Exact Mass: 271.1743502
Exact Mass Matches: 271.1743502
Found 327 metabolites which its exact mass value is equals to given mass value 271.1743502
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Napropamide
CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9402; ORIGINAL_PRECURSOR_SCAN_NO 9401 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9441; ORIGINAL_PRECURSOR_SCAN_NO 9439 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9439; ORIGINAL_PRECURSOR_SCAN_NO 9438 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9388; ORIGINAL_PRECURSOR_SCAN_NO 9387 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9460; ORIGINAL_PRECURSOR_SCAN_NO 9459 CONFIDENCE standard compound; INTERNAL_ID 66; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9346; ORIGINAL_PRECURSOR_SCAN_NO 9345 INTERNAL_ID 3573; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 3573
Dextromethorphan
Dextromethorphan is an antitussive drug that is found in many over-the-counter cold and cough preparations, usually in the form of dextromethorphan hydrobromide. Dextromethorphan is a salt of the methyl ether dextrorotatory isomer of levorphanol, a narcotic analgesic. Dextromethorphan occurs as white crystals, is sparingly soluble in water, and freely soluble in alcohol. The drug is dextrorotatory in water (at 20 degrees Celsius, Sodium D-line) with a specific rotation of +27.6 degrees. Following oral administration, dextromethorphan is rapidly absorbed from the gastrointestinal tract, where it enters the bloodstream and crosses the blood-brain barrier. Dextromethorphan shows high affinity binding to several regions of the brain, including the medullary cough center. The first-pass through the hepatic portal vein results in some of the drug being metabolized into an active metabolite of dextromethorphan, dextrorphan, the 3-hydroxy derivative of dextromethorphan. The therapeutic activity of dextromethorphan is believed to be caused by both the drug and this metabolite. Dextromethorphan is predominantly metabolized by the liver, by various hepatic enzymes. Through various pathways, the drug undergoes (O-demethylation (which produces dextrorphan), N-demethylation, and partial conjugation with glucuronic acid and sulfate ions. The inactive metabolite (+)-3-hydroxy-N-methylmorphinan is formed as a product of DXM metabolism by these pathways. One well known metabolic catalyst involved is a specific cytochrome P450 enzyme known as 2D6, or CYP2D6. A significant portion of the population has a functional deficiency in this enzyme (and are known as poor CYP2D6 metabolizers). As CYP2D6 is the primary metabolic pathway in the inactivation of dextromethorphan, the duration of action and effects of dextromethorphan are significantly increased in such poor metabolizers. Deaths and hospitalizations have been reported in recreational use by poor CYP2D6 metabolizers. -- Wikipedia. This compound is an NMDA receptor antagonist (receptors, N-methyl-D-aspartate) and acts as a non-competitive channel blocker. It is also used to study the involvement of glutamate receptors in neurotoxicity. [PubChem] Dextromethorphan is an antitussive drug that is found in many over-the-counter cold and cough preparations, usually in the form of dextromethorphan hydrobromide. Dextromethorphan is a salt of the methyl ether dextrorotatory isomer of levorphanol, a narcotic analgesic. Dextromethorphan occurs as white crystals, is sparingly soluble in water, and freely soluble in alcohol. The drug is dextrorotatory in water (at 20 degrees Celsius, Sodium D-line) with a specific rotation of +27.6 degrees. Following oral administration, dextromethorphan is rapidly absorbed from the gastrointestinal tract, where it enters the bloodstream and crosses the blood-brain barrier. The first-pass through the hepatic portal vein results in some of the drug being metabolized into an active metabolite of dextromethorphan, dextrorphan, the 3-hydroxy derivative of dextromethorphan. The therapeutic activity of dextromethorphan is believed to be caused by both the drug and this metabolite. Dextromethorphan is predominantly metabolized by the liver, by various hepatic enzymes. Through various pathways, the drug undergoes (O-demethylation (which produces dextrorphan), N-demethylation, and partial conjugation with glucuronic acid and sulfate ions. The inactive metabolite (+)-3-hydroxy-N-methylmorphinan is formed as a product of DXM metabolism by these pathways. One well known metabolic catalyst involved is a specific cytochrome P450 enzyme known as 2D6, or CYP2D6. A significant portion of the population has a functional deficiency in this enzyme (and are known as poor CYP2D6 metabolizers). As CYP2D6 is the primary metabolic pathway in the inactivation of dextromethorphan, the duration of action and effects of dextromethorphan are significantly increased in such poor metabolizers. Deaths and hospitalizations have been reported in recreational use by poor CYP2D6 metabolizers. -- Wikipedia [HMDB] R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2199 - Adjuvant Analgesic C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents
Apoatropine
Prolyl-Arginine
C11H21N5O3 (271.16443160000006)
Prolyl-Arginine is a dipeptide composed of proline and arginine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
Arginylproline
C11H21N5O3 (271.16443160000006)
Arginylproline is a dipeptide composed of arginine and proline. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.
