Exact Mass: 353.1779548
Exact Mass Matches: 353.1779548
Found 369 metabolites which its exact mass value is equals to given mass value 353.1779548
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Methysergide
An ergot derivative that is a congener of lysergic acid diethylamide. It antagonizes the effects of serotonin in blood vessels and gastrointestinal smooth muscle, but has few of the properties of other ergot alkaloids. Methysergide is used prophylactically in migraine and other vascular headaches and to antagonize serotonin in the carcinoid syndrome. [PubChem] N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents KEIO_ID M156; [MS2] KO009047 KEIO_ID M156
Dihydrozeatin riboside
Olopatadine n-oxide
C21H23NO4 (353.16269980000004)
Olopatadine n-oxide is a metabolite of olopatadine. Olopatadine hydrochloride is an antihistamine (as well as anticholinergic) and mast cell stabilizer, sold as a prescription eye drop (0.2\\% solution, Pataday, manufactured by Alcon). It is used to treat itching associated with allergic conjunctivitis. Olopatadine hydrochloride 0.1\\% is sold as Patanol (or Opatanol in some countries). A nasal spray formulation is sold as Patanase, which was approved by the FDA on April 15, 2008. (Wikipedia)
(5E,7E)-Undeca-2,5,7-trienedioylcarnitine
(5E,7E)-Undeca-2,5,7-trienedioylcarnitine is an acylcarnitine. More specifically, it is an (5E,7E)-undeca-2,5,7-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5E,7E)-Undeca-2,5,7-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (5E,7E)-Undeca-2,5,7-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-4,6,8-trienedioylcarnitine
Undeca-4,6,8-trienedioylcarnitine is an acylcarnitine. More specifically, it is an undeca-4,6,8-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-4,6,8-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-4,6,8-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-5,7,9-trienedioylcarnitine
Undeca-5,7,9-trienedioylcarnitine is an acylcarnitine. More specifically, it is an undeca-5,7,9-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-5,7,9-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-5,7,9-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Undeca-3,6,9-trienedioylcarnitine
Undeca-3,6,9-trienedioylcarnitine is an acylcarnitine. More specifically, it is an undeca-3,6,9-trienedioic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Undeca-3,6,9-trienedioylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Undeca-3,6,9-trienedioylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
4-(4-(4-Fluorophenyl)-1-(piperidin-4-yl)-1H-imidazol-5-yl)-2-methoxypyrimidine
Amopyroquine
C20H20ClN3O (353.12948200000005)
C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
2-Methyl-2-(4-(5-(3-pyridinyl)-1,2,4-oxadiazol-3-yl)phenoxy)propanoic acid, ethyl ester
Cavidine
C21H23NO4 (353.16269980000004)
1-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-4-phenylpiperazine
C19H20ClN5 (353.14071500000006)
Epiroprim
C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent C471 - Enzyme Inhibitor > C2153 - Dihydrofolate Reductase Inhibitor
Dihydropalmatine
C21H23NO4 (353.16269980000004)
Dihydropalmatine is a natural product found in Thalictrum foliolosum with data available. Dihydropalmatine is a alkaloid isolated from Berberis aristata[1].
Dehydroglaucine
C21H23NO4 (353.16269980000004)
relative retention time with respect to 9-anthracene Carboxylic Acid is 1.323 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.326 Dehydroglaucine is a natural product found in Sarcocapnos saetabensis, Thalictrum ichangense, and other organisms with data available.
