Exact Mass: 182.03677760000002
Exact Mass Matches: 182.03677760000002
Found 500 metabolites which its exact mass value is equals to given mass value 182.03677760000002
,
within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error
0.01 dalton.
1-Methyluric acid
1-Methyluric acid is one of the three main theophylline metabolites in man. 1-Methyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152, 4039734, 9890610) [HMDB] 1-Methyluric acid is one of the three main theophylline metabolites in man. 1-Methyluric acid is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline, and theobromine). Methyluric acids can be distinguished from uric acid via simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase, or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 superfamily, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis (PMID:11712316, 15833286, 3506820, 15013152, 4039734, 9890610).
7-Methyluric acid
7-Methyluric acid is the minor urinary metabolites of caffeine. Caffeine is metabolized mainly in the liver undergoing demethylation and oxidation. [HMDB] 7-Methyluric acid is the minor urinary metabolites of caffeine. Caffeine is metabolized mainly in the liver undergoing demethylation and oxidation.
9-Methyluric acid
9-Methyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 9-Methyluracil is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152) [HMDB] 9-Methyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 9-Methyluracil is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID:11712316, 15833286, 3506820, 15013152).
3-Methyluric acid
3-Methyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 3-Methyluracil is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152) [HMDB] 3-Methyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 3-Methyluracil is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152).
Dipropyl trisulfide
Dipropyl trisulfide is found in garden onion. Dipropyl trisulfide is a component of onion oil. Dipropyl trisulfide is a flavouring ingredient. Component of onion oil. Flavouring ingredient. Dipropyl trisulfide is found in garden onion and onion-family vegetables.
Ethyl 1-(ethylthio)ethyl disulfide
Ethyl 1-(ethylthio)ethyl disulfide is found in fruits. Ethyl 1-(ethylthio)ethyl disulfide is a constituent of the fruit of Durio zibethinus (durian). Constituent of the fruit of Durio zibethinus (durian). Ethyl 1-(ethylthio)ethyl disulfide is found in fruits.
Ethyl 1-(methylthio)propyl disulfide
Ethyl 1-(methylthio)propyl disulfide is found in onion-family vegetables. Ethyl 1-(methylthio)propyl disulfide is a constituent of shallots (Allium cepa) and Chinese chives (Allium tuberosum). Constituent of shallots (Allium cepa) and Chinese chives (Allium tuberosum). Ethyl 1-(methylthio)propyl disulfide is found in garden onion and onion-family vegetables.
1,1'-Thiobis-1-propanethiol
1,1-Thiobis-1-propanethiol is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]"). It is used as a food additive
Ethionamide sulphoxide
Ethionamide sulphoxide is a metabolite of ethionamide. Ethionamide (2-ethylthioisonicotinamide, Trecator SC) is an antibiotic used in the treatment of tuberculosis. Ethionamide works to induce expression of EthA, a NAD derivative which is toxic to fungi. The resistance mechanism of this drug is through EthR, resistance is common. Therefore, EthR inhibitors are of great interest. It is a prodrug. It has been proposed for use in combination with gatifloxacin. The action may be through disruption of mycolic acid. (Wikipedia)
1,2-Dinitroglycerin
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
Flurothyl
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
6-[Ethoxy(mercapto)methylidene]-1-cyclohexa-2,4-dienone
Diisopropyl trisulfide
Diisopropyl trisulfide is a member of the class of compounds known as organic trisulfides. Organic trisulfides are organosulfur compounds with the general formula RSSSR (R,R=alkyl, aryl). Diisopropyl trisulfide is a garlic and sulfury tasting compound found in garden onion, which makes diisopropyl trisulfide a potential biomarker for the consumption of this food product.
2-(Buta-1,3-diynyl)-5-(but-3-en-1-ynyl) thiophene|2--5--thiophen|2-butadiynyl-5-but-3-en-1-ynyl-thiophene
5-Methylorsellinic acid
A dihydroxybenzoic acid that is o-orsellinic acid in which the hydrogen at position 5 is substituted by a methyl group.