2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine
2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine is an unusual amino acid that results from the post-translational modification of histidine in certain proteins. In particular, it is a post-translational derivative of histidine that exists in protein synthesis elongation factor 2 (EF2) at the site of diphtheria toxin-catalyzed ADP-ribosylation of elongation factor 2. It is a precursor for diphthamide. This compound is a substrate for the enzyme diphthine synthase (EC 2.1.1.98). This enzyme catalyzes the chemical reaction: S-adenosyl-L-methionine + 2-(3-carboxy-3-aminopropyl)-L-histidine = S-adenosyl-L-homocysteine + 2-[3-carboxy-3-(methylammonio)propyl]-L-histidine [HMDB] 2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine is an unusual amino acid that results from the post-translational modification of histidine in certain proteins. In particular, it is a post-translational derivative of histidine that exists in protein synthesis elongation factor 2 (EF2) at the site of diphtheria toxin-catalyzed ADP-ribosylation of elongation factor 2. It is a precursor for diphthamide. This compound is a substrate for the enzyme diphthine synthase (EC 2.1.1.98). This enzyme catalyzes the chemical reaction: S-adenosyl-L-methionine + 2-(3-carboxy-3-aminopropyl)-L-histidine = S-adenosyl-L-homocysteine + 2-[3-carboxy-3-(methylammonio)propyl]-L-histidine.
Tridecanoylglycine
Tridecanoylglycine is an acylglycine with C-13 fatty acid group as the acyl moiety. Acylglycines 1 possess a common amidoacetic acid moiety and are normally minor metabolites of fatty acids. Elevated levels of certain acylglycines appear in the urine and blood of patients with various fatty acid oxidation disorders. They are normally produced through the action of glycine N-acyltransferase which is an enzyme that catalyzes the chemical reaction: acyl-CoA + glycine ↔ CoA + N-acylglycine. Margaroylglycine is an acylglycine with C-13 fatty acid group as the acyl moiety.
Bupranolol
Bupranolol is only found in individuals that have used or taken this drug. It is a non-selective beta blocker without intrinsic sympathomimetic activity (ISA), but with strong membrane stabilizing activity. Its potency is similar to propranolol:http://www.drugbank.ca/drugs/DB00571. Bupranolol competes with sympathomimetic neurotransmitters such as catecholamines for binding at beta(1)-adrenergic receptors in the heart, inhibiting sympathetic stimulation. This results in a reduction in resting heart rate, cardiac output, systolic and diastolic blood pressure, and reflex orthostatic hypotension. C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Bupranolol is an orally active, competitive and non-selective β-adrenoceptor antagonist without intrinsic sympathomimetic activity[1].