AB 3217-A
Rubropunctamine
C21H23NO4 (353.16269980000004)
4-Hydroxy-5,8-dimethoxy-2-(3-methoxyphenyl)-3-propylquinoline
C21H23NO4 (353.16269980000004)
8-Methoxy-uvariopsin|8-Methoxyuvariopsine|[2-(8,9-Dimethoxy-phenanthro[3,4-d][1,3]dioxol-5-yl)-aethyl]-dimethyl-amin|[2-(8,9-dimethoxy-phenanthro[3,4-d][1,3]dioxol-5-yl)-ethyl]-dimethyl-amine
C21H23NO4 (353.16269980000004)
7-(4-Hydroxy,3-methoxyphenyl)-N-[(4-butylphenyl)ethyl]propenamide|7-(4-hydroxy-3-methoxyphenyl)-N-[(4-butylphenyl)ethyl]propenamide
(2S-<2alpha,3beta,3<1S*,7aS*>,4alpha>)-<1-(acetoxy)-2,3,5,7a-tetrahydro-1H-pyrrolizin-7-yl>methyl 3-hydroxy-2,4-dimethyl-5-oxotetrahydrofuran-3-carboxylate|longitubine
(E)-3-(methylsulfonyl)-propenoic acid 3-hydroxy-4-(3-methyl-2-butenyloxy)-phenethyl amide|sakambullin
1-O-beta-D-glucopyranosyladenophorine
C14H27NO9 (353.16857319999997)
2,3-Dihydrocapitavine|dihydroxy-5,7 (methyl-1 piperidinyl-2)-6 flavanone
C21H23NO4 (353.16269980000004)
12,15-dihydroxy-(12alphaH,15betaH)-15,20-dihydro-senecionane-11,16-dione|Bislin|bisline
Trichodesmine
Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Pyrrolizidine alkaloids
5,8-dimethoxy-2-(3-methoxyphenyl)-3-propyl-1h-quinolin-4-one
C21H23NO4 (353.16269980000004)
4-[(2,3-Dimethoxy-7,9,10,11,11a,12-hexahydrobenzo[f]pyrrolo[1,2-b]isoquinoline)-6-yl]-2-butanone
2-((S)-2-((S)-2-Amino-4-(methylthio)butanamido)-3-phenylPropanamido)acetic acid
C16H23N3O4S (353.14091980000006)
Trichodesmine
Trichodesmine is a natural product found in Crotalaria globifera, Crotalaria recta, and other organisms with data available.
N-[2-(4-sec-Butyl-phenoxy)-4,5-dihydroxy-6-hydroxymethyl-tetrahydro-pyran-3-yl]-acetamide
C17H23NO7_4-[(2-{[(2-Ethyl-2,3-dihydroxybutanoyl)oxy]methyl}phenyl)amino]-4-oxobutanoic acid
C17H23NO7_5,8-Epoxy-5H-[1,5]dioxecino[3,2-b]pyrrole-3,6,7-triol, decahydro-11-(4-methoxyphenyl)-, (3S,3aS,5R,6R,7R,8R,11R,11aR)
4-[2-[(2-ethyl-2,3-dihydroxybutanoyl)oxymethyl]anilino]-4-oxobutanoic acid
methysergide
A synthetic ergot alkaloid, structurally related to the oxytocic agent methylergonovine and to the potent hallucinogen LSD and used prophylactically to reduce the frequency and intensity of severe vascular headaches. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CA - Ergot alkaloids D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents
Fmoc-Leu-OH
C21H23NO4 (353.16269980000004)
Fmoc-leucine is a selective PPARγ modulator. Fmoc-leucine activates PPARγ with a lower potency but a similar maximal efficacy than rosiglitazone. Fmoc-leucine improves insulin sensitivity in normal, diet-induced glucose-intolerant, and in diabetic db/db mice. Fmoc-leucine has a lower adipogenic activity[1].
