Exact Mass: 246.081
Exact Mass Matches: 246.081
Found 500 metabolites which its exact mass value is equals to given mass value 246.081
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
Marmesin
Marmesin is a member of psoralens and a tertiary alcohol. 2-(2-Hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one is a natural product found in Zanthoxylum beecheyanum, Zanthoxylum arnottianum, and other organisms with data available. Nodakenetin is found in wild celery. Nodakenetin is a constituent of Angelica species Constituent of Angelica subspecies Nodakenetin is found in wild celery. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. (+)-Marmesin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=13849-08-6 (retrieved 2024-09-04) (CAS RN: 13849-08-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Aegelinol
Decursinol is an organic heterotricyclic compound that is 7,8-dihydro-2H,6H-pyrano[3,2-g]chromen-2-one substituted by a beta-hydroxy group at position 7 and two methyl groups at position 8. It is isolated from the roots of Angelica gigas and has been found to possess significant inhibitory activity against acetylcholinesterase enzyme (EC 3.1.1.7). It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an antineoplastic agent, an analgesic and a metabolite. It is an organic heterotricyclic compound, a delta-lactone, a secondary alcohol and a cyclic ether. Decursinol is a natural product found in Smyrniopsis aucheri, Phlojodicarpus villosus, and other organisms with data available. Aegelinol is found in fruits. Aegelinol is obtained from Aegle marmelos (bael fruit). obtained from Aegle marmelos (bael fruit). Aegelinol is found in fruits. D020536 - Enzyme Activators (±)-Decursinol is a potent FtsZ inhibitor. (±)-Decursinol inhibits B. anthracis FtsZ polymerization with an IC50 of 102 μM[1]. (±)-Decursinol is a potent FtsZ inhibitor. (±)-Decursinol inhibits B. anthracis FtsZ polymerization with an IC50 of 102 μM[1]. Decursinol, isolated from the roots of Angelica gigas, possesses antinociceptive effect with orally bioavailability. Decursinol possesses anti-tumor and anti-metastasis activity[1]. Decursinol, isolated from the roots of Angelica gigas, possesses antinociceptive effect with orally bioavailability. Decursinol possesses anti-tumor and anti-metastasis activity[1].
Nodakenetic
Nodakenetic, also known as (-)-marmesin or marmesin, (R)-isomer, is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one. Nodakenetic is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Nodakenetic can be found in wild celery, which makes nodakenetic a potential biomarker for the consumption of this food product. Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.
Columbianetin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins (S)-columbianetin is the (S)-(+)-enantiomer of columbianetin. It is an enantiomer of a (R)-columbianetin. Columbianetin is a natural product found in Campylotropis hirtella, Prangos tschimganica, and other organisms with data available. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2]. (+)-Columbianetin is an isomer of Columbianetin. Columbianetin is a phytoalexin associated with celery (Apium graveolens) resistance to pathogens during storage. Columbianetin exhibits excellent anti-fungal and anti-inflammatory activity[1][2].
Torachrysone
Torachrysone is a member of naphthols. Torachrysone is a natural product found in Rheum palmatum, Rumex japonicus, and other organisms with data available. Isolated from seeds of Cassia tora (charota). Torachrysone is found in coffee and coffee products, herbs and spices, and pulses. Torachrysone is found in coffee and coffee products. Torachrysone is isolated from seeds of Cassia tora (charota).
N-Acetyltryptophan
N-Acetyl-L-tryptophan or N-Acetyltryptophan, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltryptophan can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltryptophan is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tryptophan. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\\\% of all human proteins and 68\\\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltryptophan can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tryptophan can also occur. Many N-acetylamino acids, including N-acetyltryptophan are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyltryptophan has also been used as a protein stabilizer. It prevents protein molecules from oxidative degradation by scavenging oxygen dissolved in protein solutions (PMID: 21903216 ). N-Acetyltryptophan has been identified as a catabolite of tryptophan generated by the gut microbiota. After absorption through the intestinal epithelium, tryptophan catabolites enter the bloodstream and are later excreted in the urine (PMID: 28916042). N-Acetyltryptophan is an inhibitor of cytochrome c release and an antagonist of the neurokinin 1 receptor (NK-1R). These inhibitory effects are thought have a useful role in neuroprotection. For instance, in mouse models of amyotrophic lateral sclerosis (ALS) the administration of N-Acetyltryptophan has been shown delay disease onset, extend survival, and ameliorate deterioration in motor performance ALS transgenic mice (PMID: 25986728). N-acetyltryptophan has been shown to significantly reduce blood-brain barrier permeability and improve functional outcome in rat models of traumatic brain injury (PMID: 29256408). N-Acetyltryptophan has also been shown to have a role in preventing hepatic ischemia-reperfusion injury. This is thought to occur through de-activation of the RIP2/caspase/IL-1beta signaling pathway (PMID: 31184936). D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.
