Exact Mass: 380.294
Exact Mass Matches: 380.294
Found 388 metabolites which its exact mass value is equals to given mass value 380.294
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
2-Hydroxy-4-oxo-5,12-heneicosadien-1-yl acetate
2-Hydroxy-4-oxo-5,12-heneicosadien-1-yl acetate is found in fruits. 2-Hydroxy-4-oxo-5,12-heneicosadien-1-yl acetate is a constituent of avocado (Persea americana). Constituent of avocado (Persea americana). 2-Hydroxy-4-oxo-5,12-heneicosadien-1-yl acetate is found in fruits.
Bisnorcholic acid
Bisnorcholic acid is one of a number of short side bile acids found in the urine from patients with cerebrotendinous xanthomatosis (CTX). The presence these short side bile acids in urine of the CTX patients suggests that bile alcohols may be further degraded to these bile acids. (PMID: 2079611) [HMDB] Bisnorcholic acid is one of a number of short side bile acids found in the urine from patients with cerebrotendinous xanthomatosis (CTX). The presence these short side bile acids in urine of the CTX patients suggests that bile alcohols may be further degraded to these bile acids. (PMID: 2079611).
MG(0:0/20:3(11Z,14Z,17Z)/0:0)
MG(0:0/20:3(11Z,14Z,17Z)/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well. [HMDB] MG(0:0/20:3(11Z,14Z,17Z)/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.
MG(0:0/20:3(5Z,8Z,11Z)/0:0)
MG(0:0/20:3(5Z,8Z,11Z)/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well. [HMDB] MG(0:0/20:3(5Z,8Z,11Z)/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.
MG(0:0/20:3(8Z,11Z,14Z)/0:0)
MG(0:0/20:3(8Z,11Z,14Z)/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well. [HMDB] MG(0:0/20:3(8Z,11Z,14Z)/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.
MG(20:3(11Z,14Z,17Z)/0:0/0:0)
MG(20:3(11Z,14Z,17Z)/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.
MG(20:3(5Z,8Z,11Z)/0:0/0:0)
MG(20:3(5Z,8Z,11Z)/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.
MG(20:3(8Z,11Z,14Z)/0:0/0:0)
MG(20:3(8Z,11Z,14Z)/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups; 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1-/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and Diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well.
16,16-Dimethylprostaglandin E2
3-(6-(Dimethylamino)-4-methylpyridin-3-yl)-2,5-dimethyl-N,N-dipropylpyrazolo[1,5-a]pyrimidin-7-amine
20a,20b-Dihomo-9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid
7-[(1R,2R,3R)-3-Hydroxy-2-[(3R)-3-hydroxy-4,4-dimethyloct-1-enyl]-5-oxocyclopentyl]hept-2-enoic acid
Enisoprost
Prostalene
[12]-Gingerdiol
[12]-gingerdiol is a member of the class of compounds known as gingerdiols. Gingerdiols are compounds containing a gingerdiol moiety, which is structurally characterized by a 4-hydroxy-3-methoxyphenyl group substituted at the C6 carbon atom by an alkane-2,4-diol. [12]-gingerdiol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). [12]-gingerdiol can be found in ginger, which makes [12]-gingerdiol a potential biomarker for the consumption of this food product.
2-Methyl-4,6-(2-methylpropane-1,3-diyl)-6,10-ethano-[4,4-methano-3,2-bi(octahydro-1H-quinolizine)]-3-ene
rel-(1R,2S,4R,6S)-4-(hydroxy)-2-[3-(acetoxy)-1,5-dimethylhex-4-enyl]-5-methylcyclohexyl-(2Z)-2-methylbut-2-enoate|rel-(1R,3S,4R,6S)-9-(acetoxy)-4-hydroxy-1-[(2Z)-2-methylbut-2-enoyloxy]bisabol-10(11)-ene
cholesta-5,7,22,24-tetraen-3beta-ol|cholesta-5,7,22,24-tetraenol|cholesta-5,7,22E,24-tetraenol
4,6,2-trihydroxy-6-[10(Z)-heptadecenyl]-1-cyclohexen-2-one
13-hydroxy-1-(2,4,6-trihydroxyphenyl)-1-hexadecanone
2-((2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl)-1,4-benzoquinone|2-<(2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl>-1,4-benzoquinone|2-<(2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraenyl>-1,4-quinone|2-Tetraprenyl-1,4-benzochinon|Quinone-2-(3,7,11,15-Tetramethyl-2,6,10,14-hexadecatetraenyl)-1,4-benzenediol|Quinone-2-Tetraprenyl-1,4-benzenediol
(22E,24S)-24-methyl-27-norcholesta-5,7,9(11),22-tetraen-3beta-ol
11(S*)-acetoxy-15(S*),17-dihydroxy-2(R*),12(R*)-epoxy-(3E,7E)-1(S*)-cembra-3,7-diene
(22E,24S)-24-methyl-19-norcholesta-1,3,5(10),22-tetraen-3-ol
A 3-hydroxy steroid that is (22E,24S)-24-methyl-19-norcholesta-1,3,5(10),22-tetraene substituted by a hydroxy group at position 3. It is isolated from Hainan soft coral Dendronephthya studeri.