1-(5-carboxypentyl)-2,3,3-trimethylindol-1-ium-5-sulfonate
3-[3-(4-tert-butylphenoxy)-2-oxopyrrolidin-1-yl]benzoic acid
C21H23NO4 (353.16269980000004)
tert-Butyl (2S,3R)-(+)-6-oxo-2,3-diphenyl-4-morpholinecarboxylate
C21H23NO4 (353.16269980000004)
1-[(TERT-BUTYL)OXYCARBONYL]-3-(4-CHLOROBENZYL)PIPERIDINE-3-CARBOXYLIC ACID
C18H24ClNO4 (353.13937740000006)
N-BOC-4-(4-CHLORO) BENZYL-4-PIPERIDINE CARBOXYLIC ACID
C18H24ClNO4 (353.13937740000006)
DIMETHYL 2-(1-BENZHYDRYLAZETIDIN-3-YL)MALONATE
C21H23NO4 (353.16269980000004)
((1S,4S)-4-amino-1-isopropylcyclopent-2-enyl)(3-(trifluoromethyl)-7,8-dihydro-1,6-naphthyridin-6(5H)-yl)Methanone
[4-(4-fluoro-phenyl)-piperazin-1-yl]-(1h-indol-2-yl)-acetic acid
N-BOC-ALPHA-(PHENYLSULFONYL)CYCLOHEXYLMETHYLAMINE
C18H27NO4S (353.16607020000004)
Urea, N-cyclohexyl-N-cyclopropyl-N-[(1,2-dihydro-6-methyl-2-oxo-3-quinolinyl)methyl]- (9CI)
1-benzhydryl-3-(benzylamino)azetidine-3-carbonitrile
9-ETHYL-3-[[(2-METHYL-1-INDOLINYL)IMINO]METHY]CARBAZOLE
N-(2-chloroethyl)-N-methyl-4-[2-(1,3,3-trimethylindol-1-ium-2-yl)ethenyl]aniline
C22H26ClN2+ (353.17844060000004)
3-(Hydroxymethyl)-3-nitro-1-(4-octylphenyl)-1,4-butanediol
N-[(9H-Fluoren-9-ylmethoxy)carbonyl]norleucine
C21H23NO4 (353.16269980000004)
(3S,5S)-3-isopropyl-5-((2S,4S)-4-isopropyl-5-oxotetrahydro-furan-2-yl)-2-oxopyrrolidine-1-carboxylic acid tert-butyl ester
5-[[(4-DIETHYLAMINO)PHENYL]METHYL]-1,4-DIHYDRO-1-METHYL-3-PROPYL-7H-PYRAZOLO[3,4-D]PYRIMIDI-7-ONE
Benzyl (4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)carbamate
N-(4-(Dimethylamino)phenethyl)-3-ethyl-5-fluoro-1H-indole-2-carboxamide
Dioxaphetyl butyrate
C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent
20-isocyanato-2,5,8,11,14,17-hexaoxabicyclo[16.4.0]docosa-1(18),19,21-triene
Ethyl 5-hydroxy-8-isopropyl-7-oxo-2-phenyl-7,8-dihydropyrido[2,3-d]pyrimidine-6-carboxylate
ETHYL 5-HYDROXY-7-OXO-2-PHENYL-8-PROPYL-7,8-DIHYDROPYRIDO[2,3-D]PYRIMIDINE-6-CARBOXYLATE
Nile Blue chloride
C20H20ClN3O (353.12948200000005)
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
2-(trifluoromethyl)--1H-Pyrrolo[2,3-b]pyridin-5-amine
C21H23NO4 (353.16269980000004)
1-benzyl-5-(3,4,5-trimethoxyphenyl)-2,3-dihydropyridin-4-one
C21H23NO4 (353.16269980000004)
3-(Morpholinosulfonyl)phenylboronic acid pinacol ester
C16H24BNO5S (353.14681640000003)
Benzoicacid, 2-[4-(cyclohexylmethylamino)-2-hydroxybenzoyl]-
C21H23NO4 (353.16269980000004)
(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)boronic acid
Methyl 3-azido-2,3-dideoxy-alpha-D-erythro-pentofuranoside 5-[1,1-biphenyl]-4-carboxylate
TERT-BUTYL 4-(BENZYLOXY)-3-(HYDROXYMETHYL)-1H-INDOLE-1-CARBOXYLATE
C21H23NO4 (353.16269980000004)
Butenafine hydrochloride
C23H28ClN (353.19101580000006)
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Butenafine Hydrochloride (KP363 Hydrochloride) is a synthetic benzylamine antifungal, works by inhibiting the synthesis of sterols by inhibiting squalene epoxidase.
Tert-butyl-(2R,3S)-(-)-6-oxo-2,3-diphenyl-4-morpholinecarboxylate
C21H23NO4 (353.16269980000004)
n-(9-fluorenylmethoxycarbonyl)-l-leucin&
C21H23NO4 (353.16269980000004)
N-[(9H-Fluoren-9-Ylmethoxy)Carbonyl]-L-Leucine-1-13C
C21H23NO4 (353.16269980000004)
NS-11394
C23H19N3O (353.15280440000004)
NS11394 is an orally active and unique subtype-selective GABAA positive allosteric receptor (PAM), with a Ki of ~0.5 nM. NS11394 shows a selectivity profile in the order of GABAA-5 > α3 > α2 > α1-containing receptors. NS11394 has anxiolytic and anti-inflammatory properties[1][2][3].