3,4-Dihydroxyhydrocinnamic acid
3,4-Dihydroxyhydrocinnamic acid, also known as dihydrocaffeic acid (DHCA), is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID: 15607645) and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract (PMID: 15693705). Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans (PMID: 16038718). Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure conveys the antioxidant effect in plasma and in erythrocytes (PMID: 11768243). 3,4-Dihydroxyhydrocinnamic acid is a microbial metabolite found in Bifidobacterium, Escherichia, Lactobacillus, and Clostridium (PMID: 28393285). 3,4-Dihydroxyhydrocinnamic acid (or Dihydrocaffeic acid, DHCA) is a metabolite product of the hydrogenation of caffeoylquinic acids, occurring in normal human biofluids, with potent antioxidant properties. DHCA has been detected in human plasma following coffee ingestion (PMID 15607645), and is increased with some dietary sources, such as after ingestion of phenolic constituents of artichoke leaf extract. (PMID 15693705) Polyphenol-rich foods such as vegetables and fruits have been shown to significantly improve platelet function in ex vivo studies in humans. (PMID 16038718) Its antioxidant activity has been tested to reduce ferric iron in the ferric reducing antioxidant power (FRAP) assay, and it has been suggested that its catechol structure convey the antioxidant effect in plasma and in erythrocytes. (PMID 11768243) [HMDB]. 3-(3,4-Dihydroxyphenyl)propanoic acid is found in red beetroot, common beet, and olive. 3-(3,4-dihydroxyphenyl)propanoic acid is a monocarboxylic acid that is 3-phenylpropionic acid substituted by hydroxy groups at positions 3 and 4. Also known as dihydrocaffeic acid, it is a metabolite of caffeic acid and exhibits antioxidant activity. It has a role as an antioxidant and a human xenobiotic metabolite. It is functionally related to a 3-phenylpropionic acid. It is a conjugate acid of a 3-(3,4-dihydroxyphenyl)propanoate. 3-(3,4-Dihydroxyphenyl)propionic acid is a natural product found in Liatris elegans, Polyscias murrayi, and other organisms with data available. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].
methylorsellinate
Orsellinic acid methyl ester is a hydroxybenzoic acid. It has a role as a metabolite. Methyl 2,4-dihydroxy-6-methylbenzoate is a natural product found in Blasia pusilla, Sparassis crispa, and other organisms with data available. A natural product found in Rhododendron ferrugineum.
VCONERRCKOKCHE-UHFFFAOYSA-N
1-(2,3-Dihydroxy-4-methoxyphenyl)ethanone is a natural product found in Paeonia suffruticosa with data available. 2,3-Dihydroxy-4-methoxyacetophenone is a neuroprotective compound from Cynenchum paniculatum. 2,3-Dihydroxy-4-methoxyacetophenone improves cognitive function and may has the potential for the treatment of Alzheimer's disease research[1]. 2,3-Dihydroxy-4-methoxyacetophenone is a neuroprotective compound from Cynenchum paniculatum. 2,3-Dihydroxy-4-methoxyacetophenone improves cognitive function and may has the potential for the treatment of Alzheimer's disease research[1].
3,5-DimethoxybenzoicAcid
3,5-dimethoxybenzoic acid is a methoxybenzoic acid that is benzoic acid which is substituted by methoxy groups at positions 3 and 5. It has a role as a plant metabolite. It is a conjugate acid of a 3,5-dimethoxybenzoate. 3,5-Dimethoxybenzoic acid is a natural product found in Melia azedarach and Calophyllum polyanthum with data available. A methoxybenzoic acid that is benzoic acid which is substituted by methoxy groups at positions 3 and 5. 3,5-Dimethoxybenzoic acid, isolated from Melia azedarach L. leaves with antifungal activity, is an intermediate in organic synthesis[1]. 3,5-Dimethoxybenzoic acid, isolated from Melia azedarach L. leaves with antifungal activity, is an intermediate in organic synthesis[1].
2,5-Dimethoxybenzoicacid
2,5-Dimethoxybenzoic acid is an intermediate used in the synthesis of the galbulimima alkaloid GB 13[1].