2-eicosa-5,11,14-trienoylglycerol|2-sciadonoylglycerol
(3beta,14beta,17beta)-3,14,17,20-tetrahydroxy-21-methoxypregn-5-ene|(3beta,14beta,17beta,20?)-Pregn-5-ene-3,14,17,20,21-pentol|21-O-Methyl-5-pregnene-3??,14??,17??,20,21-pentol|Compound 1 (Periploca sepium)|Compound 1a (Periploca sepium)|Compound 2 (Periploca sepium)
(2R)-5-(2-acetoxy-13-hydroxytridecyl)-1-O-methylresorcinol
20-Acetoxy-10,11-epoxy-10,11-dihydro-9-hydroxy-geranylnerol
(3S,5S,8R,9R,10S,13S,16R)-3-acetoxy-9,13;15,16-diepoxy-labdan-16-ol|negundoin E
Ent-19-Acetoxy-2alpha-hydroxy-7-labden-15-oic acid
15-acetoxy-2beta,3beta,7beta-trihydroxy-ent-labda-8(17),13E-diene
(3beta,5beta,8alpha,9beta,10alpha,16alpha)-3,16,17-trihydroxykauran-18-yl acetate
12beta,15alpha,17beta,28-tetrahydoxy-3-oxo-20,21,22,23,24,25,26,27-octanordammanran
15,16-Epoxy-15-ethoxy-6EC,13-dihydroxylabd-8-en-7-one
ent-15xi-ethoxy-labdan-3alpha,8beta-dihydroxy,13(14)-en-15,16-olide
3-Ac-(3beta,15xi)-5-Rosene-3,15,16,19-tetrol|3beta-acetoxy-jesromotetrol
14-hydroxy-1-(2,4,6-trihydroxyphenyl)-1-hexadecanone
(3S,8S,9S,10R,13S,14S,17R)-10,13-dimethyl-17-(6-methylhepta-1,5-dien-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol|(8S,9S,10R,14S,17R)-cholest-4,20,24-trien-3-one|pentalinonsterol
18-acetoxy-3beta,15beta,16-trihydroxy-ent-ros-5-ene
2-butoxyethyl linoleate|cis,cis-Octadeca-9,12-diensaeure-(2-butyloxy-ethylester)|Linoleic acid 2-butoxyethyl ester
1-(3-Hydroxy-5-methoxyphenyl)tridecane-2,8-diol 2-acetate
24-methylene-19-norcholesta-1,3,5(10),22-tetraen-3-ol
19-acetoxy-2alpha,7alpha,15-trihydroxylabda-8(17),(13Z)-diene
19-acetoxy-15-hydroxy-12-oxo-13,14E-dehydro-10,11,14,15-tetrahydrogeranylnerol
3-acetoxycladiellin-11-ene-6,7-diol|calicophirin C
methyl (3S*,6S*,16E,18E)-3,6-epidioxy-6-methoxyeicosa-4,16,18-trienoate
2-methyl-2-(4,8,12-trimethyltrideca-3,7,11-trienyl)chromen-6-ol
1-Ac-(ent-1beta,11beta,15()-4(18)-Erythroxylene-1,11,15,16-tetrol|1-Ac-(ent-1beta,11beta,15xi)-4(18)-Erythroxylene-1,11,15,16-tetrol|ent-1beta-acetoxydolabr-4(18)-en-11beta,15xi,16-triol
(2R)-6-(2-acetoxytridecyl)-2-methoxy-1,4-dihydroxybenzene
C22H36O5_1-Naphthalenepentanoic acid, 4-(acetyloxy)-3,4,4a,5,6,7,8,8a-octahydro-3-hydroxy-beta,2,5,5,8a-pentamethyl
5-(4-acetyloxy-3-hydroxy-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl)-3-methylpentanoic acid
5-(4-acetyloxy-3-hydroxy-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl)-3-methylpentanoic acid_major
Bisnorcholic acid
A bile acid that is 24-dinor-5beta-cholan-22-oic acid bearing three hydroxy substituents at positions 3alpha, 7alpha and 12alpha.