methyl 2-methylprop-2-enoate,2-(1-oxa-4-azaspiro[4.5]decan-4-yl)ethyl 2-methylprop-2-enoate
Imidazo(1,2-b)pyridazine, 3-(6-(2-methoxyethyl)-3-pyridinyl)-2-methyl-8-(4-morpholinyl)-
Di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone
C19H23N5S (353.16740780000003)
Arbutamine hydrochloride
C18H24ClNO4 (353.13937740000006)
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents
3-[(2E,4E)-4,6-dimethylocta-2,4-dienoyl]-4-hydroxy-5-(4-hydroxyphenyl)-1H-pyridin-2-one
C21H23NO4 (353.16269980000004)
1-((1-(4-Chlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-4-phenylpiperazine
C19H20ClN5 (353.14071500000006)
2-(9H-fluoren-9-ylmethoxycarbonylamino)-4-methylpentanoic acid
C21H23NO4 (353.16269980000004)
N-[4-methyl-2-(4-morpholinyl)-6-quinolinyl]cyclohexanecarboxamide
2-(3,5-Dimethyl-1-pyrazolyl)-4-(4-hydroxyanilino)-5-pyrimidinecarboxylic acid ethyl ester
C18H19N5O3 (353.14878239999996)
2-(1,2-Dihydroimidazo[1,2-a]benzimidazol-4-yl)-1-(4-phenylphenyl)ethanone
C23H19N3O (353.15280440000004)
1-ethyl-2-[(1E,3Z)-3-(1-ethylquinolin-2(1H)-ylidene)prop-1-en-1-yl]quinolinium
C25H25N2+ (353.20176299999997)
Glycyl-L-phenylalanyl-L-methionine
C16H23N3O4S (353.14091980000006)
5-Amino-1-Tert-Butyl-3-(7-Ethoxyquinolin-3-Yl)-1h-Pyrazole-4-Carboxamide
4-({[(1S,5R)-8-oxo-1,5,6,8-tetrahydro-2H-1,5-methanopyrido[1,2-a][1,5]diazocin-3(4H)-yl]carbonyl}amino)benzoic acid
5-(4-Morpholin-4-YL-phenylsulfanyl)-2,4-quinazolinediamine
(4R,16R)-5,6-dihydroxy-5,6-dimethyl-4-propan-2-yl-2,8-dioxa-13-azatricyclo[8.5.1.013,16]hexadec-10-ene-3,7-dione
16-Hydroxytabersoninium
The indole alkaloid cation that is the conjugate acid of 16-hydroxytabersonine, arising from protonation of the tertiary amino function; major species at pH 7.3.
3-hydroxy-6-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-5-methoxy-2-(3-methylbut-2-en-1-yl)phenolate
(3R)-1,2-didehydro-3-hydroxy-2,3-dihydrotabersonine
methyl (1R,10S,11S,12E,17S)-12-ethylidene-10-(hydroxymethyl)-8-aza-14-azoniapentacyclo[9.5.2.01,9.02,7.014,17]octadeca-2,4,6,8-tetraene-10-carboxylate
2-(4-Hydroxyphenyl)-5-methoxy-8-(3-methylbut-2-enyl)-4-oxo-2,3-dihydrochromen-7-olate
(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-[3-[(2S)-1-methyl-5-oxopyrrolidin-2-yl]pyridin-1-ium-1-yl]oxane-2-carboxylic acid
N-[[(1R)-3-Oxo-2alpha-[(2Z)-5-hydroxy-5-oxo-2-pentenyl]cyclopentane-1alpha-yl]acetyl]-L-isoleucine
3,4,5-Trihydroxy-6-[3-(1-methyl-5-oxopyrrolidin-2-yl)pyridin-1-ium-1-yl]oxane-2-carboxylic acid
1-ethyl-2-[3-(1-ethylquinolin-2(1H)-ylidene)prop-1-en-1-yl]quinolinium
C25H25N2+ (353.20176299999997)
Thalictricavine
C21H23NO4 (353.16269980000004)
A natural product found in Corydalis cava.
