Exact Mass: 356.24368540000006
Exact Mass Matches: 356.24368540000006
Found 500 metabolites which its exact mass value is equals to given mass value 356.24368540000006
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Prostaglandin F1a
Prostaglandin F1a is derived mainly from Prostaglandin E1, and is metabolized to 6-Keto Prostaglandin F1a. Prostaglandin F1a is excreted directly into the urine. Prostaglandin F1a contracts the circular muscle of the gut in opposition to the Prostaglandins of the E series. Prostaglandin F1a is a cytoprotector, protecting mucosal tissue from damage produced by ulcerogenic stimuli.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin F1a is derived mainly from Prostaglandin E1, and is metabolized to 6-Keto Prostaglandin F1a. Prostaglandin F1a is excreted directly into the urine. Prostaglandin F1a contracts the circular muscle of the gut in opposition to the Prostaglandins of the E series. Prostaglandin F1a is a cytoprotector, protecting mucosal tissue from damage produced by ulcerogenic stimuli.
WIN I(S)
C21H28N2O3 (356.20998180000004)
Pelanin
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Isolated from potato. Pelanin is found in potato. Same as: D01413
16-Dehydropregenolone Acetate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
DHA ethyl ester
C26170 - Protective Agent > C275 - Antioxidant
Piperochromanoic acid
Piperochromanoic acid is found in herbs and spices. Piperochromanoic acid is a constituent of the leaves of Piper auritum (Veracruz pepper). Constituent of the leaves of Piper auritum (Veracruz pepper). Piperochromanoic acid is found in herbs and spices.
Tetracosahexaenoic acid
The formation of docosahexaenoic acid(DHA) involves the production of tetracosahexaenoic acid C24:6n-3) from dietary linolenic acid (C18:3n-3) via a series of elongation and desaturation reactions, followed by beta-oxidation of C24:6n-3 to C22:6n-3. DHA is deficient in patients lacking peroxisomes.(PMID: 11734571). The formation of docosahexaenoic acid(DHA) involves the production of tetracosahexaenoic acid C24:6n-3) from dietary linolenic acid (C18:3n-3) via a series of elongation and desaturation reactions, followed by beta-oxidation of C24:6n-3 to C22:6n-3.
5,7-Megastigmadien-9-ol glucoside
5,7-Megastigmadien-9-ol glucoside is found in fruits. 5,7-Megastigmadien-9-ol glucoside is a constituent of Passiflora edulis (passion fruit). Constituent of Passiflora edulis (passion fruit). 5,7-Megastigmadien-9-ol glucoside is found in fruits.
gamma-Crocetin
gamma-Crocetin is found in herbs and spices. gamma-Crocetin is isolated from saffro Isolated from saffron. gamma-Crocetin is found in saffron and herbs and spices. Crocetine dimethyl ester (Dimethylcrocetin) is found in the stigmas of saffron (Crocus sativus L.), and has antioxidant activity[1].
13,14-Dihydro PGE1
13,14-dihydro PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 13,14-dihydro PGE1 is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)
13,14-Dihydro PGF2a
13,14-dihydro PGF2a is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. 13,14-dihydro PGF2a is a prostanoid. Prostanoids is a term that collectively describes prostaglandins, prostacyclines and thromboxanes. Prostanoids are a subclass of the lipid mediator group known as eicosanoids. They derive from C-20 polyunsaturated fatty acids, mainly dihomo-gamma-linoleic (20:3n-6), arachidonic (20:4n-6), and eicosapentaenoic (20:5n-3) acids, through the action of cyclooxygenases-1 and -2 (COX-1 and COX-2). The reaction product of COX is the unstable endoperoxide prostaglandin H (PGH) that is further transformed into the individual prostanoids by a series of specific prostanoid synthases. Prostanoids are local-acting mediators formed and inactivated within the same or neighbouring cells prior to their release into circulation as inactive metabolites (15-keto- and 13,14-dihydroketo metabolites). Non-enzymatic peroxidation of arachidonic acid and other fatty acids in vivo can result in prostaglandin-like substances isomeric to the COX-derived prostaglandins that are termed isoprostanes. Prostanoids take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. Their activities are mediated through prostanoid-specific receptors and intracellular signalling pathways, whilst their biosynthesis and action are blocked by nonsteroidal antiinflammatory drugs (NSAID). Isoprostanes are considered to be reliable markers of oxidant stress status and have been linked to inflammation, ischaemia-reperfusion, diabetes, cardiovascular disease, reproductive disorders and diabetes. (PMID: 16986207)
Tetracosahexaenoic acid (24:6n-3)
