Exact Mass: 287.1693

Exact Mass Matches: 287.1693

Found 78 metabolites which its exact mass value is equals to given mass value 287.1693, within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error 0.001 dalton.

Cyproheptadine

1-methyl-4-{tricyclo[9.4.0.0³,⁸]pentadeca-1(15),3,5,7,9,11,13-heptaen-2-ylidene}piperidine

C21H21N (287.1674)


Cyproheptadine is only found in individuals that have used or taken this drug. It is a serotonin antagonist and a histamine H1 blocker used as antipruritic, appetite stimulant, antiallergic, and for the post-gastrectomy dumping syndrome, etc. [PubChem]Cyproheptadine competes with free histamine for binding at HA-receptor sites. This antagonizes the effects of histamine on HA-receptors, leading to a reduction of the negative symptoms brought on by histamine HA-receptor binding. Cyproheptadine also competes with serotonin at receptor sites in smooth muscle in the intestines and other locations. Antagonism of serotonin on the appetite center of the hypothalamus may account for Cyproheptadines ability to stimulate appetite. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D005765 - Gastrointestinal Agents D018926 - Anti-Allergic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cyproheptadine is a potent and orally active 5-HT2A receptor antagonist, with antidepressant and antiserotonergic effects. Cyproheptadine has antiplatelet and thromboprotective activities. Cyproheptadine can be used for the research of thromboembolic disorders[1][2].

   

Naftifine

N-methyl-N-(1-naphthalenylmethyl)-3-phenyl-2-propen-1-amine

C21H21N (287.1674)


Naftifine is only found in individuals that have used or taken this drug. It is a synthetic, broad spectrum, antifungal agent and allylamine derivative for the topical treatment of tinea pedis, tinea cruris, and tinea corporis caused by the organisms Trichophyton rubrum, Trichophyton mentagrophytes, Trichophyton tonsurans and Epidermophyton floccosum.Although the exact mechanism of action against fungi is not known, naftifine appears to interfere with sterol biosynthesis by inhibiting the enzyme squalene 2,3-epoxidase. This inhibition of enzyme activity results in decreased amounts of sterols, especially ergosterol, and a corresponding accumulation of squalene in the cells. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Zolmitriptan

(4S)-4-({3-[2-(dimethylamino)ethyl]-1H-indol-5-yl}methyl)-1,3-oxazolidin-2-one

C16H21N3O2 (287.1634)


Zolmitriptan is only found in individuals that have used or taken this drug. It is a synthetic tryptamine derivative and appears as a white powder that is readily soluble in water. [Wikipedia]Zolmitriptan binds with high affinity to human 5-HT1B and 5-HT1D receptors leading to cranial blood vessel constriction. Current theories proposed to explain the etiology of migraine headache suggest that symptoms are due to local cranial vasodilatation and/or to the release of sensory neuropeptides (vasoactive intestinal peptide, substance P and calcitonin gene-related peptide) through nerve endings in the trigeminal system. The therapeutic activity of zolmitriptan for the treatment of migraine headache can most likely be attributed to the agonist effects at the 5HT1B/1D receptors on intracranial blood vessels (including the arterio-venous anastomoses) and sensory nerves of the trigeminal system which result in cranial vessel constriction and inhibition of pro-inflammatory neuropeptide release. N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

Arginylhydroxyproline

(2S,4R)-1-[(2S)-2-amino-5-carbamimidamidopentanoyl]-4-hydroxypyrrolidine-2-carboxylic acid

C11H21N5O4 (287.1593)


Arginylhydroxyproline is a dipeptide composed of arginine and hydroxyproline. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.

   

Hydroxyprolyl-Arginine

5-Carbamimidamido-2-{[hydroxy(4-hydroxypyrrolidin-2-yl)methylidene]amino}pentanoate

C11H21N5O4 (287.1593)


Hydroxyprolyl-Arginine is a dipeptide composed of hydroxyproline and arginine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.