5-Chloro-7-[1-piperidinyl(2-pyridinyl)methyl]-8-quinolinol
C20H20ClN3O (353.12948200000005)
1-[(2E,4E,10E)-10-(3,4-methylenedioxyphenyl)-2,4,10-undecatrienoyl]pyrrolidine
A natural product found in Piper boehmeriaefolium.
Cuscuta propenamide 2
An enamide obtained by the formal condensation of ferulic acid with 2-(4-butylphenyl)ethanamine. It is isolated from Cuscuta reflexa and displays strong inhibitory activity against alpha-glucosidase (EC 3.2.1.20).
Ajmalicine(1+)
An ammonium ion resulting from the protonation of the tertiary amino group of ajmalicine. The major species at pH 7.3.
Tetrahydroalstonine(1+)
An ammonium ion resulting from the protonation of the tertiary amino group of tetrahydroalstonine. The major microspecies at pH 7.3.
N-[(4-methoxyphenyl)methyl]-2-[3-(trifluoromethyl)-5,6-dihydro-4H-cyclopenta[c]pyrazol-1-yl]acetamide
4-(butan-2-yl)phenyl 2-(acetylamino)-2-deoxy-beta-D-glucopyranoside
4-(phenylmethyl)-3-[2-(4-propoxyphenyl)ethyl]-1H-1,2,4-triazole-5-thione
C20H23N3OS (353.15617480000003)
(4E)-1-ethyl-4-[(E)-3-(1-ethylquinolin-1-ium-4-yl)prop-2-enylidene]quinoline
C25H25N2+ (353.20176299999997)
2-(3,5-dimethyl-4-nitro-1-pyrazolyl)-N-[(2-methyl-4-quinolinyl)methyl]acetamide
C18H19N5O3 (353.14878239999996)
N-[1-(2,4-difluorophenyl)-4,5,6,7-tetrahydroindazol-4-yl]benzamide
N-isopropyl-2-{[3-(3-nitrophenyl)acryloyl]amino}benzamide
1-[(1-tert-butyl-5-tetrazolyl)-thiophen-2-ylmethyl]-3,4-dihydro-2H-quinoline
C19H23N5S (353.16740780000003)
2-cyano-N-(3-methoxypropyl)-2-[3-(1-pyrrolidinyl)-2-quinoxalinyl]acetamide
2-[[2-[(2-Fluorophenyl)methoxy]-3-methoxyphenyl]methylamino]phenol
N-hydroxy-N-[(E)-(4-hydroxy-2,6-dimethoxyphenyl)methylideneamino]heptanediamide
N-[(4-methylphenyl)methyl]-6-phenyl-3-(2-pyridinyl)-1,2,4-triazin-5-amine
1-(4-Ethylphenyl)-3-[1-(phenylmethyl)-4-piperidinyl]thiourea
C21H27N3S (353.19255820000006)
N-Pyridin-2-yl-3-(o-tolylaminooxalyl-hydrazono)-butyramide
C18H19N5O3 (353.14878239999996)
7-(4-Chlorophenyl)-5-(4-ethylphenyl)-1,5,6,7-tetrahydro-[1,2,4]triazolo[1,5-a]pyrimidin-2-amine
C19H20ClN5 (353.14071500000006)
N-[2-(dipropylamino)ethyl]-4-methyl-2-furo[3,2-c]quinolinecarboxamide
(E)-2-cyano-3-[2-(2,6-dimethylmorpholin-4-yl)-4-oxopyrido[1,2-a]pyrimidin-3-yl]prop-2-enamide
C18H19N5O3 (353.14878239999996)
N-(2,6-dimethoxyphenyl)-2-(3-methyl-4-oxo-1-phthalazinyl)acetamide
2-Methoxy-4-[5-methyl-3-(2-oxolanylmethylamino)-2-imidazo[1,2-a]pyridinyl]phenol
Lochnericine(1+)
An ammonium ion derivative resulting from the protonation of the tertiary amino group of lochnericine. The major species at pH 7.3.
