-12'-yl]propan-2-one
2-[(4z,8r,10e)-5-[(acetyloxy)methyl]-11-methyl-14-oxabicyclo[11.2.1]hexadeca-1(15),4,10,13(16)-tetraen-8-yl]prop-2-en-1-yl butanoate
1-[(1r,4r,12r,16s)-7-hydroxy-8,9-dimethoxy-17-oxa-5,15-diazahexacyclo[13.4.3.0¹,¹⁶.0⁴,¹².0⁶,¹¹.0¹²,¹⁶]docosa-6(11),7,9-trien-5-yl]propan-1-one
14-oxo-7,15-diazatetracyclo[7.7.1.0²,⁷.0¹⁰,¹⁵]heptadecan-4-yl 3,4-dimethoxybenzoate
(2r,3s,4r,5r,6s)-2-{[(1r,3as,3bs,9bs,11ar)-1-ethenyl-11a-methyl-1h,2h,3h,3ah,3bh,4h,5h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-methyloxane-3,4,5-triol
methyl (3ar,3bs,5as,9ar,9bs,11ar)-1-hydroxy-2,3b,6,6,9a,11,11a-heptamethyl-3,7-dioxo-4h,5h,5ah,8h,9h,9bh-cyclopenta[a]phenanthrene-3a-carboxylate
methyl (1r,2r,4as,5r,8as)-5-[2-(furan-3-yl)ethyl]-1,4a-dimethyl-2-{[(2z)-2-methylbut-2-enoyl]oxy}-6-methylidene-hexahydro-2h-naphthalene-1-carboxylate
(1s,3r,4r,6r,7r,8s,9r,10r,13r,14r,16r)-3,4,6,7,9,14-hexahydroxy-5,5,9,14-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁸]hexadecan-16-yl acetate
(2e,4e)-5-[(1r,2s,4s,5as,7as,11as,11bs)-4-[(2s)-butan-2-yl]-1,5a-dihydroxy-6,9-dimethyl-5-methylidene-1h,2h,4h,7ah,8h,11h,11ah,11bh-naphtho[1,2-d]oxepin-2-yl]penta-2,4-dienoic acid
17-(3,5-dihydroxyphenyl)heptadecane-6-sulfonic acid
C23H40O5S (428.25963100000007)
1-[(1r,2r,4as,6r,8as,12's)-6,7'-dihydroxy-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydro-2h-3',11'-dioxaspiro[naphthalene-1,4'-tricyclo[7.3.0.0²,⁶]dodecane]-1',6',8'-trien-12'-yl]propan-2-one
(1r,2r,5s,6r,10r,11s,12r,15r,16r,18s,19r)-6-(furan-3-yl)-1,5,10,15-tetramethyl-13-oxapentacyclo[10.6.1.0²,¹⁰.0⁵,⁹.0¹⁵,¹⁹]nonadec-8-ene-11,16,18-triol
(1e)-2-[(1r,7r,8s,11r,15s)-1-methoxy-4,8,12,12-tetramethyl-3,13-dioxatetracyclo[6.6.2.0²,⁶.0¹¹,¹⁵]hexadeca-2(6),4-dien-7-yl]ethenyl 3-methylbut-2-enoate
(1s,2s,5s,6r,7r,10r,11s)-6-[(2,5-dihydroxyphenyl)methyl]-5-hydroxy-5,7,11-trimethyl-13-oxatetracyclo[9.3.3.0¹,¹⁰.0²,⁷]heptadecan-12-one
(2e,4e)-5-[(1s,2s,6r,7r,9r,10s,11s,12r,17r)-10-hydroxy-2,6,15,19-tetramethyl-3,8-dioxatetracyclo[9.8.0.0²,⁷.0¹²,¹⁷]nonadeca-14,18-dien-9-yl]penta-2,4-dienoic acid
2-[(2s,4s)-4-(6-ethyl-3,5-dimethyl-4-oxopyran-2-yl)-3-oxopentan-2-yl]-3,5-dimethyl-6-pentylpyran-4-one
(5s,6r,8s,8ar)-5-{2-[(2s,4s,5r)-3,4-dihydroxy-2,5-dimethoxyoxolan-3-yl]ethyl}-8-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid
(4bs,6as,10as,10bs)-3-(2-carboxyethyl)-2-(carboxymethyl)-4b,7,7,10a-tetramethyl-4ah,5h,6h,6ah,8h,9h,10h,10bh,11h,12h-naphtho[2,1-f]isoquinolin-4a-yl
C26H38NO4 (428.28006880000004)