Floxuridine
An antineoplastic antimetabolite that is metabolized to fluorouracil when administered by rapid injection. Floxuridine is available as a sterile, nonpyrogenic, lyophilized powder for reconstitution. When administered by slow, continuous, intra-arterial infusion, it is converted to floxuridine monophosphate. It has been used to treat hepatic metastases of gastrointestinal adenocarcinomas and for palliation in malignant neoplasms of the liver and gastrointestinal tract. [PubChem] L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Floxuridine (5-Fluorouracil 2'-deoxyriboside) is a?pyrimidine?analog?and known as an?oncology antimetabolite. Floxuridine inhibits Poly(ADP-Ribose) polymerase and induces DNA damage by activating the ATM and ATR checkpoint signaling pathways in vitro. Floxuridine is a extreamly potent inhibitor for S. aureus infection and induces cell apoptosis[1][2]. Floxuridine has antiviral effects against HSV and CMV[3].
Methylphenobarbital
Methylphenobarbital is only found in individuals that have used or taken this drug. It is a barbiturate that is metabolized to phenobarbital. It has been used for similar purposes, especially in epilepsy, but there is no evidence mephobarbital offers any advantage over phenobarbital. [PubChem]Methylphenobarbital binds at a distinct binding site associated with a Cl- ionopore at the GABAA receptor, increasing the duration of time for which the Cl- ionopore is open. The post-synaptic inhibitory effect of GABA in the thalamus is, therefore, prolonged. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics > N03AA - Barbiturates and derivatives C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic > C67084 - Barbiturate D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018757 - GABA Modulators D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
5'-Deoxy-5-fluorouridine
5-Deoxy-5-fluorouridine is a metabolite of capecitabine. Capecitabine (Xeloda, Roche) is an orally-administered chemotherapeutic agent used in the treatment of metastatic breast and colorectal cancers. Capecitabine is a prodrug, that is enzymatically converted to 5-fluorouracil in the tumor, where it inhibits DNA synthesis and slows growth of tumor tissue. (Wikipedia) D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01309 Doxifluridine has anticancer activity. Doxifluidine is a 5-FU prodrug. Doxifluridine is a thymidine synthase inhibitor. Doxifluridine can enhance tumor inhibition by synergizing with a variety of drugs[1][2][3].
(2~{S})-3-(2-oxidanylsulfanyl-1~{H}-imidazol-4-yl)-2-(trimethyl-$l^{4}-azanyl)propanoic acid
Naphazoline hydrochloride
C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists D019141 - Respiratory System Agents > D014663 - Nasal Decongestants D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents Naphazoline (Naphthazoline) hydrochloride is a potent α-adrenergic receptor agonist. Naphazoline hydrochloride reduces vascular hyperpermeability and promotes vasoconstriction. Naphazoline hydrochloride reduces the levels of inflammatory factors (TNF-α, IL-1β and IL-6), cytokines (IFN-γ and IL-4), IgE, GMCSF, and NGF。Naphazoline hydrochloride can be used for non-bacterial conjunctivitis research[1][2].
7-hydroxy-8-(2-hydroxy-3-methylbut-3-en-1-yl)-2H-chromen-2-one
7-hydroxy-6-(3-hydroxy-3-methylbut-1-en-1-yl)-2H-chromen-2-one
7,8-dihydroxy-6-(3-methylbut-2-en-1-yl)-2H-chromen-2-one
N2-Oxalylarginine
Constituent of the shoots of apple and pear trees (Malus subspecies). N2-Oxalylarginine is found in malus (crab apple) and pomes. N2-Oxalylarginine is found in pomes. N2-Oxalylarginine is a constituent of the shoots of apple and pear trees (Malus species).