Homovanillate
Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency.
dl-4-hydroxyphenyllactic acid
CONFIDENCE standard compound; INTERNAL_ID 294
Hydroxyphenyllactic acid
Hydroxyphenyllactic acid is a tyrosine metabolite. It is carcinogenic. The level of hydroxyphenyllactic acid is elevated in patients with deficiency of the enzyme p-hydroxyphenylpyruvate oxidase (EC 1.14.2.2). (PMID 4720815) [HMDB] Hydroxyphenyllactic acid is an antifungal metabolite.
Homovanillic Acid
Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency.
Hydrocaffeate
Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].
1-Methyluric acid
An oxopurine that is 7,9-dihydro-1H-purine-2,6,8(3H)-trione substituted by a methyl group at N-1. It is one of the metabolites of caffeine found in human urine.
3-(4-Hydroxyphenyl)lactic acid
A 2-hydroxy carboxylic acid that is lactic acid in which one of the methyl hydrogens is substituted by a 4-hydroxyphenyl group.
4-O-Methylphloracetophenone
A member of the class of acetophenones that is 2,4,6-trihydroxyacetophenone in which the hydroxy group at position 4 is replaced by a methoxy group.
4-Nitroanthranilic acid
CONFIDENCE standard compound; INTERNAL_ID 394; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3787; ORIGINAL_PRECURSOR_SCAN_NO 3785 CONFIDENCE standard compound; INTERNAL_ID 394; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3808; ORIGINAL_PRECURSOR_SCAN_NO 3805 CONFIDENCE standard compound; INTERNAL_ID 394; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3790; ORIGINAL_PRECURSOR_SCAN_NO 3785 CONFIDENCE standard compound; INTERNAL_ID 394; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3777; ORIGINAL_PRECURSOR_SCAN_NO 3775 CONFIDENCE standard compound; INTERNAL_ID 394; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3856; ORIGINAL_PRECURSOR_SCAN_NO 3855 CONFIDENCE standard compound; INTERNAL_ID 394; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3797; ORIGINAL_PRECURSOR_SCAN_NO 3793
2,6-Dimethoxybenzoic acid
CONFIDENCE standard compound; INTERNAL_ID 599; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6415; ORIGINAL_PRECURSOR_SCAN_NO 6412 CONFIDENCE standard compound; INTERNAL_ID 599; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6444; ORIGINAL_PRECURSOR_SCAN_NO 6442 CONFIDENCE standard compound; INTERNAL_ID 599; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6448; ORIGINAL_PRECURSOR_SCAN_NO 6446 CONFIDENCE standard compound; INTERNAL_ID 599; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6463; ORIGINAL_PRECURSOR_SCAN_NO 6460 CONFIDENCE standard compound; INTERNAL_ID 599; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6470; ORIGINAL_PRECURSOR_SCAN_NO 6466 CONFIDENCE standard compound; INTERNAL_ID 599; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6472; ORIGINAL_PRECURSOR_SCAN_NO 6470 2,6-Dimethoxybenzoic acid is a member of organic compounds known as o-methoxybenzoic acids and derivatives. 2,6-Dimethoxybenzoic acid is a member of organic compounds known as o-methoxybenzoic acids and derivatives.
3-METHYLORSELLINIC ACID
A dihydroxybenzoic acid that is o-orsellinic acid in which the hydrogen at position 3 is substituted by a methyl group.
1,3-DINITROGLYCERIN
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
1,2-DINITROGLYCERIN
D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents
3-Hydroxy-4-methoxyphenylacetic acid
Isohomovanillic acid (3-Hydroxy-4-methoxyphenylacetic acid) is extracted from urine at pH 2 by ethyl acetate. Isohomovanillic acid is not found in appreciable values in many normal human urines[1].