6,9,12,15,18,21-Tetracosahexaenoic acid (24:6n-3) is one of the n-3 PUFA and is a very long chain fatty acid. Distribution of 24:6n-3 in marine organisms was investigated by several researchers. Takagi et al. reported relatively high contents of 24:6n-3 in sea lilies and brittle stars (4–10\\% of total fatty acids). High 24:6n-3 content was also found in marine coelenterates. In some edible fishes, 24:6n-3 was detected at significant levels (0–10\\% of total fatty acids).The existence of 24:6n-3 in mammalian tissues was reported with other very long chain fatty acids in the spermatozoa,the retina, and the brain. Voss et al. reported that 24:6n-3 is formed as an intermediate in the metabolic pathway from 20:5n-3 to 22:6n-3 in rat liver. Even though 24:6n-3 is a PUFA existing in fish and mammalian species, physiological functions of 24:6n-3 have not been studied. As functions to be studied, anti-inflammatory and antiallergic. effects of 24:6n-3 are noteworthy because these events are known to be closely related to the unsaturated fatty acid metabolism such as in the arachidonic acid cascade, and 20:5n-3 and 22:6n-3 were reported to suppress inflammatory actions by influencing arachidonic acid metabolism.s24:6n-3 could inhibit the antigen-stimulated production of LT-related compounds as well as other n-3 polyunsaturated fatty acids (PUFA) such as eicosapentaenoic. acid (20:5n-3) and docosahexaenoic acid (22:6n-3), which are major n-3 PUFA in fish oils; 24:6n-3 was also shown to reduce the histamine content in MC/9 cells at 25 uM (27\\% reduction from the control), and the effect was diminished with increase of the fatty acid concentration (up to 100 uM). These two n-3 PUFA, 20:5n-3 and 22:6n-3, also reduced the histamine content (16 and 20\\% reduction at 25 μM, respectively), whereas arachidonic acid (20:4n-6) increased it (18\\% increase at 25 μM).
1-Formylneogrifolin
1-Formylneogrifolin is found in mushrooms. 1-Formylneogrifolin is a constituent of Albatrellus ovinus. Constituent of Albatrellus ovinus. 1-Formylneogrifolin is found in mushrooms.
Dopexamine
C22H32N2O2 (356.24636519999996)
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists Dopexamine is a 1 and 2-adrenergic receptor agonist. It also acts at dopamine receptors. C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Tetracosahexaenoic acid, n-3
This compound belongs to the family of Straight Chain Fatty Acids. These are fatty acids with a straight aliphatic chain.
N-Lauroyl Arginine
N-lauroyl arginine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Arginine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Arginine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Arginine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
N-Myristoyl Glutamine
N-myristoyl glutamine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Glutamine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Glutamine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Glutamine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
7-[3-Hydroxy-2-(3-hydroxyoctyl)-5-oxocyclopentyl]heptanoic acid
13,14-Dihydroprostaglandin F2alpha
2,4,6,8,10,12-Docosahexaenoic acid, ethyl ester
Estradiol 3-Valerate
Estradiol valerate
n-Methyl-2-phenyl-n-[(5r,7s,8s)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl]acetamide
C22H32N2O2 (356.24636519999996)
vamorolone
6-[Ethyl-(3-isobutoxy-4-isopropylphenyl)amino]nicotinic acid
C21H28N2O3 (356.20998180000004)
Prostaglandin F-1-alpha
Prostaglandin f-1-alpha is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Prostaglandin f-1-alpha is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Prostaglandin f-1-alpha can be found in soft-necked garlic, which makes prostaglandin f-1-alpha a potential biomarker for the consumption of this food product.
1-Methyl-2-acetyl-6-hexanoyl-7-methoxy-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indole
C21H28N2O3 (356.20998180000004)
2alpha,3alpha,4beta,15,16-Pentahydroxy-ent-cleroda-13Z-ene
Neogrifolin dimethyl ether
3-(Hydroperoxymethyl)-6-(1-hydroxy-1-methylundecyl)-4-methoxy-2H-pyran-2-one
Diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate
C19H33O4P (356.21163480000007)
Niaprazine
C20H25FN4O (356.20122919999994)
N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic Niaprazine is a histamine H1-receptor antagonist. Niaprazine has antihistamine and antiserotonin activities and can be used for sleep disorder research[1][2].
N-(1-amino-3-methyl-1-oxobutan-2-yl)-2-(cyclohexylmethyl)-2h-indazole-3-carboxamide
2,4-dihydroxy-6-methyl-3-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]benzaldehyde
16beta-hydroxy-5alpha-pregna-1,20-dien-3-one 16-acetate
5-heptadeca-8(Z),11(Z),14(Z)-trienylresorsinol monomethyl ether
1-acetyl-aspidospermidine-16,17-diol|N-Acetyl-16,17-dihydroxy-aspidospermin|O-Demethylaspidocarpine
C21H28N2O3 (356.20998180000004)
14-dehydrouzarigenin|3beta-hydroxy-5alpha-carda-14(15),20(22)-dienolide|3beta-Hydroxy-5alpha-carda-14,20(22)-dienolid|3beta-hydroxy-5alpha-carda-14,20(22)-dienolide|beta-anhydroepidigitoxigenin
agallochin B|ent-15-chloro-13,14-dihydroxylabd-8(9)-en-3-one
C20H33ClO3 (356.2118098000001)
1-Formylneogrifolin
Leu-Gln-Pro
A tripeptide consisting of L-leucyl, L-glutaminyl and L-proline residues joined in sequence.