Nigellicine
Nigellicine is found in herbs and spices. Nigellicine is an alkaloid from the seeds of Nigella sativa (black cumin
Corticrocin
Isolated from paprika (Capsicum annuum). Corticrocin is found in many foods, some of which are yellow bell pepper, orange bell pepper, herbs and spices, and red bell pepper. Corticrocin is found in herbs and spices. Corticrocin is isolated from paprika (Capsicum annuum
Dihydrowyerone acid
Dihydrowyerone acid is found in pulses. Dihydrowyerone acid is a constituent of broad bean Vicia faba infected with Botrytis species. Constituent of broad bean Vicia faba infected with Botrytis subspecies Dihydrowyerone acid is found in pulses.
5,6-Dihydrouridine
Dihydrouridine is a pyrimidine which is the result of adding two hydrogen atoms to a uridine. Dihydrouridine is found only in tRNA molecules. An inhibitor of nucleotide metabolism. [HMDB] Dihydrouridine (abbreviated as D,[1] DHU, or UH2) is a pyrimidine nucleoside which is the result of adding two hydrogen atoms to a uridine, making it a fully saturated pyrimidine ring with no remaining double bonds. D is found in tRNA and rRNA molecules as a nucleoside; the corresponding nucleobase is 5,6-dihydrouracil. Because it is non-planar, D disturbs the stacking interactions in helices and destabilizes the RNA structure. D also stabilizes the C2’-endo sugar conformation, which is more flexible than the C3’-endo conformation; this effect is propagated to the 5’-neighboring residue. Thus, while pseudouridine and 2’-O-methylations stabilize the local RNA structure, D does the opposite.[2] The tRNAs of organisms that grow at low temperatures (psychrophiles) have high 5,6-dihydrouridine levels (40-70\\\% more on average) which provides the necessary local flexibility of the tRNA at or below the freezing point.[3] Dihydrouridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=5627-05-4 (retrieved 2024-07-01) (CAS RN: 5627-05-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 5,6-Dihydrouridine is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea. 5,6-Dihydrouridine is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea.
Aspartylhydroxyproline
Aspartylhydroxyproline is a dipeptide found in urine (PMID: 3782411). It is likely a proteolytic breakdown product of collagen. Aspartylhydroxyproline belongs to the family of peptides. These are compounds containing an amide derived from two or more amino carboxylic acid molecules (the same or different) by the formation of a covalent bond from the carbonyl carbon of one to the nitrogen atom of another. L-alpha-Aspartyl-L-hydroxyproline is a dipeptide found in urine (PMID: 3782411). It is likely a proteolytic breakdown product of collagen. [HMDB]
Asparaginylasparagine
Asparaginylasparagine is a dipeptide composed of two asparagine residues. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis.
cyclic 6-Hydroxymelatonin
cyclic 6-Hydroxymelatonin is a metabolite of melatonin. Melatonin Listen/ˌmɛləˈtoʊnɪn/, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants, and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. (Wikipedia)
1-(3,4-Dihydroxy-5-methyl-2-oxolanyl)-5-fluoropyrimidine-2,4-dione
8,9-Dihydro-8-(1-hydroxy-1-methylethyl)-2H-furo[2,3-h]1-benzopyran-2-one
5-Fluoro-1-[(2R,4R,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidine-2,4-dione
5,6-Dihydro-5-azacytidine
5,6-Dihydro-5'-azacytidine
5'-Deoxy-5'-fluorouridine
Hydrazinecarbothioamide,2-[2-[2-(aminothioxomethyl)-2-methylhydrazinylidene]propylidene]-N-methyl-
1-[(2S,5S)-3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,3-diazinane-2,4-dione
Glycylglycylglycylglycine
trioxyethylene dimethacrylate
D013501 - Surface-Active Agents > D011092 - Polyethylene Glycols D001697 - Biomedical and Dental Materials
(+)-marmesin
(+)-marmesin is a member of the class of compounds known as psoralens. Psoralens are organic compounds containing a psoralen moiety, which consists of a furan fused to a chromenone to for 7H-furo[3,2-g]chromen-7-one (+)-marmesin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-marmesin can be found in a number of food items such as common wheat, mango, broad bean, and rubus (blackberry, raspberry), which makes (+)-marmesin a potential biomarker for the consumption of these food products.