6-chloro-3,4-dihydro-1H-quinoxalin-2-one
C8H7ClN2O (182.02468819999999)
8-Chloro-6-Methyl-[1,2,4]triazolo[1,5-a]pyridin-2-ylamine
2-CHLORO-4-METHOXY-1H-BENZIMIDAZOLE
C8H7ClN2O (182.02468819999999)
(7-Chloro-1H-indazol-4-yl)methanol
C8H7ClN2O (182.02468819999999)
3-Chloro-5-methoxy-1H-pyrrolo[2,3-b]pyridine
C8H7ClN2O (182.02468819999999)
4,5,6,7-Tetrahydro-2-benzothiophene-1-carboxylic acid
2-Methyl-5-Chloro-6-Benzoxazolamine
C8H7ClN2O (182.02468819999999)
4,5,6,7-TETRAHYDROBENZO[B]THIOPHENE-3-CARBOXYLIC ACID
1H-Pyrazolo[3,4-d]pyrimidine, 4-chloro-1,6-dimethyl
6-Chloro-1-methyl-1H-pyrazolo[3,4-b]pyridin-3-amine
(1R,2S)-1-BOC-AMINO-2-VINYLCYCLOPROPANECARBOXYLICACIDETHYLESTER
3-Chloro-7-methoxy-1H-pyrrolo[3,2-b]pyridine
C8H7ClN2O (182.02468819999999)
7-Chloro-4-methoxy-1H-pyrrolo[2,3-c]pyridine
C8H7ClN2O (182.02468819999999)
2-CHLORO-1H-BENZIMIDAZOLE-6-METHANOL
C8H7ClN2O (182.02468819999999)
(5-CHLORO-1H-INDAZOL-3-YL)METHANOL
C8H7ClN2O (182.02468819999999)
2(1H)-Quinoxalinone,7-chloro-3,4-dihydro-
C8H7ClN2O (182.02468819999999)
7-Chloro-5-methyl-1H-pyrazolo[4,3-b]pyridin-3-amine
7-Chloro-5-methoxy-1H-pyrrolo[2,3-c]pyridine
C8H7ClN2O (182.02468819999999)
2-chloro-5,6,7,8-tetrahydro-1,6-naphthyridin-5-one
C8H7ClN2O (182.02468819999999)
2-chloro-4-ethoxypyridine-3-carbonitrile
C8H7ClN2O (182.02468819999999)
4,5,6,7-Tetrahydrobenzo[b]thiophene-2-carboxylic acid
(4-Chloro-1H-pyrrolo[2,3-b]pyridin-5-yl)methanol
C8H7ClN2O (182.02468819999999)
5-Chloro-4-methoxy-1H-pyrrolo[2,3-b]pyridine
C8H7ClN2O (182.02468819999999)
6-Amino-7-fluoro-2H-1,4-benzoxazin-3(4H)-one
C8H7FN2O2 (182.04915340000002)
5-Chloro-6-methoxy-1H-pyrrolo[2,3-b]pyridine
C8H7ClN2O (182.02468819999999)
2-chloro-N-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine
3-methylsulfanyl-1,2-dihydropyrazolo[3,4-d]pyrimidin-4-one
2-Chloro-5-methoxy-1H-benzimidazole
C8H7ClN2O (182.02468819999999)
7-Chloro-2,5-dimethyl-[1,2,4]triazolo[1,5-c]pyrimidine
2-Chloro-3-cyano-6-methoxy-4-methyllpyridine
C8H7ClN2O (182.02468819999999)
2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane
4-CHLORO-5-METHOXY-1H-PYRROLO[2,3-B]PYRIDINE
C8H7ClN2O (182.02468819999999)
5-(TRIFLUOROMETHYL)DIHYDROPYRIMIDINE-2,4(1H,3H)-DIONE
3-methylsulfanyl-2,4,8,9-tetrazabicyclo[4.3.0]nona-1,3,6-trien-5-one
5-chloro-3,4-dihydro-1H-quinoxalin-2-one
C8H7ClN2O (182.02468819999999)
2-amino-7-methyl-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one
Benzoic acid, 4-(aminoiminomethyl)-2-fluoro- (9CI)
C8H7FN2O2 (182.04915340000002)
4,6-difluoro-1a,2,3,7b-tetrahydronaphtho[1,2-b]oxirene
2-Amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylic acid amide
5-CHLORO-2-HYDROXY-4,6-DIMETHYLNICOTINONITRILE
C8H7ClN2O (182.02468819999999)
7-Chloro-1,3-dimethyl-1H-pyrazolo[4,3-d]pyrimidine
1H-INDAZOLE-3-CARBOXALDEHYDE HYDROCHLORIDE
C8H7ClN2O (182.02468819999999)
6-carbamoyl-2-oxo-1,2-dihydropyridine-3-carboxylic acid
acetamide, N-(2-fluorophenyl)-2-(hydroxyimino)-, (2E)-
C8H7FN2O2 (182.04915340000002)
1H-Benzimidazole-2-methanol,6-chloro-
C8H7ClN2O (182.02468819999999)