   

3-Hydroxyhept-4-enoylcarnitine

3-[(3-hydroxyhept-4-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C14H25NO5 (287.1733)


3-hydroxyhept-4-enoylcarnitine is an acylcarnitine. More specifically, it is an 3-hydroxyhept-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-hydroxyhept-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-hydroxyhept-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(5E)-3-Hydroxyhept-5-enoylcarnitine

3-[(3-hydroxyhept-5-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C14H25NO5 (287.1733)


(5E)-3-hydroxyhept-5-enoylcarnitine is an acylcarnitine. More specifically, it is an (5E)-3-hydroxyhept-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (5E)-3-hydroxyhept-5-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (5E)-3-hydroxyhept-5-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

2-Hydroxyhept-5-enoylcarnitine

3-[(2-hydroxyhept-5-enoyl)oxy]-4-(trimethylazaniumyl)butanoate

C14H25NO5 (287.1733)


2-hydroxyhept-5-enoylcarnitine is an acylcarnitine. More specifically, it is an 2-hydroxyhept-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 2-hydroxyhept-5-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 2-hydroxyhept-5-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

3-Oxoheptanoylcarnitine

3-[(3-oxoheptanoyl)oxy]-4-(trimethylazaniumyl)butanoate

C14H25NO5 (287.1733)


3-Oxoheptanoylcarnitine is an acylcarnitine. More specifically, it is an 3-oxoheptanoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. 3-Oxoheptanoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine 3-Oxoheptanoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].

   

(4R)-4-[[3-(2-Dimethylaminoethyl)-1H-indol-5-yl]methyl]oxazolidin-2-one

4-({3-[2-(dimethylamino)ethyl]-1H-indol-5-yl}methyl)-1,3-oxazolidin-2-one

C16H21N3O2 (287.1634)


   

Cyanopindolol

4-[3-(tert-butylamino)-2-hydroxypropoxy]-1H-indole-2-carbonitrile

C16H21N3O2 (287.1634)


D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists

   

Tribenzylamine

Tribenzylamine

C21H21N (287.1674)


   

(-)-N-(2-Oxopyrrolidinomethyl)cytisine

(-)-N-(2-Oxopyrrolidinomethyl)cytisine

C16H21N3O2 (287.1634)


   

Tribenzylamine

Tribenzylamine

C21H21N (287.1674)


CONFIDENCE standard compound; INTERNAL_ID 1132; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8039; ORIGINAL_PRECURSOR_SCAN_NO 8037 CONFIDENCE standard compound; INTERNAL_ID 1132; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8040; ORIGINAL_PRECURSOR_SCAN_NO 8038 CONFIDENCE standard compound; INTERNAL_ID 1132; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8054; ORIGINAL_PRECURSOR_SCAN_NO 8052 CONFIDENCE standard compound; INTERNAL_ID 1132; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8082; ORIGINAL_PRECURSOR_SCAN_NO 8080 CONFIDENCE standard compound; INTERNAL_ID 1132; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8101; ORIGINAL_PRECURSOR_SCAN_NO 8100 CONFIDENCE standard compound; INTERNAL_ID 1132; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8147; ORIGINAL_PRECURSOR_SCAN_NO 8146 CONFIDENCE standard compound; INTERNAL_ID 8376

   

(4-oxido-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-4-ium-1-yl)methyl 2,3-dihydroxy-3-methylpentanoate

(4-oxido-2,3,5,6,7,8-hexahydro-1H-pyrrolizin-4-ium-1-yl)methyl 2,3-dihydroxy-3-methylpentanoate

C14H25NO5 (287.1733)


   

(-)-8-norindolactam V|(-)-des-N-methylindolactam-V|(-)-N13-desmethylindolactam V|(-)-N13-desmethylindolactam-V|des-methyl-(-)-indolactam V|des-N-methylindolactam V|desmethyl indolactam V

(-)-8-norindolactam V|(-)-des-N-methylindolactam-V|(-)-N13-desmethylindolactam V|(-)-N13-desmethylindolactam-V|des-methyl-(-)-indolactam V|des-N-methylindolactam V|desmethyl indolactam V