1-Acetyl-aspidospermidin-3alpha,17-diol|1-acetyl-aspidospermidine-3alpha,17-diol|Spegazzinin, 3-Hydroxy-17-demethyl-(-)-aspidospermin|Spegazzinine
C21H28N2O3 (356.20998180000004)
2,11beta-Dimethoxy-19-nor-17alpha-pregna-1,3,5(10)trien-20-yn-3,17beta-diol
3-oxo-ent-13-epi-8(13)-epoxy-15-chloro-14-hydroxylabdane|agallochin A
C20H33ClO3 (356.2118098000001)
3-(hydroperoxymethyl)-6-(2-hydroxydodecan-2-yl)-4-methoxy-2H-pyran-2-one|peroxymonascuspyrone
rel-(1R,2R)-2-(1-farnesyl-2-hydroxy-5-oxocyclohex-3-en-1-yl)-acetic acid lactone
19(S)-hydroxy-Nb-methylraumacline|19(S)-hydroxy-Nbeta-methylraumacline
C21H28N2O3 (356.20998180000004)
4xi,5xi,11-trihydroxygermacran-6-yl (Z)-2-methylbut-2-enoate
12,13-dimethoxy-ibogamin-20-ol|Epi-19-iboxygalin
C21H28N2O3 (356.20998180000004)
(6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyl-6,10-dodecadien-1-one|1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyl-6(E),10-dodecadiene-1-one
16,17-Dihydrosecodin-17-ol|2-{3-[2-(5-ethyl-3,6-dihydro-2H-pyridin-1-yl)-ethyl]-indol-2-yl}-3-hydroxy-propionic acid methyl ester
C21H28N2O3 (356.20998180000004)
Lehualide I
A member of the class of 2-pyranones that is 2H-pyran-2-one substituted by methoxy groups at positions 3 and 4, a methyl group at position 5 and a 10-(methylsulfanyl)decyl group at position 6. Isolated from the marine sponge of the genus Plakortis, it exhibits cytotoxicity against human promyeloid leukemic HL-60 cells.
1a,2,6,7,7a,7b-hexahydro-3-hydroxy-1-octyl-7-oxo-1H-cyclobut[bc]acenaphthylene-5-carboxylic acid|beilschmiedic acid G
4beta-hydroxy-6alpha-benzoyl-7-daucen-9-one|feruhermonin A
3-(hydroxymethyl)-1,13,14,15-tetrahydroxy-7,11,15-trimethyl-2,6,10-hexadecatriene
(E)-3-(3,7-dimethyl-1-oxo-2,6-octadienyl)-4-hydroxy-5-(3-methyl-2-butenyl)benzoic acid
(6R,9R)-3-oxo-alpha-ionol-9-O-beta-D-glucopyranoside|4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-ol
(4E,7E)-1-(2,4-dihydroxyphenyl)-3,4,8,12-tetramethyltrideca-4,7,11-trien-1-one|ferulaeone C
Nb-methyl-19,20-dihydrorankinidine
C21H28N2O3 (356.20998180000004)
(-)-octalactin A|4(R),5(S),8(S)-4-hydroxy-8-{2-[3-((S)-2-hydroxy-3-methyl-butyl)-2(S),3(R)-2-methyl-oxiranyl]-1(S)-methyl-2-oxo-ethyl}-5-methyl-oxocan-2-one|Octalactin A
(4E,8E,12Z)-13-hydroxymethylene-1-(2-hydroxyphenyl)-5,9-dimethyl-4,8,12-tetradecatrien-1-one|(4E,8E,12Z)-form-13-(Hydroxymethyl)-1-(2-hydroxyphenyl)-5,9-dimethyl-4,8,12-tetradecatrien-1-one
(-)-O-ethyl-14-epimelohenine B|(3alpha,14alpha,16alpha)-14,15-dihydro-2,7-secoeburnamenine-2,7-dione|(6aS,7S,1bS)-16-ethoxy-7-ethyl-7,8,9,19,12,13-hexahydro-14H-5,7-ethanopyrido[2,1-c][1,4]benzodiazonine-6,14(6aH)-dione
C21H28N2O3 (356.20998180000004)
3,12-dioxo-23,24-dinor-chola-4,6-dien-22-oic acid|3,12-Dioxo-23,24-dinor-chola-4,6-dien-22-saeure|3,12-dioxo-23,24-dinorchola-4,6-dienoic acid
methyl (3S*,6S*)-3,6-epidioxy-6-methoxyoctadec-4-enoate
rel-(1R,5R)-2-(1-farnesyl-5-hydroxy-2-oxocyclohex-3-en-1-yl)-acetic acid delta-lactone
3-hydroxy-3,4-seco-coronaridine|3-Hydroxy-3,4-secocoronaridine
C21H28N2O3 (356.20998180000004)
16-beta-acetyloxy-pregn-4,17(20)-trans-dien-3-one|16beta-acetyloxy-pregn-4,17(20)-(trans)-dien-3-one
4,5,16,18-Trihydroxy-4,5-seco-5-rosanone|ent-4xi,15xi,16,18-tetrahydroxypictan-5-one