4-Hydroxyatomoxetine
4-Hydroxyatomoxetine is a metabolite of atomoxetine. Atomoxetine is a drug approved for the treatment of attention-deficit hyperactivity disorder (ADHD). It is a selective norepinephrine reuptake inhibitor or NRI, not to be confused with selective serotonin and norepinephrine reuptake inhibitors or selective serotonin reuptake inhibitors, both of which are currently the most prescribed form of antidepressants. (Wikipedia)
Hept-3-enoylcarnitine
Hept-3-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-3-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-3-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Hept-4-enoylcarnitine
Hept-4-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Hept-5-enoylcarnitine
Hept-5-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-5-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-5-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E)-Hept-2-enoylcarnitine
(2E)-hept-2-enoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-hept-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-hept-2-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-hept-2-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
N-Lauroyl Alanine
N-lauroyl alanine belongs to the class of compounds known as N-acylamides. These are molecules characterized by a fatty acyl group linked to a primary amine by an amide bond. More specifically, it is a Lauric acid amide of Alanine. It is believed that there are more than 800 types of N-acylamides in the human body. N-acylamides fall into several categories: amino acid conjugates (e.g., those acyl amides conjugated with amino acids), neurotransmitter conjugates (e.g., those acylamides conjugated with neurotransmitters), ethanolamine conjugates (e.g., those acylamides conjugated to ethanolamine), and taurine conjugates (e.g., those acyamides conjugated to taurine). N-Lauroyl Alanine is an amino acid conjugate. N-acylamides can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain N-acylamides; 2) medium-chain N-acylamides; 3) long-chain N-acylamides; and 4) very long-chain N-acylamides; 5) hydroxy N-acylamides; 6) branched chain N-acylamides; 7) unsaturated N-acylamides; 8) dicarboxylic N-acylamides and 9) miscellaneous N-acylamides. N-Lauroyl Alanine is therefore classified as a long chain N-acylamide. N-acyl amides have a variety of signaling functions in physiology, including in cardiovascular activity, metabolic homeostasis, memory, cognition, pain, motor control and others (PMID: 15655504). N-acyl amides have also been shown to play a role in cell migration, inflammation and certain pathological conditions such as diabetes, cancer, neurodegenerative disease, and obesity (PMID: 23144998; PMID: 25136293; PMID: 28854168).N-acyl amides can be synthesized both endogenously and by gut microbiota (PMID: 28854168). N-acylamides can be biosynthesized via different routes, depending on the parent amine group. N-acyl ethanolamines (NAEs) are formed via the hydrolysis of an unusual phospholipid precursor, N-acyl-phosphatidylethanolamine (NAPE), by a specific phospholipase D. N-acyl amino acids are synthesized via a circulating peptidase M20 domain containing 1 (PM20D1), which can catalyze the bidirectional the condensation and hydrolysis of a variety of N-acyl amino acids. The degradation of N-acylamides is largely mediated by an enzyme called fatty acid amide hydrolase (FAAH), which catalyzes the hydrolysis of N-acylamides into fatty acids and the biogenic amines. Many N-acylamides are involved in lipid signaling system through interactions with transient receptor potential channels (TRP). TRP channel proteins interact with N-acyl amides such as N-arachidonoyl ethanolamide (Anandamide), N-arachidonoyl dopamine and others in an opportunistic fashion (PMID: 23178153). This signaling system has been shown to play a role in the physiological processes involved in inflammation (PMID: 25136293). Other N-acyl amides, including N-oleoyl-glutamine, have also been characterized as TRP channel antagonists (PMID: 29967167). N-acylamides have also been shown to have G-protein-coupled receptors (GPCRs) binding activity (PMID: 28854168). The study of N-acylamides is an active area of research and it is likely that many novel N-acylamides will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Racemethorphan
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents
3-(1-Adamantyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine
1-Tert-Butyl 4-ethyl 3-oxopiperidine-1,4-dicarboxylate
Cyclazocine
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Desomorphine