3-hydroxy-2-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-5-methoxy-6-(3-methylbut-2-en-1-yl)phenolate
(3,4-Dimethoxyphenyl)-[1-(2-phenylethyl)-3-piperidinyl]methanone
4-[(5-Methyl-2,4-diphenyl-2H-pyrazol-3-ylimino)-methyl]-phenol
C23H19N3O (353.15280440000004)
1,3-Bis-(1-ethyl-[4]quinolyl)-trimethinium
C25H25N2+ (353.20176299999997)
N-acetyl-1-[(2R)-5-hydroxy-2-pentyltetrahydrofuran-3-yl]-L-histidine
1-(4-chlorophenyl)-3-(4-methoxyphenyl)-6,7,8,9-tetrahydro-5H-imidazo[1,2-a]azepin-4-ium
2-(4-chlorophenyl)-1-(4-methoxyphenyl)-6,7,8,9-tetrahydro-5H-imidazo[1,2-a]azepin-4-ium
(2S,3S,4R)-2-cyano-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-N-propyl-1-azetidinecarboxamide
4-[2-[[1-(Phenylmethyl)-2-benzimidazolyl]thio]ethyl]morpholine
C20H23N3OS (353.15617480000003)
N-[[3-(4-methylphenyl)-1-phenyl-4-pyrazolyl]methyl]-1-phenylmethanamine
1-ethenyl-6,7-dimethoxy-2-[(4-methoxyphenyl)methyl]-3-methyl-3,4-dihydro-1H-isoquinoline
(4E)-1-ethyl-4-[(Z)-3-(1-ethylquinolin-1-ium-4-yl)prop-2-enylidene]quinoline
C25H25N2+ (353.20176299999997)
(2S,3S,4S)-2-cyano-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-N-propyl-1-azetidinecarboxamide
(2R,3S,4S)-2-cyano-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-N-propyl-1-azetidinecarboxamide
(2R,3S,4R)-2-cyano-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-N-propyl-1-azetidinecarboxamide
(2S,3R,4R)-2-cyano-3-[4-(cyclohexen-1-yl)phenyl]-4-(hydroxymethyl)-N-propylazetidine-1-carboxamide
N-[[(2R,3S,4R)-4-(hydroxymethyl)-3-[4-(3-pyridinyl)phenyl]-2-azetidinyl]methyl]-N-propylacetamide
(1R,5S)-7-[4-(2-fluorophenyl)phenyl]-N-propyl-3,6-diazabicyclo[3.1.1]heptane-6-carboxamide
(2R,3R,4S)-2-cyano-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-N-propyl-1-azetidinecarboxamide
(2R,3R,4R)-2-cyano-3-[4-(1-cyclohexenyl)phenyl]-4-(hydroxymethyl)-N-propyl-1-azetidinecarboxamide
N-[[(2S,3R,4R)-4-(hydroxymethyl)-3-phenyl-1-(3-pyridinylmethyl)-2-azetidinyl]methyl]-N-methylpropanamide
N-[[(2S,3R,4S)-4-(hydroxymethyl)-3-[4-(3-pyridinyl)phenyl]-2-azetidinyl]methyl]-N-propylacetamide
(1S,5R)-7-[4-(3-fluorophenyl)phenyl]-N-propyl-3,6-diazabicyclo[3.1.1]heptane-3-carboxamide
2-(dimethylamino)-1-[(1S,5R)-7-[4-(2-fluorophenyl)phenyl]-3,6-diazabicyclo[3.1.1]heptan-3-yl]ethanone
2-phenyl-3-[(S)-pyridin-2-yl(pyrrolidin-1-yl)methyl]-1H-indole
5-(2-Acetoxyethylamino)-3-methoxy-2,6-dimethyl-(6R*)-((2R*)-2-methylbutyryloxy)-2,4-cyclohexadien-1-one
4-(3-(4-(2-Trimethylsilyloxyethoxy)phenoxy)propyl)morphorine
alpha-(4-Dimethylaminophenyl)-omega-(9-phenanthryl)butane
3-[[2-(Benzoylamino)phenyl]thio]-5,5-dimethyl-1-cyclohexanone
2-(3-Trimethylsilyloxybutoxy)-N-[2-(ethylamino)ethyl]-3-pyridinecarboxamide
(6R,6aS,8R,10S,10aR)-4-(4-hydroxyphenyl)-6,6a,8,10-tetramethyl-6,7,8,9,10,10a-hexahydro-2H-isochromeno[4,3-c]pyridin-1-one
xanthohumol(1-)
A phenolate anion that is the conjugate base of xanthohumol, obtained by deprotonation of the 1-hydroxy group. It is the major microspecies at pH 7.3 (according to Marvin v 6.2.0.).