24-Nor-5beta-cholane-3alpha,7alpha,12alpha,23-tetrol
2-Hydroxy-4-oxo-5,12-heneicosadien-1-yl acetate
(3S,3AS,6S)-3-((TERT-BUTYLDIMETHYLSILYL)OXY)-6-(HYDROXYMETHYL)-3A,6-DIMETHYLDECAHYDRO-1H-CYCLOPENTA[A]NAPHTHALEN-7(2H)-ONE
enisoprost
D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents C78568 - Prostaglandin Analogue
2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-(4-morpholin-4-ylphenyl)butan-1-one
Benzene, 2,3-difluoro-1-methoxy-4-[[(trans,trans)-4-propyl[1,1-bicyclohexyl]-4-yl]methoxy]
Eprazinone
R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CB - Mucolytics C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent C78273 - Agent Affecting Respiratory System > C29767 - Expectorant D019141 - Respiratory System Agents > D005100 - Expectorants
[2-[1-[(3,7-dimethyl-6-octenyl)oxy]-2-phenylethoxy]ethyl]-benzene
(2E,11α,13E,15S,17R)-11,15-Dihydroxy-17,20-dimethyl-9-oxoprosta-2,13-dien-1-oic Acid
1-Ethoxy-4-[[(trans,trans)-4-ethyl[1,1-bicyclohexyl]-4-yl]methoxy]-2,3-difluorobenzene
(Z,Z)-1-(acetoxy)-2-hydroxy-12,15-heneicosadien-4-one
24-Methylene-19-norcholesta-1,3,5(10)-trien-3-ol
A 3-hydroxy steroid that is 24-methylene-19-norcholesta-1,3,5(10)-triene substituted by a hydroxy group at position 3. It is isolated from Hainan soft coral Dendronephthya studeri.
(22E,24R)-24-methyl-19-norcholesta-1,3,5(10),22-tetraen-3-ol
A 3-hydroxy steroid that is (22E,24R)-24-methyl-19-norcholesta-1,3,5(10),22-tetraene substituted by a hydroxy group at position 3. It is isolated from Hainan soft coral Dendronephthya studeri.
12,15-Heneicosadien-4-one, 2-(acetyloxy)-1-hydroxy-, (2R,12Z,15Z)-
3-methyl-N-[2-[methyl-[1-(2-methylpropyl)piperidin-4-yl]amino]pyridin-4-yl]benzamide
16,16-Dimethylprostaglandin E2
D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents C78568 - Prostaglandin Analogue
(2S,3R)-2-azaniumyl-3-hydroxyoctadecyl phosphate
COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4,9,13,17,21-Pentamethyldocosa-2,4,6,8,12,16,20-heptaenal
5-Heptenoic acid, 7-(2-(4,4-dimethyl-3-hydroxy-1-octenyl)-3-hydroxy-5-oxocyclopentyl)-
methyl (E)-7-[3-hydroxy-2-[(E)-4-hydroxy-4-methyloct-1-enyl]-5-oxocyclopentyl]hept-4-enoate
(E)-7-[3-hydroxy-2-[(E)-3-hydroxy-4,4-dimethyloct-1-enyl]-5-oxocyclopentyl]hept-2-enoic acid
(2E)-7-[(1R,2R,3R)-3-Hydroxy-2-[(1E,3S,5S)-3-hydroxy-5-methyl-1-nonen-1-yl]-5-oxocyclopentyl]-2-heptenoic Acid
(E)-7-[3-hydroxy-2-[(E)-3-hydroxydec-1-enyl]-5-oxocyclopentyl]hept-5-enoic acid
Cholesta-1,4,22-trien-3-one
A 3-oxo steroid that is cholestan-3-one having double bonds at positions 1, 4 and 22. It is isolated from the Hainan soft coral Dendronephthya studeri.