N-LAUROYLSARCOSINE
D013501 - Surface-Active Agents > D003902 - Detergents
Nisoxetine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C185721 - Norepinephrine Reuptake Inhibitor C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent
(R)-N-(Quinuclidin-3-yl)furo(2,3-C)pyridine-5-carboxamide
Pyrido[2,3-d]pyrimidin-2(1H)-one, 4-cyclohexyl-1-ethyl-7-methyl-
Quinocitrinine A
Quinocitrinine B
1-(Cyclohexylmethyl)-1H-indole-3-carboxylic Acid Methyl Ester
2-(tert-Butylsulfonyl)-3-(piperidinoamino)acrylonitrile
C12H21N3O2S (271.13544060000004)
2-((2-Methylaminoethyl)(p-methoxybenzyl)amino)pyridine
N-LAUROYLSARCOSINE
D013501 - Surface-Active Agents > D003902 - Detergents CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5609; ORIGINAL_PRECURSOR_SCAN_NO 5607 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5625; ORIGINAL_PRECURSOR_SCAN_NO 5623 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5581; ORIGINAL_PRECURSOR_SCAN_NO 5579 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5616; ORIGINAL_PRECURSOR_SCAN_NO 5612 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5614; ORIGINAL_PRECURSOR_SCAN_NO 5611 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10228; ORIGINAL_PRECURSOR_SCAN_NO 10227 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10277; ORIGINAL_PRECURSOR_SCAN_NO 10275 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10291; ORIGINAL_PRECURSOR_SCAN_NO 10289 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10331; ORIGINAL_PRECURSOR_SCAN_NO 10326 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10341; ORIGINAL_PRECURSOR_SCAN_NO 10339 CONFIDENCE standard compound; INTERNAL_ID 683; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10348; ORIGINAL_PRECURSOR_SCAN_NO 10347 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1012
rac-3-Methoxy-16-methyl-16-aza-17-carba-morphinan|rac-3-methoxy-16-methyl-16-aza-17-carba-morphinane
(2R,4S,6R,2S)-N-methyl-2-(2-oxo-butyl)-6-(2-hydroxyamyl)-piperidin-4-ol|lobechidine B
3-indol-3-ylmethyl-1,6-dimethyl-piperazine-2,5-dione|cyclo(L-Trp-N-methyl-L-Ala-)
N-[3-(2,3,4,9-Tetrahydro-1H-b-carbolin-1-yl)-propyl]-guanidine
2-Methylbutylamide-(2E,7Z)-2,7-Tricecadiene-10,12-diynoic acid|trideca-2t,7c-dien-10,12-diynoic acid (2-methylbutyl)amide
2-Methylpropylamide-10,12-Tetradecadiene-4,6-diynoic acid,
tetradeca-2E,4E,10Z-trien-8-ynoic acid pyrrolidide
N-isobutyl-2E,4E,10E,12Z-tetradecatetraen-8-ynamide
2-((S)-3-Methyl-2-((S)-pyrrolidine-2-carboxamido)butanamido)acetic acid
Dextromethorphan
A 6-methoxy-11-methyl-1,3,4,9,10,10a-hexahydro-2H-10,4a-(epiminoethano)phenanthrene in which the sterocenters at positions 4a, 10 and 10a have S-configuration. It is a prodrug of dextrorphan and used as an antitussive drug for suppressing cough. R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants > R05DA - Opium alkaloids and derivatives D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2199 - Adjuvant Analgesic D019141 - Respiratory System Agents > D000996 - Antitussive Agents D002491 - Central Nervous System Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2824
4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid
PYR_272.1759_11.0
CONFIDENCE Probable structure via diagnostic evidence, tentative identification (Level 2b); INTERNAL_ID 1702
PYR_272.1759_8.8
CONFIDENCE Probable structure via diagnostic evidence, tentative identification (Level 2b); INTERNAL_ID 1703
3-hydroxy-C10-homoserine lactone
CONFIDENCE standard compound; INTERNAL_ID 216
4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based on: CCMSLIB00000847798]
4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based: Match]
Pesticide5_Methoprotryne_C11H21N5OS_
C11H21N5OS (271.14667360000004)
Desomorphine
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics
Bupranolol
C - Cardiovascular system > C07 - Beta blocking agents > C07A - Beta blocking agents > C07AA - Beta blocking agents, non-selective C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C72900 - Adrenergic Antagonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D018674 - Adrenergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents Bupranolol is an orally active, competitive and non-selective β-adrenoceptor antagonist without intrinsic sympathomimetic activity[1].
Arg-pro
C11H21N5O3 (271.16443160000006)
Pro-arg
C11H21N5O3 (271.16443160000006)
A dipeptide formed from L-proline and L-arginine residues.
BIS(2-CYANOETHYL) DIISOPROPYLPHOSPHORAMIDITE
Bis(2-cyanoethyl) diisopropylphosphoramidite is a phosphorite monomer that can be used in the synthesis of oligonucleotides.