Lagochiline
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.144 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.146 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.143
(2-{4,5-Dimethoxy-2-[2-(4-methoxy-phenyl)-vinyl]-phenyl}-ethyl)-trimethyl-ammonium
[C22H30NO3]+ (356.22255700000005)
(2E,4E)-12-hydroxy-13-(hydroxymethyl)-14-methoxy-3,5,7-trimethyl-14-oxotetradeca-2,4-dienoic acid
2,4-dihydroxy-6-methyl-3-[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trienyl]benzaldehyde
C22H28O4_Benzene, 1,2,3-trimethoxy-5-[2-[4-[(3-methyl-2-buten-1-yl)oxy]phenyl]ethyl]
9,13-Epoxy-3,15,16,18-labdanetetrol
Origin: Plant; SubCategory_DNP: Diterpenoids, Labdane diterpenoids
(2E,4E)-12-hydroxy-13-(hydroxymethyl)-14-methoxy-3,5,7-trimethyl-14-oxotetradeca-2,4-dienoic acid [IIN-based on: CCMSLIB00000847299]
(2E,4E)-12-hydroxy-13-(hydroxymethyl)-14-methoxy-3,5,7-trimethyl-14-oxotetradeca-2,4-dienoic acid [IIN-based on: CCMSLIB00000847297]
(2E,4E)-12-hydroxy-13-(hydroxymethyl)-14-methoxy-3,5,7-trimethyl-14-oxotetradeca-2,4-dienoic acid [IIN-based: Match]
Ala Ala Pro Val
Ala Ala Val Pro
Ala Gly Ile Pro
Ala Gly Leu Pro
Ala Gly Pro Ile
Ala Gly Pro Leu
Ala Ile Gly Pro
Ala Ile Pro Gly
Ala Leu Gly Pro
Ala Leu Pro Gly
Ala Pro Ala Val
Ala Pro Gly Ile
Ala Pro Gly Leu
Ala Pro Ile Gly
Ala Pro Leu Gly
Ala Pro Val Ala
Ala Val Ala Pro
Ala Val Pro Ala
Gly Ala Ile Pro
Gly Ala Leu Pro
Gly Ala Pro Ile
Gly Ala Pro Leu
Gly Ile Ala Pro
Gly Ile Pro Ala
Gly Leu Ala Pro
Gly Leu Pro Ala
Gly Pro Ala Ile
Gly Pro Ala Leu
Gly Pro Ile Ala
Gly Pro Leu Ala
Ile Ala Gly Pro
Ile Ala Pro Gly
Ile Gly Ala Pro
Ile Gly Pro Ala
Ile Pro Ala Gly
Ile Pro Gly Ala
Leu Ala Gly Pro
Leu Ala Pro Gly
Leu Gly Ala Pro
Leu Gly Pro Ala
Leu Pro Ala Gly
Leu Pro Gly Ala
Pro Ala Ala Val
Pro Ala Gly Ile
Pro Ala Gly Leu
Pro Ala Ile Gly
Pro Ala Leu Gly
Pro Ala Val Ala
Pro Gly Ala Ile
Pro Gly Ala Leu
Pro Gly Ile Ala
Pro Gly Leu Ala
Pro Ile Ala Gly
Pro Ile Gly Ala
Pro Leu Ala Gly
Pro Leu Gly Ala
Pro Val Ala Ala
Dopexamine
C22H32N2O2 (356.24636519999996)
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Val Ala Ala Pro
Val Ala Pro Ala
Val Pro Ala Ala
PGD2-d4
PGE2-d4
(R,E)-S-2-acetamido-13-(methylamino)-13-oxotridec-3-enyl ethanethioate
C18H32N2O3S (356.21335220000003)
methyl 9-hydroperoxy-10,12-epidioxy-13,15-octadecadienoate
methyl 13,15-epidioxy-16-hydroperoxy-9,11-octadecadienoate
methyl 10,12-epidioxy-13-hydroperoxy-8E,15Z-octadecadienoate
methyl 13,15-epidioxy-12-hydroperoxy-9Z,16E-octadecadienoate
methyl 9,12-dihydroperoxy-10E,13E,15Z-octadecatrienoate
methyl 9,16-dihydroperoxy-10E,12,14E-octadecatrienoate
methyl 13,16-dihydroperoxy-9Z,11E,14E-octadecatrienoate
methyl 10,12-dihydroperoxy-8E,13E,15Z-octadecatrienoate
methyl 13,15-dihydroperoxy-9Z,11E,16E-octadecatrienoate
methyl 10,16-dihydroperoxy-8E,12Z,14E-octadecatrienoate
methyl 9,15-dihydroperoxy-10E,12Z,16E-octadecatrienoate
methyl 11-(3,5-epidioxy-2-ethyl-cyclopentyl)-9-hydroperoxy-10-undecenoate
methyl 9-hydroperoxy-10,13-epdioxy-11,15-octadecadienoate
methyl 12,15-epdioxy-16-hydroperoxy-9,13-octadecadienoate
g-Crocetin
Crocetine dimethyl ester (Dimethylcrocetin) is found in the stigmas of saffron (Crocus sativus L.), and has antioxidant activity[1].
