Exact Mass: 327.310617756

Exact Mass Matches: 327.310617756

Found 74 metabolites which its exact mass value is equals to given mass value 327.310617756, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

N,N-Dimethylsphingosine

(S-(R,S-(e)))-2-(dimethylamino)-4-Octadecene-1,3-diol

C20H41NO2 (327.31371260000003)


N,N-Dimethylsphingosine is an inhibitor of sphingosine kinase. It is a natural metabolite of sphingosine in some cancer cell lines and tissues. N,N-Dimethylsphingosine inhibited U937 cell sphingosine kinase with a Ki value of 3.1 µM. N,N-Dimethylsphingosine induces apoptosis, but it is not an inhibitor of protein kinase C. N,N-Dimethylsphingosine (DMS) has recently been identified as an inducer of pain in a rat model of chronic pain. (PMID: 22267119) It has properties similar to capsaicin (PMID: 16740613). Other studies have indicated that DMS inhibits airway inflammation in asthma (PMID: 18359884) and is cardioprotective (PMID: 16831409). N,N-Dimethylsphingosine is an inhibitor of sphingosine kinase. It is a natural metabolite of sphingosine in some cancer cell lines and tissues.1 N,N-Dimethylsphingosine inhibited U937 cell sphingosine kinase with a Ki value of 3.1 ?M.2 N,N-Dimethylsphingosine induces apoptosis, but it is not an inhibitor of protein kinase C. [HMDB] D004791 - Enzyme Inhibitors

   

Stearoylethanolamide

Monoethanolamine stearic acid amide

C20H41NO2 (327.31371260000003)


Stearoylethanolamide is a N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249) [HMDB] Stearoylethanolamide is an N-acylethanolamine. N-acylethanolamines (NAEs) constitute a class of lipid compounds naturally present in both animal and plant membranes as constituents of the membrane-bound phospholipid, N-acylphosphatidylethanolamine (NAPE). NAPE is composed of a third fatty acid moiety linked to the amino head group of the commonly occurring membrane phospholipid, phosphatidylethanolamine. NAEs are released from NAPE by phospholipase D-type hydrolases in response to a variety of stimuli. Transient NAE release and accumulation has been attributed a variety of biological activities, including neurotransmission, membrane protection, and immunomodulation in animals. N-oleoylethanolamine is an inhibitor of the sphingolipid signaling pathway, via specific ceramidase inhibition (ceramidase converts ceramide to sphingosine). N-oleoylethanolamine blocks the effects of TNF- and arachidonic acid on intracellular Ca concentration. (PMID: 12692337, 12056855, 12560208, 11997249). Stearoylethanolamide is an endocannabinoid-like compound with pro-apoptotic activity.

   

Margaroylglycine

2-[(1-Hydroxyheptadecylidene)amino]acetate

C19H37NO3 (327.27732920000005)


Margaroylglycine is an acylglycine with C-17 fatty acid group as the acyl moiety. Acylglycines 1 possess a common amidoacetic acid moiety and are normally minor metabolites of fatty acids. Elevated levels of certain acylglycines appear in the urine and blood of patients with various fatty acid oxidation disorders. They are normally produced through the action of glycine N-acyltransferase which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine ↔ CoA + N-acylglycine. Margaroylglycine is an acylglycine with C-17 fatty acid group as the acyl moiety.

   

N-Heptanoylsolamine

N,N-bis[4-(dimethylamino)butyl]heptanamide

C19H41N3O (327.32494560000004)


Tentatively identified as a constituent of Cyphomandra betacea (tree tomato). N-Heptanoylsolamine is found in fruits. N-Heptanoylsolamine is found in fruits. Tentatively identified as a constituent of Cyphomandra betacea (tree tomato

   

N-Palmitoyl Alanine

({2-[(1S,2S,10R,11S,14R,15S)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-14-yl]-1-hydroxyethenyl}oxy)sulfonic acid

C19H37NO3 (327.27732920000005)


N-palmitoyl alanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Palmitic acid amide of Alanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Palmitoyl Alanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Palmitoyl Alanine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

N-Myristoyl Valine

2-[(1-Hydroxytetradecylidene)amino]-3-methylbutanoate

C19H37NO3 (327.27732920000005)


N-myristoyl valine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Myristic acid amide of Valine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Myristoyl Valine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Myristoyl Valine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.