4-Cyanophenyl trans-4-propylcyclohexanecarboxylate
ProcainaMide hydrochloride
D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
N-[(3,4-dimethoxyphenyl)methyl]cyclopentanamine,hydrochloride
2-Methyl-2-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-propionitrile
4-(4-Fluorophenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridin-2(1H)-one
C17H18FNO (271.13723500000003)
5-[cyclopentyl(prop-2-enyl)amino]-2-nitrobenzonitrile
1-isopropyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride
6,7-DIETHOXY-1-METHYL-1,2,3,4-TETRAHYDROISOQUINOLINE HYDROCHLORIDE
(2R,3R)-3-(3-Methoxyphenyl)-N,N,2-trimethylpentan-1-amine hydrochloride
methyl 2-[[(E)-(2,4-dimethylcyclohex-3-en-1-ylidene)methyl]amino]benzoate
(R)-1-TERT-BUTYL 2-ETHYL 5-OXOPIPERIDINE-1,2-DICARBOXYLATE
5-(1H-imidazol-1-yl)pyridine-3-boronic acid pinacol ester
(S)-1-TERT-BUTYL 2-ETHYL 5-OXOPIPERIDINE-1,2-DICARBOXYLATE
2-(1H-PYRAZOL-1-YL)-6-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDINE
Nepinalone
R - Respiratory system > R05 - Cough and cold preparations > R05D - Cough suppressants, excl. combinations with expectorants C78273 - Agent Affecting Respiratory System > C66917 - Antitussive Agent
tert-butyl 3-(3-ethoxy-3-oxopropanoyl)azetidine-1-carboxylate
(2-[1,4]Diazepan-1-yl-1-methyl-2-oxo-ethyl)-carbamic acid tert-butyl ester
(R)-3-AMINO-4-(4-(TERT-BUTYL)PHENYL)BUTANOIC ACID HYDROCHLORIDE
2-(2-METHOXYCARBONYL-ETHYL)-PIPERIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER
5,6-Dihydroxy-N-methyl-N-propyl-aminotetraline hydrochloride
1-[3-(4,4,5,5-TETRAMETHYL-[1,3,2]DIOXABOROLAN-2-YL)-PHENYL]-2,5-DIHYDRO-1H-PYRROLE
3-Methyl 1-(2-methyl-2-propanyl) 3-ethyl-1,3-piperidinedicarboxyl ate
2-Methyl-2-[3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-propionitrile
2,4-ivy carbaldehyde / methyl anthranilate schiffs base
1-TERT-BUTYL 2-ETHYL 3-OXOPIPERIDINE-1,2-DICARBOXYLATE
(2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethyl-pentanamine hydrochloride
(S)-(2-[1,4]DIAZEPAN-1-YL-1-METHYL-2-OXO-ETHYL)-CARBAMIC ACID TERT-BUTYL ESTER
2-[4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-oxazole
N-(4-FLUOROBENZOYLMETHYL)-N-ISOPROPYLANILINE
C17H18FNO (271.13723500000003)
2-Methyl-2-propanyl 3-hydroxy-1-oxo-2-oxa-6-azaspiro[4.5]decane-6 -carboxylate
Methyl 3-(methoxycarbonyl)-7-oxo-9-azabicyclo[3.3.1]nonane-9-acetate
Furan-2-ylmethyl-[1-(4-methoxy-phenyl)-3-methyl-but-3-enyl]-amine
(R)-2-tert-Butoxycarbonylamino-3-cyclohexylpropionic acid
(2,3-DICHLOROPHENYL)METHYLCYANOCARBONIMIDODITHIOATE
1-(4-methoxy-benzyl)-2-methyl-1,2,3,4,5,6,7,8-octahydro-isoquinoline
TERT-BUTYL 3-(2-ETHOXY-2-OXOETHYL)PIPERIDINE-1-CARBOXYLATE
2-Heptyl-1,4-dihydro-4-oxo-3-quinolinecarboxaldehyde
Tert-Butyl 3-(Hydroxymethyl)-2-Oxa-8-Azaspiro[4.5]Decane-8-Carboxylate
(2S,4S)-N-BOC-4-HYDROXY-3,3-DIMETHYLPYRROLIDINE-2-CARBOXYLICACID
ETHYL 5-BENZYL-1,4,5,6-TETRAHYDROPYRROLO[3,4-C]PYRAZOLE-3-CARBOXYLATE
ethyl 3-[2-(2-ethoxy-2-oxoethyl)piperidin-1-yl]propanoate
3-AMINO-1,4-DIMETHYL-5H-PYRIDO[4,3-B]INDOLE, ACETATE
1-TERT-BUTYL 4-METHYL 4-ETHYLPIPERIDINE-1,4-DICARBOXYLATE
L-Homophenylalanine tert-Butyl Ester Hydrochloride
N-cyclopentyl-5-(4-fluorophenyl)-2-methylpyrimidin-4-amine
C16H18FN3 (271.14846800000004)
N-Methyl-N-(3-chloropropyl)-3,4-dimethoxyphenethylamine
(R)-tert-Butyl 3-amino-4-phenylbutanoate hydrochloride
(2S,4S)-6-FLUORO-2,5-DIOXO-2,3-DIHYDROSPIRO[CHROMENE-4,4-IMIDAZOLIDINE]-2-CARBOXAMIDE
