Exact Mass: 393.2644
Exact Mass Matches: 393.2644
Found 233 metabolites which its exact mass value is equals to given mass value 393.2644
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Oxidized Cypridina luciferin
undecylprodigiosin
A member of the class of tripyrroles that is 1H-pyrrole substituted by (4-methoxy-1H,5H-[2,2-bipyrrol]-5-ylidene)methyl and undecyl groups at positions 2 and 5, respectively. It is a pigment produced by Stveptomyces coelicolor. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
2,2-Dimethyl-3-(4-methoxyphenyl)-4-ethyl-6-(1-pyrrolidinylmethyl)-2H-1-benzopyran-7-ol
2,2-Dimethyl-3-(4-methoxyphenyl)-4-ethyl-8-(1-pyrrolidinylmethyl)-2H-1-benzopyran-7-ol
Cyenopyrafen
Acidissiminol
Acidissiminol is found in beverages. Acidissiminol is an alkaloid from the fruit of Limonia acidissima (wood apple). Alkaloid from the fruit of Limonia acidissima (wood apple). Acidissiminol is found in beverages and fruits.
(5E,8E,11E)-Hexadeca-5,8,11-trienoylcarnitine
(5E,8E,11E)-Hexadeca-5,8,11-trienoylcarnitine is an acylcarnitine. More specifically, it is an (5E,8E,11E)-hexadeca-5,8,11-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5E,8E,11E)-Hexadeca-5,8,11-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (5E,8E,11E)-Hexadeca-5,8,11-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Hexadeca-7,10,13-trienoylcarnitine
Hexadeca-7,10,13-trienoylcarnitine is an acylcarnitine. More specifically, it is an hexadeca-7,10,13-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hexadeca-7,10,13-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine Hexadeca-7,10,13-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(6E,9E,12E)-Hexadeca-6,9,12-trienoylcarnitine
(6E,9E,12E)-Hexadeca-6,9,12-trienoylcarnitine is an acylcarnitine. More specifically, it is an (6E,9E,12E)-hexadeca-6,9,12-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6E,9E,12E)-Hexadeca-6,9,12-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (6E,9E,12E)-Hexadeca-6,9,12-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4E,7E,10E)-Hexadeca-4,7,10-trienoylcarnitine
(4E,7E,10E)-Hexadeca-4,7,10-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4E,7E,10E)-hexadeca-4,7,10-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E,7E,10E)-Hexadeca-4,7,10-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (4E,7E,10E)-Hexadeca-4,7,10-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(7Z,11Z,14Z)-Hexadeca-7,11,14-trienoylcarnitine
(7Z,11Z,14Z)-Hexadeca-7,11,14-trienoylcarnitine is an acylcarnitine. More specifically, it is an (7Z,11Z,14Z)-hexadeca-7,11,14-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (7Z,11Z,14Z)-Hexadeca-7,11,14-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (7Z,11Z,14Z)-Hexadeca-7,11,14-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(4E,7E,13E)-Hexadeca-4,7,13-trienoylcarnitine
(4E,7E,13E)-hexadeca-4,7,13-trienoylcarnitine is an acylcarnitine. More specifically, it is an (4E,7E,13E)-hexadeca-4,7,13-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (4E,7E,13E)-hexadeca-4,7,13-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (4E,7E,13E)-hexadeca-4,7,13-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(6Z,10Z,14Z)-Hexadeca-6,10,14-trienoylcarnitine
(6Z,10Z,14Z)-Hexadeca-6,10,14-trienoylcarnitine is an acylcarnitine. More specifically, it is an (6Z,10Z,14Z)-hexadeca-6,10,14-trienoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (6Z,10Z,14Z)-Hexadeca-6,10,14-trienoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine (6Z,10Z,14Z)-Hexadeca-6,10,14-trienoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane. Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulins inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Palmitoyl Histidine
N-palmitoyl histidine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Histidine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Histidine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Histidine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
2,2-Dimethyl-N-(2,4,6-trimethoxyphenyl)dodecanamide
D004791 - Enzyme Inhibitors PD 128042 (CI 976) is a potent, orally active, and selective inhibitor of ACAT (acyl coenzyme A:cholesterol acyltransferase) with an IC50s of 73 nM. PD 128042 is also a potent LPAT (lysophospholipid acyltransferase) inhibitor. PD 128042 inhibits Golgi-associated LPAT activity (IC50=15 μM). PD 128042 inhibits multiple membrane trafficking steps, including ones found in the endocytic and secretory pathway[1][2][3].