C16H21N3O2 (287.1634)


   

1-3-guanidinopropyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline

1-3-guanidinopropyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline

C15H21N5O (287.1746)


   

naftifine

naftifine

C21H21N (287.1674)


D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent CONFIDENCE standard compound; EAWAG_UCHEM_ID 3581

   

Zolmitriptan

Zolmitriptan (Zomig)

C16H21N3O2 (287.1634)


N - Nervous system > N02 - Analgesics > N02C - Antimigraine preparations > N02CC - Selective serotonin (5ht1) agonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist D000890 - Anti-Infective Agents > D023303 - Oxazolidinones

   

CYPROHEPTADINE

CYPROHEPTADINE

C21H21N (287.1674)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D005765 - Gastrointestinal Agents D018926 - Anti-Allergic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Cyproheptadine is a potent and orally active 5-HT2A receptor antagonist, with antidepressant and antiserotonergic effects. Cyproheptadine has antiplatelet and thromboprotective activities. Cyproheptadine can be used for the research of thromboembolic disorders[1][2].

   

Arg-hpro

5-carbamimidamido-2-[(4-hydroxypyrrolidin-2-yl)formamido]pentanoic acid

C11H21N5O4 (287.1593)


   

Hpro-arg

1-(2-amino-5-carbamimidamidopentanoyl)-4-hydroxypyrrolidine-2-carboxylic acid

C11H21N5O4 (287.1593)


   

tert-butyl 4-(4-cyanophenyl)piperazine-1-carboxylate

tert-butyl 4-(4-cyanophenyl)piperazine-1-carboxylate

C16H21N3O2 (287.1634)


   

N-(2,4-Dimthylphenyl)-N-p-tolylbenzenamine

N-(2,4-Dimthylphenyl)-N-p-tolylbenzenamine

C21H21N (287.1674)


   

tert-Butyl 3-(tert-butoxycarbonyl)-4-hydroxypyrrolidine-1-carboxylate

tert-Butyl 3-(tert-butoxycarbonyl)-4-hydroxypyrrolidine-1-carboxylate

C14H25NO5 (287.1733)


   

(2R,3R)-BOC-dolaproine

(2R,3R)-BOC-dolaproine

C14H25NO5 (287.1733)


   

(2-Ethyl-6-methylphenyl)diphenylamine

(2-Ethyl-6-methylphenyl)diphenylamine

C21H21N (287.1674)


   

1-BOC-4-ETHOXYCARBONYLMETHOXYPIPERIDINE

1-BOC-4-ETHOXYCARBONYLMETHOXYPIPERIDINE

C14H25NO5 (287.1733)


   

(2R,3R)-1-(Dimethylamino)-3-(3-methoxyphenyl)-2-methyl-3-pentanol hydrochloride

(2R,3R)-1-(Dimethylamino)-3-(3-methoxyphenyl)-2-methyl-3-pentanol hydrochloride

C15H26ClNO2 (287.1652)


   

Zolmitriptan R-Isomer

Zolmitriptan R-Isomer

C16H21N3O2 (287.1634)


   

4-AMINO-CHROMAN-8-CARBONITRILEHYDROCHLORIDE

4-AMINO-CHROMAN-8-CARBONITRILEHYDROCHLORIDE

C14H25NO5 (287.1733)


   

N-Cyclopropyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide

N-Cyclopropyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide

C16H22BNO3 (287.1693)


   

(S)-(-)-1,1-DIPHENYL-1,2-PROPANEDIOL

(S)-(-)-1,1-DIPHENYL-1,2-PROPANEDIOL

C21H21N (287.1674)


   

BENZYL-(1-BIPHENYL-4-YL-ETHYL)AMINE

BENZYL-(1-BIPHENYL-4-YL-ETHYL)AMINE

C21H21N (287.1674)


   

(R)-(+)-1,2-EPOXYTETRADECANE

(R)-(+)-1,2-EPOXYTETRADECANE

C21H21N (287.1674)


   