benzyl-6-hydroxy-2-cyclohexene-on-oyl
Benzyl-6-hydroxy-2-cyclohexene-on-oyl, also known as benzyl-hch, is a member of the class of compounds known as benzyloxycarbonyls. Benzyloxycarbonyls are organic compounds containing a carbonyl group substituted with a benzyloxyl group. Benzyl-6-hydroxy-2-cyclohexene-on-oyl is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Benzyl-6-hydroxy-2-cyclohexene-on-oyl can be found in a number of food items such as sunflower, american pokeweed, tea, and black cabbage, which makes benzyl-6-hydroxy-2-cyclohexene-on-oyl a potential biomarker for the consumption of these food products.
7-Hydroxy-6-(2-(R)-hydroxy-3-methylbut-3-enyl)coumarin
6-(4-hydroxy-3-methyl-2-butenyl)-7-hydroxy coumarin
2-Methoxy-4-oxo-6-phenyl-hexa-2,5-dienoic acid methyl ester
2-hydroxy-3 ,6-dimethyl-5-( 1-oxo-2,4-hexadienyl)-1 ,4-benzoquinone
(R)-(+)-7-Hydroxy-8-(2-hydroxy-3-methyl-3-butenyl)-2H-1-benzopyran-2-one
6-deoxyhaplopinol|7-[(E)-3-methyl-4-hydroxy-2-butenyloxy]coumarin
4-Hydroxy-2-methoxy-5-(1-oxo-2,4-hexadienyl)-benzaldehyde
1-(5-formyl-2-hydroxy-4-methoxyphenyl)-E,E-2,4-hexadien-1-one|5-Formyl-2-hydroxy-4-methoxy-(E,E)-sorbophenon|5-formyl-2-hydroxyl-4-methoxy-(E,E)-sorbophenone
Umbelliferone-(3-hydroxymethyl-1t.-buten-1-yl)-ether|Umbelliferone-<3-hydroxymethyl-1t.-buten-1-yl>-ether
bis-(4-hydroxybenzyl)sulfide
An organic sulfide that consists of two 4-hydroxybenzyl groups covalently bound to a central sulfur atom. It is isolated from Gastrodia elata and Pleuropterus ciliinervis and exhibits neoroprotective activity.
Methyl 2-(5-acetyl-2,3-dihydrobenzofuran-2-yl)propenoate
acetic acid (2E,8Z)-10-acetoxydeca-2,8-diene-4,6-diyn-1-yl ester
(-)-(1R,3S)-7-hydroxy-1-methyl-2,3,4,9-tetrahydro-1H-beta-carboline-3-carboxylic acid|brunnein B
Caerulomycin G
A pyridine alkaloid that is 2,2-bipyridine substituted at position 6 by a hydroxymethyl group and at positions 3 and 4 by methoxy groups respectively. Isolated from the marine-derived actinomycete Actinoalloteichus cyanogriseus, it exhibits antineoplastic activity.
1-(p-hydroxybenzyl-)-2-methoxybenzene-3,4-diol|stenocephol
(R)-(+)-7-(2,3-epoxy-3-methylbutoxy)coumarin|(R)-(+)-7-(2,3-epoxy-3-methylbutoxy)-coumarin
Di-Me ether-6,7-Dihydroxy-2,3-dimethyl-1,4-naphthoquinone
3-Hydroxy-7-hydroxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one
8-(2-Thienyl)-3t,5t-octadien-7-in-1-ol-acetat|Ac-(3E,5E)-8-(2-Thienyl)-3,5-octadien-7-yl-1-ol
5-acetyl-2-isopropylidene-6-methoxy-benzofuran-3-one
benzyl 1-hydroxy-6-oxocyclohex-2-ene-1-carboxylate
Aegelinol
Aegelinol is a member of coumarins. Aegelinol is a natural product found in Phlojodicarpus villosus and Angelica gigas with data available. Aegelinol is found in fruits. Aegelinol is obtained from Aegle marmelos (bael fruit). obtained from Aegle marmelos (bael fruit). Aegelinol is found in fruits. (±)-Decursinol is a potent FtsZ inhibitor. (±)-Decursinol inhibits B. anthracis FtsZ polymerization with an IC50 of 102 μM[1]. (±)-Decursinol is a potent FtsZ inhibitor. (±)-Decursinol inhibits B. anthracis FtsZ polymerization with an IC50 of 102 μM[1].