Piperochromanoic acid
5,7-Megastigmadien-9-ol glucoside
FA 22:8;O2
FAL 26:12
U-69593
C22H32N2O2 (356.24636519999996)
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics U-69593 is a potent and selective κ1-opioid receptor agonist[1]. U-69593 attenuates addictive agent-induced behavioral sensitization in the rat[2]. U-69593 reduces anxiety and enhances spontaneous alternation memory in mice[3]. U-69593 reduces calcium-dependent dialysate levels of dopamine and glutamate in the ventral striatum[4].
(9β,11β,16α)-9,11-Epoxy-21-hydroxy-16-methyl-pregna-1,4-diene-3,20-dione
4,4-(1,10-Decanediyl)dioxydianiline
C22H32N2O2 (356.24636519999996)
2-[4-(cyanomethyl)-2,5-dihexoxyphenyl]acetonitrile
C22H32N2O2 (356.24636519999996)
Pyrimidine, 2-[4-[1-(1-cyclohexyl-1H-tetrazol-5-yl)propyl]-1-piperazinyl]- (9CI)
7-(2,5-dihydroxy-3,4,6-trimethylphenyl)-7-phenylheptanoic acid
ethyl prop-2-enoate,8-methyl-2-methylidenenonanoic acid,prop-2-enoic acid
butyl 2-methylprop-2-enoate,butyl prop-2-enoate,2-methylprop-2-enoic acid
N,N-dimethyl-3-(6-phenylpyrido[2,3-b][1,4]benzodiazepin-11-yl)propan-1-amine
quinestradol
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones
ethenyl acetate,6-methylheptyl prop-2-enoate,2-methylprop-2-enoic acid
(N-tert-Butoxycarbonyl-N-[(1R)-hydroxy-1-phenyl)ethyl])-4-aminophenylethylamine
C21H28N2O3 (356.20998180000004)
cis-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)stilbene
C20H30B2O4 (356.23300800000004)
1-adamantylmethyl-5-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole
Pregna-9(11),16-dien-20-one,3-(acetyloxy)-, (3b,5a)-
Diethyl 3,5-di-tert-butyl-4-hydroxybenzyl phosphate
C19H33O4P (356.21163480000007)
ETHYLTRIBUTYLPHOSPHONIUM ETHYL SULFATE
C16H37O4PS (356.21500520000006)
Isoxazole, 5-(7-(4-((4R)-4,5-dihydro-4-methyl-2-oxazolyl)phenoxy)heptyl)-3-methyl-
C21H28N2O3 (356.20998180000004)
Rolofylline
D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Rolofylline (KW-3902) is a potent, selective adenosine A1 receptor antagonist that is under development for the treatment of patients with acute congestive heart failure and renal impairment. Rolofylline is metabolized primarily to the pharmacologically active M1-trans and M1-cis metabolites by cytochrome P450 (CYP450)[1]. Rolofylline is alleviating the presynaptic dysfunction and restores neuronal activity as well as dendritic spine levels in vitro, is an interesting candidate to combat the hypometabolism and neuronal dysfunction associated with Tau-induced neurodegenerative diseases[2].
Cyclizine Lactate
C21H28N2O3 (356.20998180000004)
C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent
4,7,10,13,16,19-docosahexaenoic acid ethyl ester
N-Methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]benzeneacetamide
C22H32N2O2 (356.24636519999996)
Ilicicolin B
An ilicicolin that is 2,4-dihydroxy-6-methyl-benzaldehyde which is substituted at position 3 by a (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl group.