Aphidicolin-17-monoacetate
A natural product found in Tolypocladium inflatum.
10-[3-(Dibutylamino)-2-hydroxypropyl]-9-acridinone
N-(2-methylpropyl)-1-[(4-phenylmethoxyphenyl)methyl]-4-piperidinecarboxamide
4-Hydroxy-6-(17-hydroxy-2-oxoheptadecyl)pyran-2-one
1-(4-Butyl-2-methylphenyl)-3-[4-(4-methylpiperazin-1-yl)phenyl]urea
[(3aR,4R,9bR)-8-(1-cyclohexenyl)-4-(hydroxymethyl)-2,3,3a,4,5,9b-hexahydropyrrolo[3,2-c]quinolin-1-yl]-cyclopentylmethanone
[(3aR,4S,9bS)-8-(1-cyclohexenyl)-4-(hydroxymethyl)-5-methyl-3,3a,4,9b-tetrahydro-2H-pyrrolo[3,2-c]quinolin-1-yl]-cyclobutylmethanone
(E)-7-[(1R,2R,3R)-3-hydroxy-2-[(3R)-3-hydroxy-4,4-dimethyloct-1-enyl]-5-oxocyclopentyl]hept-5-enoic acid
[1-[(7Z,10Z,13Z)-hexadeca-7,10,13-trienoxy]-3-hydroxypropan-2-yl] butanoate
[1-hydroxy-3-[(9Z,12Z,15Z)-octadeca-9,12,15-trienoxy]propan-2-yl] acetate
[3-carboxy-2-[(6E,9E,12E)-pentadeca-6,9,12-trienoyl]oxypropyl]-trimethylazanium
2,3-dihydroxypropyl (11Z,14Z,17Z)-icosa-11,14,17-trienoate
(1-hydroxy-3-propanoyloxypropan-2-yl) (7Z,10Z,13Z)-hexadeca-7,10,13-trienoate
(1R(*),2R(*),3R(*),6S(*),7R(*),9R(*),10S(*),11Z,14R(*))-6-Acetoxyeunicella-11-ene-3,7-diol
1-(4-Methylpiperazino)-10-(trimethylsiloxy)-5,9-dimethyl-4,8-undecadien-1-one
Methyl (2XI,4AS,5S,8AS)-(-)-8abeta-methoxymethoxymethyl-5beta-methyl-5alpha-(4-methyl-3-pentenyl)-3,4,4A,5,6,7,8,8A-octahydronaphthalen-1-oxo-2-carboxylate
2-[(11Z,14Z)-henicosa-11,14-dienoyl]oxyacetic acid
[(2S)-2,3-dihydroxypropyl] (8E,11E,14E)-icosa-8,11,14-trienoate
[(2S)-2,3-dihydroxypropyl] (5E,8E,11E)-icosa-5,8,11-trienoate
sphinganine 1-phosphate(1-)
The anion resulting from the addition of a proton to the amino group and the removal of the two acidic protons from the phosphate group of sphinganine 1-phosphate.