   

gamma-Aminobutyric acid cetyl ester

gamma-Aminobutyric acid cetyl ester hydrochloride

C20H41NO2 (327.31371260000003)


   

2-(Dimethylamino)octadec-4-ene-1,3-diol

2-(dimethylamino)octadec-4-ene-1,3-diol

C20H41NO2 (327.31371260000003)


   

n-methylsphingosine

N-(1,3-dihydroxyoctadec-4-en-2-yl)formamide

C19H37NO3 (327.27732920000005)


   

3-Amino-2-methoxynonadec-5-en-4-ol

3-Amino-2-methoxynonadec-5-en-4-ol

C20H41NO2 (327.31371260000003)


   

N-(1-Hydroxyethyl)octadecanamide

N-(1-Hydroxyethyl)octadecanimidate

C20H41NO2 (327.31371260000003)


   

sphinganine (C20)

(1,3-dihydroxyicosan-2-yl)azaniumyl

C20H41NO2 (327.31371260000003)


Sphinganine (c20) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sphinganine (c20) can be found in a number of food items such as durian, black mulberry, pepper (c. frutescens), and pineapple, which makes sphinganine (c20) a potential biomarker for the consumption of these food products.

   
   

6-(13-hydroxytetradecyl)-2-methyl-3-piperidinol

6-(13-hydroxytetradecyl)-2-methyl-3-piperidinol

C20H41NO2 (327.31371260000003)


   
   

2-amino-1,3-dihydroxy-eicos-4-ene

2-amino-1,3-dihydroxy-eicos-4-ene

C20H41NO2 (327.31371260000003)


   
   

Stearoyl-EA

N-(2-hydroxyethyl)octadecanamide

C20H41NO2 (327.31371260000003)


Stearoylethanolamide is an endocannabinoid-like compound with pro-apoptotic activity.

   

D-erythro-Sphingosine C-20

2S-amino-4E-eicosene-1,3R-diol

C20H41NO2 (327.31371260000003)


   
   

N-Heptanoylsolamine

N,N-bis[4-(dimethylamino)butyl]heptanamide

C19H41N3O (327.32494560000004)


   
   
   

NA 19:1;O2

N-(15-methyl-hexadecanoyl) glycine

C19H37NO3 (327.27732920000005)


   

Oleoyl-EA(d2)

N-(9Z-octadecenoyl)-ethanolamine(d2)

C20H37D2NO2 (327.310617756)


   

NAE 18:0

N-(Octadecanoyl)-ethanolamine

C20H41NO2 (327.31371260000003)


   

C20 sphingosine

(2S,3R,4E)-2-aminoeicos-4-ene-1,3-diol

C20H41NO2 (327.31371260000003)


A sphingoid that is the C20 analogue of sphingosine.

   

SPB 20:1;O2

N,N-dimethylsphing-4-enine

C20H41NO2 (327.31371260000003)


D004791 - Enzyme Inhibitors

   

Palmitoyl alanine

N-Hexadecanoyl-L-alanine

C19H37NO3 (327.27732920000005)


   

(Z)-octadec-9-enylammonium acetate

(Z)-octadec-9-enylammonium acetate

C20H41NO2 (327.31371260000003)


   
   
   

1-Decanamine, N-decyl-N-methyl-, N-oxide

1-Decanamine, N-decyl-N-methyl-, N-oxide

C21H45NO (327.350096)


   

(9S)-9-[(8-Ammoniooctyl)amino]-1,2,3,4,9,10-hexahydroacridinium

(9S)-9-[(8-Ammoniooctyl)amino]-1,2,3,4,9,10-hexahydroacridinium

C21H33N3+2 (327.26743380000005)


   

(2S)-2-hydroxyphytanate

(2S)-2-hydroxyphytanate

C20H39O3- (327.28990439999995)


Conjugate base of (2S)-2-hydroxyphytanic acid.

   

16-Hydroxy-3,7,11,15-tetramethylhexadecanoate

16-Hydroxy-3,7,11,15-tetramethylhexadecanoate

C20H39O3- (327.28990439999995)


   
   

(2R,3S)-2-octyl-3-hydroxydodecanoate

(2R,3S)-2-octyl-3-hydroxydodecanoate

C20H39O3- (327.28990439999995)


   

2-(Dimethylamino)-4-octadecene-1,3-diol

2-(Dimethylamino)-4-octadecene-1,3-diol

C20H41NO2 (327.31371260000003)


   

N-[(E)-1,3-dihydroxyoctadec-4-en-2-yl]formamide

N-[(E)-1,3-dihydroxyoctadec-4-en-2-yl]formamide

C19H37NO3 (327.27732920000005)


   

3-Amino-2-methoxynonadec-5-en-4-ol

3-Amino-2-methoxynonadec-5-en-4-ol

C20H41NO2 (327.31371260000003)