(2S)-2-(2-hydroxypropan-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one
8-(2-hydroxypropan-2-yl)-8,9-dihydrofuro[2,3-h]chromen-2-one
2-acetamido-3-(1H-indol-3-yl)propanoic acid
PRI_247.1079_16.2
CONFIDENCE Tentative identification: most likely structure (Level 3); INTERNAL_ID 1602 INTERNAL_ID 1602; CONFIDENCE Tentative identification: most likely structure (Level 3)
nodakenetin
Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2].
N-Acetyltryptophan
An N-acetylamino acid that is the N-acetyl derivative of tryptophan. Ac-DL-Trp-OH is an endogenous metabolite. Ac-DL-Trp-OH is an endogenous metabolite. N-Acetyl-L-tryptophan is an endogenous metabolite.
C14H14O4_2H-Pyran-2-one, 5,6-dihydro-5-hydroxy-4-methoxy-6-[(E)-2-phenylethenyl]-, (5S,6S)
(2S,3S)-3-hydroxy-4-methoxy-2-[(E)-2-phenylethenyl]-2,3-dihydropyran-6-one
8-(2-hydroxypropan-2-yl)-8,9-dihydrofuro[2,3-h]chromen-2-one [IIN-based on: CCMSLIB00000848272]
8-(2-hydroxypropan-2-yl)-8,9-dihydrofuro[2,3-h]chromen-2-one [IIN-based: Match]
N-Acetyl-D-tryptophan
D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors
56-Dihydrouridine
5,6-Dihydrouridine is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea. 5,6-Dihydrouridine is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea.
Aegelinol
(±)-Decursinol is a potent FtsZ inhibitor. (±)-Decursinol inhibits B. anthracis FtsZ polymerization with an IC50 of 102 μM[1]. (±)-Decursinol is a potent FtsZ inhibitor. (±)-Decursinol inhibits B. anthracis FtsZ polymerization with an IC50 of 102 μM[1].
Benzamide, 5-fluoro-2-hydroxy-N-(5-methyl-2-pyridinyl)- (9CI)
5-(2,3-DIHYDRO-BENZO[1,4]DIOXIN-6-YL)-2H-PYRAZOLE-3-CARBOXYLIC ACID
METHYL 5,6-DIHYDROXY-2-PHENYLPYRIMIDINE-4-CARBOXYLATE
2-(hydroxymethyl)-6-methyl-3-phenylmethoxypyran-4-one
2-Amino-4-(3,4-dimethylphenyl)thiophene-3-carboxamide
2-Amino-5-methyl-4-(4-methylphenyl)thiophene-3-carboxamide
3-FLUORO-4-METHOXY-[1,1-BIPHENYL]-3-CARBOXYLIC ACID
ethyl 4-hydroxy-5-methoxynaphthalene-2-carboxylate
2-(4-Fluorophenyl)-1-(2,4-dihydroxyphenyl)ethanone
Glycylglycylglycylglycine
Tetraglycine is a oligopeptide composed of four glycine monomers[1].
methyl 2-oxo-5-propan-2-ylcyclohepta[b]furan-3-carboxylate
2-FLUORO-5-METHOXY-[1,1-BIPHENYL]-4-CARBOXYLIC ACID
5-FLUORO-2-METHOXY-[1,1-BIPHENYL]-4-CARBOXYLIC ACID
2-(1,3-benzodioxol-5-yl)-5-methyl-1H-imidazole-4-carboxylic acid
N-[(2R,3R,4R,5S,6R)-2-azido-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide
2-Deoxy-2-fluorouridine
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D006133 - Growth Substances > D006131 - Growth Inhibitors 1-(2-Deoxy-2-fluoro-beta-D-arabinofuranosyl)uracil is a purine nucleoside analogue. Purine nucleoside analogs have broad antitumor activity targeting indolent lymphoid malignancies. Anticancer mechanisms in this process rely on inhibition of DNA synthesis, induction of apoptosis, etc[1]. 2'-Deoxy-2'-fluorouridine can be used as an intermediate for antiinfluenza virus agents synthesis[1].