[(1S)-3-Methyl-1-[[(2R)-2-methyloxiranyl]carbonyl]butyl]carbamic acid 1,1-dimethylethyl ester
tert-butyl 2-(2-ethoxy-2-oxoethyl)piperidine-1-carboxylate
tert-Butyl 4-[(Trimethylsilanyl)oxy]-3,6-dihydro-2H-pyridine-1-carboxylate
2-(1H-PYRAZOL-1-YL)-5-(4,4,5,5-TETRAMETHYL-1,3,2-DIOXABOROLAN-2-YL)PYRIDINE
(S)-3-AMINO-4-(4-(TERT-BUTYL)PHENYL)BUTANOIC ACID HYDROCHLORIDE
2-[(4-Amino-3-methylphenyl)ethylamino]ethyl sulfate
C12H21N3O2S (271.13544060000004)
N-ethyl-N-(2-naphthalen-1-yloxyethyl)butan-1-amine
N-Methyl-N-(3-chloropropyl)-3,4-dimethoxy benzenethylamine
Methyl 1-Boc-3-methyl-4-oxo-piperidine-3-carboxylate
1-Oxa-9-azaspiro[5.5]undecane-9-carboxylic acid, 3-hydroxy-, 1,1-dimethylethyl ester
3-Isopropyl-1-{[(2-methyl-2-propanyl)oxy]carbonyl}-3-piperidineca rboxylic acid
(S)-4,4-DIMETHYL-PYRROLIDINE-1,2-DICARBOXYLIC ACID 1-TERT-BUTYL ESTER 2-ETHYL ESTER
Amylocaine hydrochloride
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
N-1-azabicyclo[2.2.2]oct-3-ylfuro[2,3-c]pyridine-5-carboxamide
Pyrido[2,3-d]pyrimidin-2(1H)-one, 4-cyclohexyl-1-ethyl-7-methyl-
Meprylcaine hydrochloride
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide
PHA-543613 is a potent, orally active, brain-penetrant and selective α7 nAChR agonist with a Ki of 8.8 nM. PHA-543613 displays selectivity for α7-nAChR over α3β4, α1β1γδ, α4β2 and 5-HT3 receptors[1]. PHA-543613 can be used for the cognitive deficits of Alzheimer's disease and schizophrenia research[2].
5-Amino-6-cyclohexyl-4-hydroxy-2-isopropyl-hexanoic acid
[2-(1-Amino-2-hydroxypropyl)-2-hydroxy-4-isobutyl-5-oxo-2,5-dihydro-1H-imidazol-1-YL]acetaldehyde
Nisoxetine
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C185721 - Norepinephrine Reuptake Inhibitor C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent
Cyclazocine
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist D002491 - Central Nervous System Agents > D000700 - Analgesics
2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine
2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine is an unusual amino acid that results from the post-translational modification of histidine in certain proteins. In particular, it is a post-translational derivative of histidine that exists in protein synthesis elongation factor 2 (EF2) at the site of diphtheria toxin-catalyzed ADP-ribosylation of elongation factor 2. It is a precursor for diphthamide. This compound is a substrate for the enzyme diphthine synthase (EC 2.1.1.98). This enzyme catalyzes the chemical reaction: S-adenosyl-L-methionine + 2-(3-carboxy-3-aminopropyl)-L-histidine = S-adenosyl-L-homocysteine + 2-[3-carboxy-3-(methylammonio)propyl]-L-histidine [HMDB] 2-(3-Carboxy-3-(methylammonio)propyl)-L-histidine is an unusual amino acid that results from the post-translational modification of histidine in certain proteins. In particular, it is a post-translational derivative of histidine that exists in protein synthesis elongation factor 2 (EF2) at the site of diphtheria toxin-catalyzed ADP-ribosylation of elongation factor 2. It is a precursor for diphthamide. This compound is a substrate for the enzyme diphthine synthase (EC 2.1.1.98). This enzyme catalyzes the chemical reaction: S-adenosyl-L-methionine + 2-(3-carboxy-3-aminopropyl)-L-histidine = S-adenosyl-L-homocysteine + 2-[3-carboxy-3-(methylammonio)propyl]-L-histidine.