   

2-Hydroxyarachidate

2-Hydroxyarachidate

C20H39O3- (327.28990439999995)


A 2-hydroxy fatty acid anion that is the conjugate base of 2-hydroxyarachidic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

3-Hydroxyicosanoate

3-Hydroxyicosanoate

C20H39O3- (327.28990439999995)


A hydroxy fatty acid anion that is the conjugate base of 3-hydroxyicosanoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

N-[(E,1S,2R)-2-hydroxy-1-methylol-heptadec-3-enyl]formamide

N-[(E,1S,2R)-2-hydroxy-1-methylol-heptadec-3-enyl]formamide

C19H37NO3 (327.27732920000005)


   
   
   
   
   

N-[(E)-1,3-dihydroxyheptadec-4-en-2-yl]acetamide

N-[(E)-1,3-dihydroxyheptadec-4-en-2-yl]acetamide

C19H37NO3 (327.27732920000005)


   

N-[(E)-1,3-dihydroxypentadec-4-en-2-yl]butanamide

N-[(E)-1,3-dihydroxypentadec-4-en-2-yl]butanamide

C19H37NO3 (327.27732920000005)


   

N-[(E)-1,3-dihydroxyoct-4-en-2-yl]undecanamide

N-[(E)-1,3-dihydroxyoct-4-en-2-yl]undecanamide

C19H37NO3 (327.27732920000005)


   

N-[(E)-1,3-dihydroxytridec-4-en-2-yl]hexanamide

N-[(E)-1,3-dihydroxytridec-4-en-2-yl]hexanamide

C19H37NO3 (327.27732920000005)


   

N-[(E)-1,3-dihydroxyhexadec-4-en-2-yl]propanamide

N-[(E)-1,3-dihydroxyhexadec-4-en-2-yl]propanamide

C19H37NO3 (327.27732920000005)


   

N-[(E)-1,3-dihydroxytetradec-4-en-2-yl]pentanamide

N-[(E)-1,3-dihydroxytetradec-4-en-2-yl]pentanamide

C19H37NO3 (327.27732920000005)


   

N-[(E)-1,3-dihydroxyundec-4-en-2-yl]octanamide

N-[(E)-1,3-dihydroxyundec-4-en-2-yl]octanamide

C19H37NO3 (327.27732920000005)


   

N-[(E)-1,3-dihydroxydodec-4-en-2-yl]heptanamide

N-[(E)-1,3-dihydroxydodec-4-en-2-yl]heptanamide

C19H37NO3 (327.27732920000005)


   

N-[(E)-1,3-dihydroxydec-4-en-2-yl]nonanamide

N-[(E)-1,3-dihydroxydec-4-en-2-yl]nonanamide

C19H37NO3 (327.27732920000005)


   

N-[(E)-1,3-dihydroxynon-4-en-2-yl]decanamide

N-[(E)-1,3-dihydroxynon-4-en-2-yl]decanamide

C19H37NO3 (327.27732920000005)


   

Stearoylethanolamide

N-(2-hydroxyethyl)octadecanamide

C20H41NO2 (327.31371260000003)


Stearoylethanolamide is an endocannabinoid-like compound with pro-apoptotic activity.

   

omega-hydroxyphytanate

omega-hydroxyphytanate

C20H39O3 (327.28990439999995)


An omega-hydroxy fatty acid anion that is the conjugate base of omega-hydroxyphytanic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

N,N-Dimethylsphingosine

N,N-Dimethylsphingosine

C20H41NO2 (327.31371260000003)


A sphingoid that is sphingosine in which the two amino hydrogens are replaced by methyl groups. D004791 - Enzyme Inhibitors

   
   

AEA(18:0)

AEA(18:0)

C20H41NO2 (327.31371260000003)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   

Sphingosine (d20:1)

SPH(d20:1)

C20H41NO2 (327.31371260000003)


Provides by LipidSearch Vendor. © Copyright 2006-2024 Thermo Fisher Scientific Inc. All rights reserved

   
   
   

7,9,21-triazahexacyclo[11.9.1.1¹,¹⁵.0²,⁷.0⁹,²³.0¹⁶,²¹]tetracos-13-ene

7,9,21-triazahexacyclo[11.9.1.1¹,¹⁵.0²,⁷.0⁹,²³.0¹⁶,²¹]tetracos-13-ene

C21H33N3 (327.26743380000005)


   

n-(4-amino-13-carbamimidamido-5-oxotridecyl)guanidine

n-(4-amino-13-carbamimidamido-5-oxotridecyl)guanidine

C15H33N7O (327.2746448)