Exact Mass: 271.1743502
Exact Mass Matches: 271.1743502
Found 83 metabolites which its exact mass value is equals to given mass value 271.1743502
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
Prolyl-Arginine
C11H21N5O3 (271.16443160000006)
Prolyl-Arginine is a dipeptide composed of proline and arginine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. This dipeptide has not yet been identified in human tissues or biofluids and so it is classified as an Expected metabolite.
Arginylproline
C11H21N5O3 (271.16443160000006)
Arginylproline is a dipeptide composed of arginine and proline. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.
Hept-3-enoylcarnitine
Hept-3-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-3-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-3-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-3-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Hept-4-enoylcarnitine
Hept-4-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-4-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-4-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-4-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Hept-5-enoylcarnitine
Hept-5-enoylcarnitine is an acylcarnitine. More specifically, it is an hept-5-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. Hept-5-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine Hept-5-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
(2E)-Hept-2-enoylcarnitine
(2E)-hept-2-enoylcarnitine is an acylcarnitine. More specifically, it is an (2E)-hept-2-enoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy. This process is known as beta-oxidation. According to a recent review [Dambrova et al. 2021, Physiological Reviews], acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. (2E)-hept-2-enoylcarnitine is therefore classified as a medium chain AC. As a medium-chain acylcarnitine (2E)-hept-2-enoylcarnitine is somewhat less abundant than short-chain acylcarnitines. These are formed either through esterification with L-carnitine or through the peroxisomal metabolism of longer chain acylcarnitines (PMID: 30540494). Many medium-chain acylcarnitines can serve as useful markers for inherited disorders of fatty acid metabolism. Carnitine octanoyltransferase (CrOT, EC:2.3.1.137) is responsible for the synthesis of all medium-chain (MCAC, C5-C12) and medium-length branched-chain acylcarnitines in peroxisomes (PMID: 10486279). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available at [Dambrova et al. 2021, Physiological Reviews].
Pyrido[2,3-d]pyrimidin-2(1H)-one, 4-cyclohexyl-1-ethyl-7-methyl-
2-((2-Methylaminoethyl)(p-methoxybenzyl)amino)pyridine
N-[3-(2,3,4,9-Tetrahydro-1H-b-carbolin-1-yl)-propyl]-guanidine
4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid
PYR_272.1759_11.0
CONFIDENCE Probable structure via diagnostic evidence, tentative identification (Level 2b); INTERNAL_ID 1702
PYR_272.1759_8.8
CONFIDENCE Probable structure via diagnostic evidence, tentative identification (Level 2b); INTERNAL_ID 1703
3-hydroxy-C10-homoserine lactone
CONFIDENCE standard compound; INTERNAL_ID 216
4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based on: CCMSLIB00000847798]
4-oxo-4-(3-oxodecan-2-ylamino)butanoic acid [IIN-based: Match]
Arg-pro
C11H21N5O3 (271.16443160000006)
Pro-arg
C11H21N5O3 (271.16443160000006)
A dipeptide formed from L-proline and L-arginine residues.
2-Methyl-2-[4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-propionitrile
(2R,3R)-3-(3-Methoxyphenyl)-N,N,2-trimethylpentan-1-amine hydrochloride
2-(2-METHOXYCARBONYL-ETHYL)-PIPERIDINE-1-CARBOXYLIC ACID TERT-BUTYL ESTER
1-[3-(4,4,5,5-TETRAMETHYL-[1,3,2]DIOXABOROLAN-2-YL)-PHENYL]-2,5-DIHYDRO-1H-PYRROLE
3-Methyl 1-(2-methyl-2-propanyl) 3-ethyl-1,3-piperidinedicarboxyl ate
2-Methyl-2-[3-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenyl]-propionitrile
(2R,3R)-3-(3-methoxyphenyl)-N,N,2-trimethyl-pentanamine hydrochloride
(R)-2-tert-Butoxycarbonylamino-3-cyclohexylpropionic acid
TERT-BUTYL 3-(2-ETHOXY-2-OXOETHYL)PIPERIDINE-1-CARBOXYLATE
Tert-Butyl 3-(Hydroxymethyl)-2-Oxa-8-Azaspiro[4.5]Decane-8-Carboxylate
(2S,4S)-N-BOC-4-HYDROXY-3,3-DIMETHYLPYRROLIDINE-2-CARBOXYLICACID
ethyl 3-[2-(2-ethoxy-2-oxoethyl)piperidin-1-yl]propanoate
1-TERT-BUTYL 4-METHYL 4-ETHYLPIPERIDINE-1,4-DICARBOXYLATE
(2S,4S)-6-FLUORO-2,5-DIOXO-2,3-DIHYDROSPIRO[CHROMENE-4,4-IMIDAZOLIDINE]-2-CARBOXAMIDE
[(1S)-3-Methyl-1-[[(2R)-2-methyloxiranyl]carbonyl]butyl]carbamic acid 1,1-dimethylethyl ester
tert-butyl 2-(2-ethoxy-2-oxoethyl)piperidine-1-carboxylate
1-Oxa-9-azaspiro[5.5]undecane-9-carboxylic acid, 3-hydroxy-, 1,1-dimethylethyl ester
3-Isopropyl-1-{[(2-methyl-2-propanyl)oxy]carbonyl}-3-piperidineca rboxylic acid
(S)-4,4-DIMETHYL-PYRROLIDINE-1,2-DICARBOXYLIC ACID 1-TERT-BUTYL ESTER 2-ETHYL ESTER
Pyrido[2,3-d]pyrimidin-2(1H)-one, 4-cyclohexyl-1-ethyl-7-methyl-
5-(4-Propylcyclohexyl)-3-(3-pyridinyl)-1,2,4-oxadiazole
2-Benzyl-5-[(3S)-1-isopropyl-3-pyrrolidinyl]-1,3,4-oxadiazole
mGluR3 modulator-1
mGluR3 modulator-1 (compound 3) is a mGluR3 modulator, with an EC50 of 1-10 μM in HEK293T-mGluR-Gqi5 Calcium Mobilization Assay[1].