19-(2-Furyl)nonadeca-5,7-diynoic acid
An acetylenic fatty acid that is nonadeca-5,7-diynoic acid substituted by a furan-2-yl group at position 19. Isolated from Polyalthia evecta, it exhibits anti-HSV-1 and antiplasmodial activity.
N-[3-(1-azepanyl)propyl]-2-cyclohexyl-2-phenylacetamide
6-((tert-Butyldiphenylsilyl)oxy)hexan-1-ol
C22H32O2Si (356.21714519999995)
(11alpha,13E,15S)-9,11,15-Trihydroxyprost-13-en-1-oic acid
(2R,2R,5S,5R,6S,8aS)-5-(2-hydroxyethyl)-5,5-bis(hydroxymethyl)-2,5,8a-trimethyldecahydro-2H,3H-spiro[furan-2,1-naphthalen]-6-ol
1H-Purine-2,6-dione, 8-(hexahydro-2,5-methanopentalen-3a(1H)-yl)-3,7-dihydro-1,3-dipropyl-
C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics
Estradiol valerate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen
13,14-dihydroprostaglandin F2α
A prostaglandins Falpha that is prost-5-en-1-oic acid substituted by hydroxy groups at positions 9, 11 and 15.
2-[4-[[4-amino-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-1-ium-2-yl]amino]butyl]guanidine
[(1S,2R,3R,4S,5S,6S)-4-azaniumyl-3-[(2R,3R,4R,5S,6R)-3-azaniumyl-6-(azaniumylmethyl)-4,5-dihydroxyoxan-2-yl]oxy-2,5,6-trihydroxycyclohexyl]-methylazanium
(6E,9E,12E,15E)-1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-one
D004791 - Enzyme Inhibitors
[3-carboxy-2-[(E)-tridec-8-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-Carboxy-2-(8-carboxy-3,4-dimethylideneoctanoyl)oxypropyl]-trimethylazanium
[3-carboxy-2-[(6E,9E)-3-hydroxydodeca-6,9-dienoyl]oxypropyl]-trimethylazanium
C19H34NO5+ (356.24368540000006)
[3-carboxy-2-[(5E,7E)-3-hydroxydodeca-5,7-dienoyl]oxypropyl]-trimethylazanium
C19H34NO5+ (356.24368540000006)
[3-carboxy-2-[(7E,9E)-5-hydroxydodeca-7,9-dienoyl]oxypropyl]-trimethylazanium
C19H34NO5+ (356.24368540000006)
[3-carboxy-2-[(7E,10E)-3-hydroxydodeca-7,10-dienoyl]oxypropyl]-trimethylazanium
C19H34NO5+ (356.24368540000006)
[3-carboxy-2-[(5E,8E)-2-hydroxydodeca-5,8-dienoyl]oxypropyl]-trimethylazanium
C19H34NO5+ (356.24368540000006)
[3-carboxy-2-[(8E,10E)-6-hydroxydodeca-8,10-dienoyl]oxypropyl]-trimethylazanium
C19H34NO5+ (356.24368540000006)
[3-carboxy-2-[(6E,10E)-3-hydroxydodeca-6,10-dienoyl]oxypropyl]-trimethylazanium
C19H34NO5+ (356.24368540000006)
[3-carboxy-2-[(6E,8E)-4-hydroxydodeca-6,8-dienoyl]oxypropyl]-trimethylazanium
C19H34NO5+ (356.24368540000006)
[3-carboxy-2-[(4E,6E)-2-hydroxydodeca-4,6-dienoyl]oxypropyl]-trimethylazanium
C19H34NO5+ (356.24368540000006)
[3-carboxy-2-[(E)-tridec-3-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-5-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-11-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-2-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-4-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-6-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-9-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-7-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
[3-carboxy-2-[(E)-tridec-10-enoyl]oxypropyl]-trimethylazanium
C20H38NO4+ (356.28006880000004)
Ethanol, 2-[2-[4-[(3-phenoxyphenyl)methyl]-1-piperazinyl]ethoxy]-
C21H28N2O3 (356.20998180000004)
7-[(1R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopentyl]heptanoic acid
rel-(R)-1-((8S,9S,10R,13S,14S,17S)-10,13-dimethyl-3-oxo-6,7,8,9,10,11,12,13,14,15,16,17-dodecahydro-3H-cyclopenta[a]phenanthren-17-yl)ethyl acetate
A natural product found in Carijoa multiflora.