6-chloro-imidazo[1,2-a]pyridine-2-Methanol
C8H7ClN2O (182.02468819999999)
Ethanone, 1-(1,3-benzodioxol-5-yl)-2-fluoro- (9CI)
3-AMINO-6-METHYL-THIAZOLO[3,2-B][1,2,4]TRIAZIN-7-ONE
2-THIOXO-2,3,5,6,7,8-HEXAHYDROQUINAZOLIN-4(1H)-ONE
2-(methylsulfanyl)-1H,4H-pyrazolo[1,5-a][1,3,5]triazin-4-one
6-OXO-1,6-DIHYDRO-PYRAZINE-2,3-DICARBOXYLIC ACID DIAMIDE
7-Chloro-2,3-dihydro-1,8-naphthyridin-4(1H)-one
C8H7ClN2O (182.02468819999999)
2,5-Cyclohexadiene-1,4-dione, 2-hydroxy-6-methoxy-3,5-dimethyl-
(2S)-2-Methyl-2,3-dihydrothieno[2,3-f][1,4]oxazepin-5-amine
Flurothyl
D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant
HYKOP
Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1]. Dihydrocaffeic acid is a microbial metabolite of flavonoids, reduces phosphorylation of MAPK p38 and prevent UVB-induced skin damage. Antioxidant potential and anti-inflammatory activity[1].
AI3-28796
Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].
AIDS-018090
2,6-Dimethoxybenzoic acid is a member of organic compounds known as o-methoxybenzoic acids and derivatives. 2,6-Dimethoxybenzoic acid is a member of organic compounds known as o-methoxybenzoic acids and derivatives.
AIDS-108197
Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4]. Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4]. Ethyl 3,4-dihydroxybenzoate (Ethyl protocatechuate), an antioxidant, is a prolyl-hydroxylase inhibitor found in the testa of peanut seeds. Ethyl 3,4-dihydroxybenzoate protects myocardium by activating NO synthase and generating mitochondrial ROS. Ethyl 3,4-dihydroxybenzoate induces cell autophagy and apoptosis in ESCC cells. Ethyl 3,4-dihydroxybenzoate is a collagen synthesis inhibitor and has a bone protecting-effect[1][2][3][4].
Argobyl
C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent Flopropione is a 5-HT receptor antagonist and also a catechol-o-methyltransferase (COMT) inhibitor[1][2]. Flopropione also as an antispasmodic agent[3]. Flopropione is a 5-HT receptor antagonist and also a catechol-o-methyltransferase (COMT) inhibitor[1][2]. Flopropione also as an antispasmodic agent[3]. Flopropione is a 5-HT receptor antagonist and also a catechol-o-methyltransferase (COMT) inhibitor[1][2]. Flopropione also as an antispasmodic agent[3].
93-07-2
Veratric acid (3,4-Dimethoxybenzoic acid) is an orally active phenolic compound derived from vegetables and fruits, has antioxidant[1] and anti-inflammatory activities[3]. Veratric acid also acts as a protective agent against hypertension-associated cardiovascular remodelling[2]. Veratric acid reduces upregulated COX-2 expression, and levels of PGE2, IL-6 after UVB irradiation[3]. Veratric acid (3,4-Dimethoxybenzoic acid) is an orally active phenolic compound derived from vegetables and fruits, has antioxidant[1] and anti-inflammatory activities[3]. Veratric acid also acts as a protective agent against hypertension-associated cardiovascular remodelling[2]. Veratric acid reduces upregulated COX-2 expression, and levels of PGE2, IL-6 after UVB irradiation[3].