Cyclic (p-methylbenzylidene)malonate2,2-propanediol
1H-Imidazole-4-carboxylicacid,5-[(4-pyridinylamino)carbonyl]-,hydrazide
2-(4-amino-1,2,5-oxadiazol-3-yl)-1-ethylimidazo[4,5-c]pyridin-7-ol
2-BENZYL-5,6-DIHYDROXY-PYRIMIDINE-4-CARBOXYLIC ACID
6-(4-Fluoro-2-methylphenyl)pyridazine-3-carboxylic acid hydrazide
6-(4-Fluoro-2-methylphenyl)pyridazine-3-carboxylic acid methyl ester
4-(4-hydroxy-2-methylphenyl)sulfanyl-3-methylphenol
3-FLUORO-5-METHOXY-[1,1-BIPHENYL]-3-CARBOXYLIC ACID
4-FLUORO-3-METHOXY-[1,1-BIPHENYL]-3-CARBOXYLIC ACID
[2-(4-METHOXY-PHENYL)-5-OXO-CYCLOPENT-1-ENYL]-ACETIC ACID
1-(1-Borono-1-phenylmethyl)-1H-pyrazole-4-boronic acid
Azanidazole
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AF - Imidazole derivatives P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases > P01AB - Nitroimidazole derivatives C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent
2-FLUORO-3-METHOXY-[1,1-BIPHENYL]-3-CARBOXYLIC ACID
N-(4-[(THIOPHEN-2-YLMETHYL)-AMINO]-PHENYL)-ACETAMIDE
5-Methyl-4-(4-methylphenyl)thiophene-3-carbohydrazide
3-(3-TRIFLUOROMETHYL-PHENYL)-PROPIONIC ACID ETHYL ESTER
Mafenide Acetate
D004791 - Enzyme Inhibitors > D002257 - Carbonic Anhydrase Inhibitors C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
1H-1,2,4-Triazole-3-carboxamide,N-(2,3-dihydro-1,4-benzodioxin-6-yl)-(9CI)
1-(BICYCLO[3.1.0]HEXAN-3-YL)-6-(METHYLTHIO)-1H-PYRAZOLO[3,4-D]PYRIMIDINE
METHYL 5-OXO-3,5-DIHYDRO-2H-OXAZOLO[2,3-B]QUINAZOLINE-8-CARBOXYLATE
ethyl 5-oxo-3-pyridin-4-yl-2H-1,2,4-triazine-6-carboxylate
5-(4-amino-phenylcarbamoyl)-3h-imidazole-4-carboxylic acid
2-METHYL-5-(1,2,3,4-TETRAHYDROXYBUTYL)-3-FUROIC ACID
ethyl 5-oxo-3-pyridin-2-yl-2H-1,2,4-triazine-6-carboxylate
3-FLUORO-4-METHOXY-[1,1-BIPHENYL]-4-CARBOXYLIC ACID
3-[5-(4-methoxy-phenyl)-furan-2-yl]-propionic acid
1,1,1,2,2-Pentafluoro-6,6-dimethyl-3,5-heptanedione
5-(2,5-DIMETHYLPHENOXYMETHYL)FURAN-2-CARBOXYLICACID
Pyruvaldehyde bis(N4,N4-dimethylthiosemicarbazone)
1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,3-diazinane-2,4-dione
1-[5-(Fluoromethyl)-3,4-dihydroxyoxolan-2-yl]pyrimidine-2,4-dione
N-(5-methyl-3-isoxazolyl)-1,3-benzodioxole-5-carboxamide
5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole
2-[(2-Cyclopropyl-2-oxoethyl)thio]-4,6-dimethyl-3-pyridinecarbonitrile
(E)-5-(8-Oxo-5,6,7,8-tetrahydropyrrolo[2,3-c]azepin-4(1H)-ylidene)imidazolidine-2,4-dione
2-(beta-D-Glucopyranosyl)-5-methyl-1,3,4-oxadiazole
Floxuridine
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01B - Antimetabolites > L01BC - Pyrimidine analogues C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Floxuridine (5-Fluorouracil 2'-deoxyriboside) is a?pyrimidine?analog?and known as an?oncology antimetabolite. Floxuridine inhibits Poly(ADP-Ribose) polymerase and induces DNA damage by activating the ATM and ATR checkpoint signaling pathways in vitro. Floxuridine is a extreamly potent inhibitor for S. aureus infection and induces cell apoptosis[1][2]. Floxuridine has antiviral effects against HSV and CMV[3].