4-[[4-(2,3-Dimethylphenyl)-1-piperazinyl]methyl]-2,6-dimethoxyphenol
C21H28N2O3 (356.20998180000004)
pentanoic acid [(13S,17S)-3-hydroxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl] ester
5-(1-adamantyl)-N-[2-(dimethylamino)ethyl]-2-methoxybenzamide
C22H32N2O2 (356.24636519999996)
(2E,4E)-12-hydroxy-13-(hydroxymethyl)-14-methoxy-3,5,7-trimethyl-14-oxotetradeca-2,4-dienoic acid
(5S,8S)-5-(2-methylpropyl)-8-(phenylmethyl)-3-oxa-1,6,13,14-tetrazabicyclo[9.3.0]tetradeca-11,13-dien-7-one
1-[(2R,3S,6R)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]-3-propylurea
C17H32N4O4 (356.24234320000005)
1-[(2S,3S,6S)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]-3-propylurea
C17H32N4O4 (356.24234320000005)
1-[(2S,3S,6R)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]-3-propylurea
C17H32N4O4 (356.24234320000005)
N-[3-(dimethylamino)propyl]-2-[(2R,3S,6R)-2-(hydroxymethyl)-3-[[oxo-(propan-2-ylamino)methyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C17H32N4O4 (356.24234320000005)
N-[3-(dimethylamino)propyl]-2-[(2S,3S,6S)-2-(hydroxymethyl)-3-[[oxo-(propan-2-ylamino)methyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C17H32N4O4 (356.24234320000005)
(4S,7S)-7-(2-methylpropyl)-4-(phenylmethyl)-9-oxa-1,6,12,13-tetrazabicyclo[9.2.1]tetradeca-11(14),12-dien-5-one
N-[[(2R,3R,4R)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-N-propan-2-ylcyclobutanecarboxamide
C22H32N2O2 (356.24636519999996)
1-[(2S,3R,6S)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]-3-propylurea
C17H32N4O4 (356.24234320000005)
1-[(2S,3R,6R)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]-3-propylurea
C17H32N4O4 (356.24234320000005)
1-[(2R,3S,6S)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]-3-propylurea
C17H32N4O4 (356.24234320000005)
1-[(2R,3R,6R)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]-3-propylurea
C17H32N4O4 (356.24234320000005)
1-[(2R,3R,6S)-2-(hydroxymethyl)-6-[2-(4-methyl-1-piperazinyl)-2-oxoethyl]-3-oxanyl]-3-propylurea
C17H32N4O4 (356.24234320000005)
N-[3-(dimethylamino)propyl]-2-[(2S,3R,6R)-2-(hydroxymethyl)-3-[[oxo-(propan-2-ylamino)methyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C17H32N4O4 (356.24234320000005)
N-[3-(dimethylamino)propyl]-2-[(2R,3S,6S)-2-(hydroxymethyl)-3-[[oxo-(propan-2-ylamino)methyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C17H32N4O4 (356.24234320000005)
N-[3-(dimethylamino)propyl]-2-[(2S,3R,6S)-2-(hydroxymethyl)-3-[[oxo-(propan-2-ylamino)methyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C17H32N4O4 (356.24234320000005)
N-[3-(dimethylamino)propyl]-2-[(2S,3S,6R)-2-(hydroxymethyl)-3-[[oxo-(propan-2-ylamino)methyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C17H32N4O4 (356.24234320000005)
N-[3-(dimethylamino)propyl]-2-[(2R,3R,6S)-2-(hydroxymethyl)-3-[[oxo-(propan-2-ylamino)methyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C17H32N4O4 (356.24234320000005)
N-[3-(dimethylamino)propyl]-2-[(2R,3R,6R)-2-(hydroxymethyl)-3-[[oxo-(propan-2-ylamino)methyl]amino]-3,6-dihydro-2H-pyran-6-yl]acetamide
C17H32N4O4 (356.24234320000005)
(4S,7R)-7-(2-methylpropyl)-4-(phenylmethyl)-9-oxa-1,6,12,13-tetrazabicyclo[9.2.1]tetradeca-11(14),12-dien-5-one
(4R,7R)-7-(2-methylpropyl)-4-(phenylmethyl)-9-oxa-1,6,12,13-tetrazabicyclo[9.2.1]tetradeca-11(14),12-dien-5-one
(4R,7S)-7-(2-methylpropyl)-4-(phenylmethyl)-9-oxa-1,6,12,13-tetrazabicyclo[9.2.1]tetradeca-11(14),12-dien-5-one
