Exact Mass: 130.1178
Exact Mass Matches: 130.1178
Found 88 metabolites which its exact mass value is equals to given mass value 130.1178
,
within given mass tolerance error 0.01 dalton. Try search metabolite list with more accurate mass tolerance error
0.001 dalton.
(4-Aminobutyl)guanidine
Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma. -- Wikipedia; Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is discussed as a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to ?2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Agmatine is found in many foods, some of which are fruits, kohlrabi, carob, and burdock. Agmatine ((4-aminobutyl)guanidine, NH2-CH2-CH2-CH2-CH2-NH-C(-NH2)(=NH)) is the decarboxylation product of the amino acid arginine and is an intermediate in polyamine biosynthesis. It is a putative neurotransmitter. It is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake, released by membrane depolarization, and inactivated by agmatinase. Agmatine binds to 2-adrenergic receptor and imidazoline binding sites, and blocks NMDA receptors and other cation ligand-gated channels. Agmatine inhibits nitric oxide synthase (NOS), and induces the release of some peptide hormones. Treatment with exogenous agmatine exerts neuroprotective effects in animal models of neurotrauma. Agmatine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=306-60-5 (retrieved 2024-07-01) (CAS RN: 306-60-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
N-Acetylputrescine
N-Acetylputrescine is a polyamine commonly occurring excreted in normal human urine (PMID 7775374). N-Acetylputrescine is the most abundant of all polyamines both in normal individuals and in patients with leukemia (PMID 9464484). N-Acetylputrescine is the N-acetylated form of the naturally occurring polyamine called putrescine. The N-acetylation is mediated by the enzyme diamine N-acetyltransferase. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. N-Acetylputrescine can be found in Corynebacterium as well (PMID:25919117). N-Acetylputrescine is a polyamine commonly occurring excreted in normal human urine (PMID 7775374). N-Acetylputrescine is the most abundant of all polyamines both in normal individuals and in patients with leukemia (PMID 9464484). N-Acetylputrescine is the N-acetylated form of the naturally occurring polyamine called putrescine. The N-acetylation is mediated by the enzyme diamine N-acetyltransferase. Putrescine is related to cadaverine (another polyamine). Both are produced by the breakdown of amino acids in living and dead organisms and both are toxic in large doses. Putrescine and cadaverine are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis. Putrescine is also found in semen. Putrescine attacks s-adenosyl methionine and converts it to spermidine. Spermidine in turn attacks another s-adenosyl methionine and converts it to spermine. Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID A051
N-Nitrosodipropylamine
CONFIDENCE standard compound; EAWAG_UCHEM_ID 3456 D009676 - Noxae > D002273 - Carcinogens
4-Trimethylammoniobutanal
4-Trimethylammoniobutanal is a substrate for Serine hydroxymethyltransferase (cytosolic), Serine hydroxymethyltransferase (mitochondrial), Aldehyde dehydrogenase (mitochondrial), Fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, Aldehyde dehydrogenase (dimeric NADP-preferring), Aldehyde dehydrogenase family 7 member A1, Aldehyde dehydrogenase 1A3 and Aldehyde dehydrogenase X (mitochondrial). [HMDB] 4-Trimethylammoniobutanal is a substrate for Serine hydroxymethyltransferase (cytosolic), Serine hydroxymethyltransferase (mitochondrial), Aldehyde dehydrogenase (mitochondrial), Fatty aldehyde dehydrogenase, 4-trimethylaminobutyraldehyde dehydrogenase, Aldehyde dehydrogenase (dimeric NADP-preferring), Aldehyde dehydrogenase family 7 member A1, Aldehyde dehydrogenase 1A3 and Aldehyde dehydrogenase X (mitochondrial).
N-acetylputrescine
An N-monoacetylalkane-alpha,omega-diamine that is the N-monoacetyl derivative of putrescine.