Doxifluridine
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D019167 - Appetite Stimulants C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Same as: D01309 Doxifluridine has anticancer activity. Doxifluidine is a 5-FU prodrug. Doxifluridine is a thymidine synthase inhibitor. Doxifluridine can enhance tumor inhibition by synergizing with a variety of drugs[1][2][3].
Marmesin
Nodakenetin is a marmesin with R-configuration. It has a role as a plant metabolite, a rat metabolite and a xenobiotic metabolite. It is an enantiomer of a (+)-marmesin. Nodakenetin is a natural product found in Zanthoxylum beecheyanum, Melicope barbigera, and other organisms with data available. A marmesin with R-configuration. (+)-marmesin is a marmesin. It is an enantiomer of a nodakenetin. Marmesin is a natural product found in Coronilla scorpioides, Clausena dunniana, and other organisms with data available. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity. S-(+)-Marmesin is a natural coumarin, exhibiting COX-2/5-LOX dual inhibitory activity.
Marmesine
Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2]. Nodakenetin, isolated from Angelica decursiva, possesses antioxidant anti-inflammatory activities. Nodakenetin has the potential to be an antiarthritic and nerve tonic[1][2].
decursinol
D020536 - Enzyme Activators Decursinol, isolated from the roots of Angelica gigas, possesses antinociceptive effect with orally bioavailability. Decursinol possesses anti-tumor and anti-metastasis activity[1]. Decursinol, isolated from the roots of Angelica gigas, possesses antinociceptive effect with orally bioavailability. Decursinol possesses anti-tumor and anti-metastasis activity[1].
3-Hydroxy-4-methoxy-2-(2-phenylethenyl)-2,3-dihydropyran-6-one
1-[3,4-Dihydroxy-5-(hydroxyamino)oxolan-2-yl]-4-imino-1,3-diazinan-2-one
2-Propan-2-yl-2,3-dihydropyrano[2,3-g][1,4]benzodioxin-7-one
N-(4,5-dihydro-1,3-thiazol-2-yl)-3-(4-methylphenyl)acrylamide
4-(1,3-Benzodioxol-5-ylhydrazinylidene)pyrazole-3,5-diamine
1-(2-Amino-3-carboxypropanoyl)-4-hydroxypyrrolidine-2-carboxylic acid
6-[(E)-3-hydroxybut-1-enyl]-7-methoxychromen-2-one
8-[(3,3-Dimethyloxiran-2-yl)methyl]-7-hydroxychromen-2-one
(5S,6S)-5,6-Dihydro-5-hydroxy-4-methoxy-6-[(E)-2-phenylethenyl]-2H-pyran-2-one
Smirino
Decursinol is an organic heterotricyclic compound that is 7,8-dihydro-2H,6H-pyrano[3,2-g]chromen-2-one substituted by a beta-hydroxy group at position 7 and two methyl groups at position 8. It is isolated from the roots of Angelica gigas and has been found to possess significant inhibitory activity against acetylcholinesterase enzyme (EC 3.1.1.7). It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an antineoplastic agent, an analgesic and a metabolite. It is an organic heterotricyclic compound, a delta-lactone, a secondary alcohol and a cyclic ether. Decursinol is a natural product found in Smyrniopsis aucheri, Phlojodicarpus villosus, and other organisms with data available. An organic heterotricyclic compound that is 7,8-dihydro-2H,6H-pyrano[3,2-g]chromen-2-one substituted by a beta-hydroxy group at position 7 and two methyl groups at position 8. It is isolated from the roots of Angelica gigas and has been found to possess significant inhibitory activity against acetylcholinesterase enzyme (EC 3.1.1.7). D020536 - Enzyme Activators Decursinol, isolated from the roots of Angelica gigas, possesses antinociceptive effect with orally bioavailability. Decursinol possesses anti-tumor and anti-metastasis activity[1]. Decursinol, isolated from the roots of Angelica gigas, possesses antinociceptive effect with orally bioavailability. Decursinol possesses anti-tumor and anti-metastasis activity[1].