4-((4-ethylpiperazin-1-yl)Methyl)-3-(trifluoromethyl)aniline

4-((4-ethylpiperazin-1-yl)Methyl)-3-(trifluoromethyl)aniline

C14H20F3N3 (287.1609)


   

N-cyclopropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide

N-cyclopropyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzamide

C16H22BNO3 (287.1693)


   
   

tert-butyl 4-(2-ethoxy-2-oxoethyl)-4-hydroxypiperidine-1-carboxylate

tert-butyl 4-(2-ethoxy-2-oxoethyl)-4-hydroxypiperidine-1-carboxylate

C14H25NO5 (287.1733)


   

(R,S)-A-N-BOC-AMINO-B-HYDROXY-CYCLOHEXANEPROPANIC ACID

(R,S)-A-N-BOC-AMINO-B-HYDROXY-CYCLOHEXANEPROPANIC ACID

C14H25NO5 (287.1733)


   

(1S,3R,4R)-3-(Boc-aMino)-4-hydroxy-cyclohexanecarboxylic acid ethyl ester

(1S,3R,4R)-3-(Boc-aMino)-4-hydroxy-cyclohexanecarboxylic acid ethyl ester

C14H25NO5 (287.1733)


   

Tofacitinib Impurity E

Tofacitinib Impurity E

C15H21N5O (287.1746)


   

(2S,3R)-1-(dimethylamino)-3-(3-methoxyphenyl)-2-methylpentan-3-ol (hydrochloride)

(2S,3R)-1-(dimethylamino)-3-(3-methoxyphenyl)-2-methylpentan-3-ol (hydrochloride)

C15H26ClNO2 (287.1652)


   

2-(2,6-Dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)acetonitrile

2-(2,6-Dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenoxy)acetonitrile

C16H22BNO3 (287.1693)


   

5-Methoxy-1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole

5-Methoxy-1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole

C16H22BNO3 (287.1693)


   

tert-butyl 4-(2-cyanophenyl)piperazine-1-carboxylate

tert-butyl 4-(2-cyanophenyl)piperazine-1-carboxylate

C16H21N3O2 (287.1634)


   

1,3-Diazaspiro[4.5]decane-2,4-dione,8-methyl-3-[(phenylamino)methyl]-

1,3-Diazaspiro[4.5]decane-2,4-dione,8-methyl-3-[(phenylamino)methyl]-

C16H21N3O2 (287.1634)


   

4,4,4-Trimethyltriphenylamine

4,4,4-Trimethyltriphenylamine

C21H21N (287.1674)


   

Numidargistat

Numidargistat

C11H22BN3O5 (287.1652)


C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor C308 - Immunotherapeutic Agent D004791 - Enzyme Inhibitors

   

2-Oxazolidinone, 4-[[3-[2-(dimethylamino)ethyl]-1H-indol-5-yl]methyl]-

2-Oxazolidinone, 4-[[3-[2-(dimethylamino)ethyl]-1H-indol-5-yl]methyl]-

C16H21N3O2 (287.1634)


   

N4-(4-methoxyphenyl)-1,3,5-triazaspiro[5.5]undeca-1,4-diene-2,4-diamine

N4-(4-methoxyphenyl)-1,3,5-triazaspiro[5.5]undeca-1,4-diene-2,4-diamine

C15H21N5O (287.1746)


   

3-[3-(4-tert-butylphenyl)-1,2,4-oxadiazol-5-yl]-N-methylpropanamide

3-[3-(4-tert-butylphenyl)-1,2,4-oxadiazol-5-yl]-N-methylpropanamide

C16H21N3O2 (287.1634)


   

3,4-Dibenzyl-2,5-dimethylpyridine

3,4-Dibenzyl-2,5-dimethylpyridine

C21H21N (287.1674)


   

4-{[(2s)-3-(Tert-Butylamino)-2-Hydroxypropyl]oxy}-3h-Indole-2-Carbonitrile

4-{[(2s)-3-(Tert-Butylamino)-2-Hydroxypropyl]oxy}-3h-Indole-2-Carbonitrile

C16H21N3O2 (287.1634)