(5S,8R)-5-(2-methylpropyl)-8-(phenylmethyl)-3-oxa-1,6,13,14-tetrazabicyclo[9.3.0]tetradeca-11,13-dien-7-one
N-[[(2S,3S,4S)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-2-yl]methyl]-N-propan-2-ylcyclobutanecarboxamide
C22H32N2O2 (356.24636519999996)
cyclopentyl-[(2R,3R,4S)-2-(ethylaminomethyl)-4-(hydroxymethyl)-3-[4-[(E)-prop-1-enyl]phenyl]azetidin-1-yl]methanone
C22H32N2O2 (356.24636519999996)
(1S,5R)-7-[4-(2-methylphenyl)phenyl]-3-(5-pyrimidinylmethyl)-3,6-diazabicyclo[3.1.1]heptane
[(8R,9S,13S,14R,17S)-3-hydroxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl] pentanoate
2-[4,5-dimethoxy-2-[(E)-2-(4-methoxyphenyl)ethenyl]phenyl]ethyl-trimethylazanium
C22H30NO3+ (356.22255700000005)
5-(2-Hydroxyethyl)-5,5-bis(hydroxymethyl)-2,5,8A-trimethyl-octahydro-2H-spiro[naphthalene-1,2-oxolan]-6-OL
(R)-6-(tert-Butyldimethylsilyloxy)-8-pivaloyloxy-2-methyl-2-octene
(1-hydroxy-3-propanoyloxypropan-2-yl) (Z)-tetradec-9-enoate
(1-acetyloxy-3-hydroxypropan-2-yl) (Z)-pentadec-9-enoate
(1-butanoyloxy-3-hydroxypropan-2-yl) (Z)-tridec-9-enoate
2-[(3-Heptoxy-2-hydroxypropoxy)-hydroxyphosphoryl]oxyethyl-trimethylazanium
C15H35NO6P+ (356.22018800000006)
ST 23:4;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen Same as: D01413
11,15-Dihydroxy-9-oxoprostan-1-oic acid
(1S)-1-hydroxy-23,24-didehydro-25,26,27-trinorcalciol
(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosahexaenoic acid
A very long-chain polyunsaturated fatty acid that is tetracosanoic acid having six double bonds located at positions 6, 9, 12, 15, 18 and 21 (the (6Z,9Z,12Z,15Z,18Z,21Z-isomer).
DG(17:1)
Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved
(1z)-2-{1-[(1z)-hex-1-en-1-yl[(1-hydroxyethylidene)amino]amino]-3-hydroxy-1-oxopropan-2-yl}-1-hexyldiazen-1-ium-1-olate
C17H32N4O4 (356.24234320000005)
1,5-diisocyano-2,5-dimethyl-8-[2-methyl-5-(prop-1-en-2-yl)oxolan-2-yl]-octahydronaphthalen-2-ol
C22H32N2O2 (356.24636519999996)
(2e,4s)-4-[(2s,3s,4r,5s,6s,8r,9s,10r)-9-ethyl-4,10-dihydroxy-3,5,8-trimethyl-1,7-dioxaspiro[5.5]undecan-2-yl]pent-2-enoic acid
(1r,2r,3r,4ar,5s,6r,8ar)-5-[(3z)-5-hydroxy-3-(hydroxymethyl)pent-3-en-1-yl]-1,5,6,8a-tetramethyl-hexahydro-2h-naphthalene-1,2,3-triol
2,4-dihydroxy-6-methyl-3-(3,7,11-trimethyldodeca-2,6,10-trien-1-yl)benzaldehyde
methyl 3-{[(1r,2s,4as,8as)-1,2,4a-trimethyl-5-methylidene-hexahydro-2h-naphthalen-1-yl]methyl}-4-hydroxybenzoate
(1s,2e,4r,7z,11s,12s)-11-chloro-8-(hydroxymethyl)-1-isopropyl-4,12-dimethyl-15-oxabicyclo[10.2.1]pentadeca-2,7-dien-4-ol
C20H33ClO3 (356.2118098000001)
(1-{hex-1-en-1-yl[(1-hydroxyethylidene)amino]amino}-3-hydroxy-1-oxopropan-2-yl)(hexyl-oxo-λ⁵-azanylidene)amine
C17H32N4O4 (356.24234320000005)
3-[(4-hydroxyphenyl)methyl]-5-methyl-6-(8-methylnonyl)-1h-pyrazin-2-one
C22H32N2O2 (356.24636519999996)
methyl 3-{[(1r,2s,4as,8as)-1,2,4a,5-tetramethyl-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]methyl}-4-hydroxybenzoate
(4r,5s,8s)-4-hydroxy-8-[(2s)-1-[(2s,3r)-3-[(2s)-2-hydroxy-3-methylbutyl]-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-5-methyloxocan-2-one
(3r)-5-[(1s,2r,4ar,5r,6r,7r,8ar)-5,6,7-trihydroxy-1,2,4a,5-tetramethyl-hexahydro-2h-naphthalen-1-yl]-3-methylpentanoic acid
3-(hydroperoxymethyl)-6-[(2s)-2-hydroxydodecan-2-yl]-4-methoxypyran-2-one
(2s)-3-(acetyloxy)-2-{[(2z)-2-methylbut-2-enoyl]oxy}propyl nonanoate
5-(5-chloro-3,4-dihydroxy-3-methylpentyl)-1,1,4a,6-tetramethyl-4,7,8,8a-tetrahydro-3h-naphthalen-2-one
C20H33ClO3 (356.2118098000001)