Pronestyl
D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators
(4Z)-N-(4-methoxyphenyl)bicyclo[6.1.0]non-4-ene-9-carboxamide
5-(4-Propylcyclohexyl)-3-(3-pyridinyl)-1,2,4-oxadiazole
(1S)-4-Methoxy-17-methyl-17-azatetracyclo[7.5.3.01,10.02,7]heptadeca-2(7),3,5-triene
5-(3,5-Dimethyl-1-piperidinyl)-2-(2-furanyl)-4-oxazolecarbonitrile
5-nitro-N-[(4-propan-2-ylphenyl)methyl]-2-pyridinamine
3-[2-Hydroxy-3-(4-morpholinyl)propyl]-5,5-dimethylimidazolidine-2,4-dione
N-[(2,4-dimethoxyphenyl)methyl]-2,5-dimethylaniline
2-Benzyl-5-[(3S)-1-isopropyl-3-pyrrolidinyl]-1,3,4-oxadiazole
4,6-Dimethyl-N-phenyl-N-trimethylsilyl-2-pyrimidinamine
3,4,4a,5-Tetrahydrobenzo[g]isoquinolin-10(2H)-one, TMS derivative
1-Octyl-2,2,5,5-tetramethyl-2,5-disilapyrrolidine
C14H33NSi2 (271.21514179999997)
Levomethorphan
A 6-methoxy-11-methyl-1,3,4,9,10,10a-hexahydro-2H-10,4a-(epiminoethano)phenanthrene in which the stereocenters at positions 4a, 10 and 10a have R-configuration. It is a prodrug of levorphanol and a strong narcotic analgesic, and listed as a schedule II controlled substance. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D019141 - Respiratory System Agents > D000996 - Antitussive Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents
6-methoxy-11-methyl-1,3,4,9,10,10a-hexahydro-2H-10,4a-(epiminoethano)phenanthrene
An organic heterotetracyclic compound that is 1,3,4,9,10,10a-hexahydro-2H-10,4a-(epiminoethano)phenanthrene which is substituted by a methoxy group at position 6 and a methyl group at position 11.
2-[3-Carboxy-3-(methylammonio)propyl]-L-histidine
An ammonium ion that is a derivative of L-histidine having a 3-carboxy-3-(methylammonio)propyl group at the 2-position on the imidazole ring.
N-isobutyltetradeca-2E,4E,10E,12Z-tetraen-8-ynamide
mGluR3 modulator-1
mGluR3 modulator-1 (compound 3) is a mGluR3 modulator, with an EC50 of 1-10 μM in HEK293T-mGluR-Gqi5 Calcium Mobilization Assay[1].
(2e,9z)-n-ethylhexadeca-2,9-dien-12,14-diynimidic acid
hexahydro-1h-pyrrolizin-1-ylmethyl 2,3-dihydroxy-3-methylpentanoate
(1s,9s,10r)-9-[(2z)-hex-2-en-1-yl]-10-methyl-5,7-diazatricyclo[6.3.1.0⁴,¹²]dodeca-4(12),7-dien-6-imine
2,4,8,10,12-tetradecapentaenoic acid; (2e,4e,8z,10e,12e)-form,2-methylenepropylamide
{"Ingredient_id": "HBIN004270","Ingredient_name": "2,4,8,10,12-tetradecapentaenoic acid; (2e,4e,8z,10e,12e)-form,2-methylenepropylamide","Alias": "NA","Ingredient_formula": "C18H25NO","Ingredient_Smile": "NA","Ingredient_weight": "0","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "NA","TCMSP_id": "NA","TCM_ID_id": "8901","PubChem_id": "NA","DrugBank_id": "NA"}