Deseril
D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents
xanthogalenol(1-)
A phenolate anion that is the conjugate base of xanthogalenol, obtained by deprotonation of the 1-hydroxy group. It is the major microspecies at pH 7.3 (according to Marvin v 6.2.0.).
N-(1-hydroxybutan-2-yl)-4,7-dimethyl-6,6a,8,9-tetrahydroindolo[4,3-fg]quinoline-9-carboxamide
(6aR,9R)-N-[(2S)-1-hydroxybutan-2-yl]-4,7-dimethyl-6,6a,8,9-tetrahydroindolo[4,3-fg]quinoline-9-carboxamide
ESI-08
C20H23N3OS (353.15617480000003)
ESI-08 is a potent and selective EPAC antagonist, which can completely inhibit both EPAC1 and EPAC2 (IC50 of 8.4 μM) activity. ESI-08 selectively blocks cAMP-induced EPAC activation, but does not inhibit cAMP-mediated PKA activation[1].
FATP1-IN-2
FATP1-IN-2 (compound 12a), an arylpiperazine derivative, is an orally active fatty acid transport protein 1 (FATP1) inhibitor (human IC50=0.43 μM, mouse IC50=0.39 μM)[1].
ML337
ML337 is a selective and brain-penetrant negative allosteric modulator of mGlu3, with an IC50 of 593 nM. ML337 possesses a favorable dystrophia myotonica protein kinase (DMPK) and ancillary pharmacology profile[1]. ML337 is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
PRE-084 (hydrochloride)
C19H28ClNO3 (353.17576080000003)
PRE-084 hydrochloride is a highly selective σ1 receptor (S1R) agonist, with an IC50 of 44 nM. PRE-084 hydrochloride exhibits good neuroprotective effects, can improve motor function and motor neuron survival in mice. PRE-084 hydrochloride also can ameliorate myocardial ischemia-reperfusion injury in rats by activating the Akt-eNOS pathway[1][2][3][4].
2-ethanimidoyl-1-hydroxy-5,5-dimethyl-10-(methylamino)-5ah,6h,11ah,11bh-naphtho[2,3-a]pyrrolizine-3,11-dione
(7e,9e)-10-chloro-2,2-dimethyl-5-methylidenedeca-7,9-dien-3-yl (2s)-1-methyl-5-oxopyrrolidine-2-carboxylate
C19H28ClNO3 (353.17576080000003)
4-ethylidene-7-hydroxy-6,7-dimethyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadecan-14-ium-14-olate
(9ar)-3-hexanoyl-9a-methyl-6-[(1e)-prop-1-en-1-yl]-7h-furo[3,2-g]isoquinoline-2,9-dione
C21H23NO4 (353.16269980000004)
(1r,4s,6r,7r,17r)-4-ethyl-4,7-dihydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
4-({2-imino-5-[(4-methoxyphenyl)methyl]-3-methyl-1h-imidazol-4-yl}methyl)-2-methoxyphenol
(1r,4s,6r,7s,17r)-4-ethyl-4,7-dihydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione
(1r,4r,5r,6r,16r)-5,6-dihydroxy-4-isopropyl-5,6-dimethyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione
1-(1,2-dihydroxypropyl)-2-methyl-6-(3-methylbut-2-en-1-yl)-9h-carbazole-3,4-dione
C21H23NO4 (353.16269980000004)
(1r,4r,5s,6s,16s)-6-ethyl-5,6-dihydroxy-4-isopropyl-2,8-dioxa-13-azatricyclo[8.5.1.0¹³,¹⁶]hexadec-10-ene-3,7-dione
7-{[(2,3-dihydroxy-2-methylbutanoyl)oxy]methyl}-2,3,5,7a-tetrahydro-1h-pyrrolizin-1-yl 3-methylbut-2-enoate
(12s,13r)-16,17-dimethoxy-12-methyl-5,7-dioxa-1-azapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3,8,10,14(19),15,17-hexaene
C21H23NO4 (353.16269980000004)