   

Arginylhydroxyproline

Arginylhydroxyproline

C11H21N5O4 (287.1593)


   

3-Oxoheptanoylcarnitine

3-Oxoheptanoylcarnitine

C14H25NO5 (287.1733)


   

3-Hydroxyhept-4-enoylcarnitine

3-Hydroxyhept-4-enoylcarnitine

C14H25NO5 (287.1733)


   

2-Hydroxyhept-5-enoylcarnitine

2-Hydroxyhept-5-enoylcarnitine

C14H25NO5 (287.1733)


   

(5E)-3-Hydroxyhept-5-enoylcarnitine

(5E)-3-Hydroxyhept-5-enoylcarnitine

C14H25NO5 (287.1733)


   

4-[(2S)-3-(tert-butylamino)-2-hydroxypropoxy]-1H-indole-2-carbonitrile

4-[(2S)-3-(tert-butylamino)-2-hydroxypropoxy]-1H-indole-2-carbonitrile

C16H21N3O2 (287.1634)


   

Arginyl-4-hydroxyproline

Arginyl-4-hydroxyproline

C11H21N5O4 (287.1593)


   

N-ethyl-3-[3-(4-propan-2-ylphenyl)-1,2,4-oxadiazol-5-yl]propanamide

N-ethyl-3-[3-(4-propan-2-ylphenyl)-1,2,4-oxadiazol-5-yl]propanamide

C16H21N3O2 (287.1634)


   

N-[(E)-1-(4-acetamidophenyl)ethylideneamino]cyclopentanecarboxamide

N-[(E)-1-(4-acetamidophenyl)ethylideneamino]cyclopentanecarboxamide

C16H21N3O2 (287.1634)


   

2,4-Dibenzyl-3,6-dimethylpyridine

2,4-Dibenzyl-3,6-dimethylpyridine

C21H21N (287.1674)


   

Cyanopindolol

Cyanopindolol

C16H21N3O2 (287.1634)


D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D012702 - Serotonin Antagonists

   

Hydroxyprolyl-Arginine

Hydroxyprolyl-Arginine

C11H21N5O4 (287.1593)


   

Arginyl-hydroxyproline

Arginyl-hydroxyproline

C11H21N5O4 (287.1593)


   
   
   
   
   

O-Desmethyl Mebeverine alcohol (hydrochloride)

O-Desmethyl Mebeverine alcohol (hydrochloride)

C15H26ClNO2 (287.1652)


O-Desmethyl Mebeverine alcohol hydrochloride is a metabolite of Mebeverine, which is a potent α1 repector inhibitor, causing relaxation of the gastrointestinal tract.

   

n-{3-[(1r)-6-hydroxy-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl]propyl}guanidine

n-{3-[(1r)-6-hydroxy-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl]propyl}guanidine

C15H21N5O (287.1746)


   

11-[(2-oxopyrrolidin-1-yl)methyl]-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

11-[(2-oxopyrrolidin-1-yl)methyl]-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C16H21N3O2 (287.1634)


   

n-(3-{6-hydroxy-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}propyl)guanidine

n-(3-{6-hydroxy-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-yl}propyl)guanidine

C15H21N5O (287.1746)


   

(1r,9s)-11-[(2-oxopyrrolidin-1-yl)methyl]-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

(1r,9s)-11-[(2-oxopyrrolidin-1-yl)methyl]-7,11-diazatricyclo[7.3.1.0²,⁷]trideca-2,4-dien-6-one

C16H21N3O2 (287.1634)


   

(10s,13s)-13-(hydroxymethyl)-10-isopropyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-11-ol

(10s,13s)-13-(hydroxymethyl)-10-isopropyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-11-ol

C16H21N3O2 (287.1634)


   

13-(hydroxymethyl)-10-isopropyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-11-ol

13-(hydroxymethyl)-10-isopropyl-3,9,12-triazatricyclo[6.6.1.0⁴,¹⁵]pentadeca-1,4,6,8(15),11-pentaen-11-ol

C16H21N3O2 (287.1634)