20a,20b-dihomo-9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid
(1r,3ar,7s,9as,11ar)-9a,11a-dimethyl-1-[(2r,3e)-6-methylhept-3-en-2-yl]-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-ol
2-{3,4a,7,7,10a-pentamethyl-1-oxo-octahydronaphtho[2,1-b]pyran-3-yl}-2-hydroxyethyl acetate
(3r)-5-[(1r,4as,5r,7s,8as)-5-[(acetyloxy)methyl]-7-hydroxy-2,5,8a-trimethyl-1,4,4a,6,7,8-hexahydronaphthalen-1-yl]-3-methylpentanoic acid
(4r)-3-hydroxy-2-{[(1r,5s)-5-hydroxy-2-[(2r,6s)-7-hydroxy-6-methylheptan-2-yl]-5-methylcyclopent-2-en-1-yl]methyl}-4-methoxycyclohex-2-en-1-one
2-(3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl)cyclohexa-2,5-diene-1,4-dione
(1s,3s,3ar,3br,5ar,6r,9ar,9br,11r,11ar)-1,3,11-trihydroxy-6-(hydroxymethyl)-3a,3b,6,9a-tetramethyl-dodecahydrocyclopenta[a]phenanthren-7-one
8-hydroxy-1-(3-hydroxy-5-methoxyphenyl)tridecan-2-yl acetate
9a,11a-dimethyl-1-(5-methylhept-3-en-2-yl)-1h,2h,3h,3ah,6h,7h,8h,9h,11h-cyclopenta[a]phenanthren-7-ol
(2e,4e,6e)-7-[(1s,2r,4ar,8ar)-3,6-dimethyl-2-[(2e,4r)-4-methylhex-2-en-2-yl]-1,2,4a,5,8,8a-hexahydronaphthalen-1-yl]hepta-2,4,6-trienoic acid
methyl 2-[6-methoxy-6-(tetradeca-10,12-dien-1-yl)-3h-1,2-dioxin-3-yl]acetate
3-hydroxy-2-{[5-hydroxy-2-(7-hydroxy-6-methylheptan-2-yl)-5-methylcyclopent-2-en-1-yl]methyl}-4-methoxycyclohex-2-en-1-one
[(1r,2s,3s,6s,7r)-1,7-dihydroxy-3-[(2z)-1-hydroxy-6-methylhepta-2,5-dien-2-yl]-6-methylbicyclo[4.3.1]decan-2-yl]methyl acetate
12,13-dihydroxy-6-isopropyl-9,13-dimethyl-3-methylidene-15-oxatricyclo[6.6.1.0²,⁷]pentadecan-9-yl acetate
methyl 2-[(3r,6r)-6-methoxy-6-[(10e,12e)-tetradeca-10,12-dien-1-yl]-3h-1,2-dioxin-3-yl]acetate
1-(1-hydroxy-2-methoxyethyl)-9a,11a-dimethyl-2h,3h,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-1,3a,7-triol
(1r,14r,16s,20s)-4,14-dimethyl-24,26-diazaheptacyclo[14.6.2.1²,⁶.1²,¹².0¹³,²³.0²⁰,²⁴.0¹⁰,²⁶]hexacos-13(23)-ene
2,4-dihydroxy-6-[(14r)-14-hydroxypentadecyl]benzoic acid
(2e)-5-[(1r,2r,4ar,5r,8as)-5-[(acetyloxy)methyl]-2-hydroxy-2,5,8a-trimethyl-hexahydro-1h-naphthalen-1-yl]-3-methylpent-2-enoic acid
methyl 2-[(3s,4s,6r)-6-[(1e,4r,5e)-2,4-diethylocta-1,5-dien-1-yl]-4,6-diethyl-1,2-dioxan-3-yl]acetate
(1s,2s,4as,4br,7r,8ar)-7-[(1s)-1,2-dihydroxyethyl]-1-(hydroxymethyl)-1,4b,7-trimethyl-3,4,4a,5,6,8,8a,9-octahydro-2h-phenanthren-2-yl acetate
(1r,2r,5r,10r,12r,13s,16s)-8-(1-hydroxypropan-2-yl)-12,16-dimethoxy-2,5-dimethyl-15-oxatetracyclo[11.2.1.0²,¹⁰.0⁵,⁹]hexadec-8-en-14-ol
methyl (1s,2s)-2-hexadecyl-2-hydroxy-5-oxocyclopent-3-ene-1-carboxylate
(4s,5r,6r)-6-[(8z)-heptadec-8-en-1-yl]-4,5,6-trihydroxycyclohex-2-en-1-one
[(1s,3r,4as,5r,7r,8ar)-3,7-dihydroxy-5-[(3z)-5-hydroxy-3-methylpent-3-en-1-yl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalen-1-yl]methyl acetate
16-acetylkirenol
{"Ingredient_id": "HBIN001787","Ingredient_name": "16-acetylkirenol","Alias": "NA","Ingredient_formula": "C22H36O5","Ingredient_Smile": "CC(=O)OCC(C1(CCC2C(=C1)CCC3C2(CC(CC3(C)CO)O)C)C)O","Ingredient_weight": "0","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "445","TCMSP_id": "NA","TCM_ID_id": "9270","PubChem_id": "NA","DrugBank_id": "NA"}