Lumateperone
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent
undecylprodigiosin
Estradiol 17-dihydrotrigonelline
CCCCCCCC1=C(C)NC(C=C2C(=CC(=N2)C=2NC=CC=2)OC)=C1CCC
1-Piperazineacetamide, 4-((3,5-dimethoxy-4-hydroxy)dihydrocinnamoyl)-N-isopropyl-
MLS001077289-01!2-(2,2-DICYCLOHEXYLETHYL)PIPERIDINE 2-BUTENEDIOATE
MLS000028601-01!2-[2,2-DICYCLOHEXYLETHYL]PIPERIDINE MALEATE SALT
[(1R,4S)-4-hydroxy-3-methylcyclopent-2-en-1-yl]methyl-trimethylazanium,iodide
TERT-BUTYL 4-((4-(ETHOXYCARBONYL)-2-ETHOXYPHENOXY)METHYL)PIPERIDINE-1-CARBOXYLATE
2-Dicyclohexylphosphino-2-(N,N-dimethylamino)biphenyl
2-(1-methyl-2,3,3a,4,5,6,7,7a-octahydroindol-3-yl)ethyl 2-hydroxy-2,2-diphenylacetate
Perhexiline maleate
C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker C93038 - Cation Channel Blocker Perhexiline maleate is an orally active CPT1 and CPT2 inhibitor that reduces fatty acid metabolism. Perhexiline maleate induces mitochondrial dysfunction and apoptosis in hepatic cells. Perhexiline maleate can cross the blood brain barrier (BBB) and shows anti-tumor activity. Perhexiline maleate can be used in the research of cancers, and cardiovascular disease like angina[1][2][5].
2,4-Dihydro-4-[4-[4-(4-hydroxylphenyl)piperazin-1-yl]phenyl]-2-(1-methylpropyl)-3H-1,2,4-triazol-3-one
2-sec-butyl-4-{4-[4-(4-hydroxyphenyl)piperazin-1-yl]phenyl}-2,4-dihydro-3H-1,2,4-triazol-3-one
2-(Dicyclohexylphosphino)-N,N-dimethyl[1,1-biphenyl]-4-amine
8-[1,1,2,2,3,3,4,4-octadeuterio-4-(4-pyrimidin-2-ylpiperazin-1-yl)butyl]-8-azaspiro[4.5]decane-7,9-dione,hydrochloride
(3S,5S)-5-(3-(Cyclopentyloxy)-4-methoxyphenyl)-3-(3-methylbenzyl)piperidin-2-one
s-Geranylgeranyl-l-cysteine
An S-polyprenyl-L-cysteine where the polyprenyl moiety is specified as geranylgeranyl.
(3-hydroxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl) 1-methyl-4H-pyridine-3-carboxylate
(2S)-2-[[(2S)-2-[[(2S,3S)-2-amino-3-methylpentanoyl]amino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoic acid
Methyl N-[(2S,3R)-3-amino-2-hydroxy-3-(4-methylphenyl)propanoyl]-D-alanyl-D-leucinate
ITI-722
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent
N-Palmitoyl Histidine
N-palmitoyl histidine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Histidine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Histidine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Histidine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Lumateperone
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent
3-[(3R,7R,10S,12S,13R,17R)-3,7,12-trihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]butanoate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
4-[4-[(1-Tert-butyl-5-tetrazolyl)-pyridin-4-ylmethyl]-1-piperazinyl]phenol
(8S,9S)-9-[[cyclopropylmethyl(methyl)amino]methyl]-6-[(2R)-1-hydroxypropan-2-yl]-8-methyl-10-oxa-1,6,14,15-tetrazabicyclo[10.3.0]pentadeca-12,14-dien-5-one
(4Z,7Z,11Z,13Z,15E,17S)-10,17-bis(hydroperoxy)docosa-4,7,11,13,15-pentaenoate
(7Z,11Z,13Z,15E,19Z)-10,17-bis(hydroperoxy)docosa-7,11,13,15,19-pentaenoate
4-Hydroxy-6-(pyridin-3-yl)-3-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl)-2H-pyran-2-one
N-[[(2R,3S,4R)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-N-(2-methylpropyl)pyridine-2-carboxamide
(1S,5R)-N-cyclohexyl-7-[4-(4-fluorophenyl)phenyl]-3,6-diazabicyclo[3.1.1]heptane-3-carboxamide
N-[[(2R,3R,4R)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-N-(2-methylpropyl)pyridine-2-carboxamide
2-methoxy-N-[(4R,7R,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4R,7R,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4S,7S,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4S,7R,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(5R,6R,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(5R,6R,9S)-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-[(2R,5S,6R)-5-[[2-(dimethylamino)-1-oxoethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N-[(4-methoxyphenyl)methyl]acetamide