DA-0613
Methyl isovanillate is a secondary metabolite isolated from Vitex agnus-castus[1]. Methyl isovanillate is a secondary metabolite isolated from Vitex agnus-castus[1].
Coenzyme Q0
Coenzyme Q0 (CoQ0) is a potent, oral active ubiquinone compound can be derived from Antrodia cinnamomea. Coenzyme Q0 induces apoptosis and autophagy, suppresses of HER-2/AKT/mTOR signaling to potentiate the apoptosis and autophagy mechanisms. Coenzyme Q0 regulates NFκB/AP-1 activation and enhances Nrf2 stabilization in attenuation of inflammation and redox imbalance. Coenzyme Q0 has anti-angiogenic activity through downregulation of MMP-9/NF-κB and upregulation of HO-1 signaling[1][2][3].
4-Acetyl-3,5-dihydroxy-6-methylcyclohexa-2,4-dien-1-one
3-Hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carboxylate
2-Amino-4-phosphonobutanoate
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
(2R)-2-Hydroxy-2-(4-hydroxy-3-methoxy-phenyl)acetaldehyde
4-Methoxy-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate
(E)-3-[(5R,6S)-5,6-dihydroxycyclohexa-1,3-dienyl]acrylic acid
(2R,6Z)-2-hydroxy-6-(hydroxymethylidene)-2,5-dimethylcyclohex-4-ene-1,3-dione
2-(2-Methylidenecyclopropyl)-3-oxobutanedioic acid
Phosphoric acid (E)-3-methyl-4-hydroxy-2-butenyl ester
(E)-3-[(5S,6R)-5,6-dihydroxycyclohexa-1,3-dienyl]acrylic acid
(R)-2-hydroxy-4-(hydroxymethylphosphinyl)butyric acid
3-[(1Z,4R)-4-hydroxycyclohex-2-en-1-ylidene]pyruvic acid
A 3-(4-hydroxycyclohex-2-en-1-ylidene)pyruvic acid having 1Z,4R stereochemistry.
3-Methoxy-4-hydroxyphenylglycolaldehyde
A member of the class of glycolaldehydes that is 3,4-dihydroxymandelaldehyde in which the hydroxy group at position 4 is replaced by a methoxy group.
3-(2,3-dihydroxyphenyl)propanoic acid
A monocarboxylic acid that is propionic acid carrying a 2,3-dihydroxyphenyl substituent at C-3; a microbial metabolite of quinoline.
Ubiquinone-0
A derivative of benzoquinone carrying a 5-methyl substituent; and methoxy substituents at positions 2 and 3. The core structure of the ubiquinone group of compounds.
Isohomovanillic acid
A member of the class of phenylacetic acids that is the 4-O-methyl ether of (3,4-dihydroxyphenyl)acetic acid. Isohomovanillic acid (3-Hydroxy-4-methoxyphenylacetic acid) is extracted from urine at pH 2 by ethyl acetate. Isohomovanillic acid is not found in appreciable values in many normal human urines[1].
Meta-hydroxyphenylhydracrylic Acid
A hydroxy monocarboxylic acid that is propionic acid substituted by a hydroxy group at position 3 and a 3-hydroxyphenyl group at position 2. It is a metabolite of flavonoids and has been identified as one of the major phenolic acids in human urine.
5-Nitroanthranilic acid
An aminobenzoic acid in which the the amino group is ortho- to the carboxylic acid group, and which is substituted para- to the amino group by a nitro group.
3-(3,4-Dihydroxyphenyl)propanoic acid
A monocarboxylic acid that is 3-phenylpropionic acid substituted by hydroxy groups at positions 3 and 4. Also known as dihydrocaffeic acid, it is a metabolite of caffeic acid and exhibits antioxidant activity.
4-Pyridoxate
A pyridoxate that is the conjugate base of 4-pyridoxic acid, obtained by deprotonation of the carboxy group.
5-Pyridoxate
A pyridoxate that is the conjugate base of 5-pyridoxic acid, obtained by deprotonation of the carboxy group.
ethionamide S-oxide
A member of the class of pyridines that is the S-oxide and active metabolite of the antitubercular drug ethionamide.