(-)-Columbianetin
D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins
L-cysteine 2-naphthylamide
An L-cysteine derivative that is the amide obtained by formal condensation of the carboxy group of L-cysteine with the amino group of 2-naphthylamine.
(3s)-3-(2-hydroxypropan-2-yl)-2h,3h-furo[3,2-g]chromen-7-one
7-hydroxy-6-[(2z)-4-hydroxy-3-methylbut-2-en-1-yl]chromen-2-one
7-hydroxy-6-[(2e)-4-hydroxy-3-methylbut-2-en-1-yl]chromen-2-one
6-hydroxy-8,9,9-trimethyl-8h-furo[2,3-h]chromen-2-one
7-{[(2e)-4-hydroxy-3-methylbut-2-en-1-yl]oxy}chromen-2-one
1-(3,4-dihydroxy-5-methoxynaphthalen-2-yl)propan-2-one
6-methoxy-7-[(2-methylprop-1-en-1-yl)oxy]chromen-2-one
(1r,2s,4e,5s,5's)-4-(hexa-2,4-diyn-1-ylidene)-3,6-dioxaspiro[bicyclo[3.1.0]hexane-2,2'-oxan]-5'-ol
4-amino-n-(2,6-dihydroxypyrimidin-4-yl)benzenecarboximidic acid
methyl 2-(5-acetyl-2,3-dihydro-1-benzofuran-2-yl)prop-2-enoate
7-methoxy-8-[(1e)-3-oxobut-1-en-1-yl]-3,4-dihydro-1-benzopyran-2-one
7-hydroxy-6-(2-(r)-hydroxy-3-methylbut-3-enyl)coumarin
{"Ingredient_id": "HBIN013250","Ingredient_name": "7-hydroxy-6-(2-(r)-hydroxy-3-methylbut-3-enyl)coumarin","Alias": "NA","Ingredient_formula": "C14H14O4","Ingredient_Smile": "CC(=C)C(CC1=C(C=C2C(=C1)C=CC(=O)O2)O)O","Ingredient_weight": "246.26 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "10196","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "12050842","DrugBank_id": "NA"}
9alpha-Hydroxyfraxinellone
{"Ingredient_id": "HBIN014048","Ingredient_name": "9alpha-Hydroxyfraxinellone","Alias": "(3R,3aR,6R)-3-(3-furyl)-6-hydroxy-3a,7-dimethyl-3,4,5,6-tetrahydroisobenzofuran-1-one; 3-Furan-3-yl-6-hydroxy-3a,7-dimethyl-3a,4,5,6-tetrahydro-3H-isobenzofuran-1-one; 1(3H)-isobenzofuranone, 3-(3-furanyl)-3a,4,5,6-tetrahydro-6-hydroxy-3a,7-dimethyl-, (3R,3aR,6R)-; (3R,3aR,6R)-3-furan-3-yl-6-hydroxy-3a,7-dimethyl-3,4,5,6-tetrahydro-2-benzofuran-1-one; rel-(3R,3aR,6R)-3-(3-furyl)-6-hydroxy-3a,7-dimethyl-3a,4,5,6-tetrahydro-2-benzofuran-1(3H)-one; InChI=1/C14H16O4/c1-8-10(15)3-5-14(2)11(8)13(16)18-12(14)9-4-6-17-7-9/h4,6-7,10,12,15H,3,5H2,1-2H3/t10-,12+,14-/m1/s; (-)-(3R,3aR,6R)-3-(3'-Furanyl)-3a,7-dimethyl-6-hydroxy-1,3,3a,4,5,6-hexahydrobenzo[c]furan-1-one","Ingredient_formula": "C14H14O4","Ingredient_Smile": "CC1=C2C(=O)OC(C2(CCC1O)C)C3=COC=C3","Ingredient_weight": "246.26","OB_score": "75.49531473","CAS_id": "128475-17-2","SymMap_id": "SMIT07908","TCMID_id": "NA","TCMSP_id": "MOL006259","TCM_ID_id": "NA","PubChem_id": "636856","DrugBank_id": "NA"}