2-[(2R,5R,6S)-5-[[2-(dimethylamino)-1-oxoethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N-[(4-methoxyphenyl)methyl]acetamide
2-[(2R,5R,6R)-5-[[2-(dimethylamino)-1-oxoethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N-[(4-methoxyphenyl)methyl]acetamide
2-[(2S,5R,6R)-5-[[2-(dimethylamino)-1-oxoethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N-[(4-methoxyphenyl)methyl]acetamide
N-ethyl-N-[[(2S,3R,4R)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]-1-(pyridin-3-ylmethyl)azetidin-2-yl]methyl]acetamide
N-[[(2S,3R,4S)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-N-(2-methylpropyl)pyridine-2-carboxamide
(2S,3S,4R)-2-cyano-3-[2-(1-cyclohexenyl)phenyl]-N-cyclohexyl-4-(hydroxymethyl)-1-azetidinecarboxamide
2-methoxy-N-[(4S,7S,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4S,7R,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4R,7S,8S)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(4R,7S,8R)-8-methoxy-4,7,10-trimethyl-11-oxo-2-oxa-5,10-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(5S,6R,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(5S,6S,9S)-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(5S,6S,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(5R,6S,9R)-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-methoxy-N-[(5S,6R,9S)-5-methoxy-3,6,9-trimethyl-2-oxo-11-oxa-3,8-diazabicyclo[10.4.0]hexadeca-1(12),13,15-trien-14-yl]acetamide
2-[(2S,5R,6S)-5-[[2-(dimethylamino)-1-oxoethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N-[(4-methoxyphenyl)methyl]acetamide
2-[(2S,5S,6R)-5-[[2-(dimethylamino)-1-oxoethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N-[(4-methoxyphenyl)methyl]acetamide
2-[(2S,5S,6S)-5-[[2-(dimethylamino)-1-oxoethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N-[(4-methoxyphenyl)methyl]acetamide
2-[(2R,5S,6S)-5-[[2-(dimethylamino)-1-oxoethyl]amino]-6-(hydroxymethyl)-2-oxanyl]-N-[(4-methoxyphenyl)methyl]acetamide
(2R,3S,4R)-2-cyano-3-[4-(1-cyclohexenyl)phenyl]-N-cyclohexyl-4-(hydroxymethyl)-1-azetidinecarboxamide
(2S,3R,4R)-2-cyano-3-[4-(1-cyclohexenyl)phenyl]-N-cyclohexyl-4-(hydroxymethyl)-1-azetidinecarboxamide
N-[[(2S,3S,4S)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-N-(2-methylpropyl)pyridine-2-carboxamide
N-[(15S)-hydroperoxy-(5Z,8Z,11Z,13E)-icosatetraenoyl]glycine
An N-acylglycine resulting from the formal condensation of the amino group of glycine with the carboxy group of (15S)-hydroperoxy-(5Z,8Z,11Z,13E)-icosatetraenoic acid.
N-[(12S)-hydroperoxy-(5Z,8Z,10E,14Z)-icosatetraenoyl]glycine
An N-acylglycine resulting from the formal condensation of the amino group of glycine with the carboxy group of (12S)-hydroperoxy-(5Z,8Z,10E,14Z)-icosatetraenoic acid.
(8E,10Z,13Z,15E,19Z)-7,17-bis(hydroperoxy)docosa-8,10,13,15,19-pentaenoate
1-(3-{6-(1H-indol-3-yl)-3-[(2S)-2-methylbutanamido]pyrazin-2-yl}propyl)guanidine
PD 128042
D004791 - Enzyme Inhibitors PD 128042 (CI 976) is a potent, orally active, and selective inhibitor of ACAT (acyl coenzyme A:cholesterol acyltransferase) with an IC50s of 73 nM. PD 128042 is also a potent LPAT (lysophospholipid acyltransferase) inhibitor. PD 128042 inhibits Golgi-associated LPAT activity (IC50=15 μM). PD 128042 inhibits multiple membrane trafficking steps, including ones found in the endocytic and secretory pathway[1][2][3].
(8E,10Z,13Z,15E,19Z)-7,17-bis(hydroperoxy)docosapentaenoate
A hydroperoxydocosapentaenoate that is the conjugate base of (8E,10Z,13Z,15E,19Z)-7,17-bis(hydroperoxy)docosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.
(4Z,7Z,11Z,13Z,15E,17S)-10,17-bis(hydroperoxy)docosapentaenoate
A hydroperoxydocosapentaenoate that is the conjugate base of (4Z,7Z,11Z,13Z,15E,17S)-10,17-bis(hydroperoxy)docosapentaenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.