Exact Mass: 1078.5797642

Exact Mass Matches: 1078.5797642

Found 87 metabolites which its exact mass value is equals to given mass value 1078.5797642, within given mass tolerance error 0.05 dalton. Try search metabolite list with more accurate mass tolerance error 0.01 dalton.

Aculeacin A

Echinocandin B, 1-((4R,5R)-4,5-dihydroxy-N(sup 2)-(1-oxohexadecyl)-L-ornithine)-

C51H82N8O17 (1078.5797642)


A lipopeptide that is isolated from Aspergillus aculeatus and exhibits antifungal activity.

   

Ginsenoside Rb2

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-[[12-hydroxy-4,4,8,10,14-pentamethyl-17-[6-methyl-2-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


Ginsenoside Rb3 is found in tea. Ginsenoside Rb3 is a constituent of Panax ginseng (ginseng) [Raw Data] CB037_Ginsenoside-Rb2_pos_40eV_000003.txt [Raw Data] CB037_Ginsenoside-Rb2_pos_50eV_000003.txt [Raw Data] CB037_Ginsenoside-Rb2_pos_30eV_000003.txt Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression. Ginsenoside Rb2 has antiviral effects. Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression. Ginsenoside Rb2 has antiviral effects.

   

Ginsenoside Rc

2-[2-[[17-[2-[6-[[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


Ginsenoside Rc is found in tea. Ginsenoside Rc is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside Rc is found in tea. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β.

   

Notoginsenoside L

2-{[2-(5-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-16-hydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


Notoginsenoside L is found in tea. Notoginsenoside L is a constituent of roots of Panax notoginseng (ginseng). Constituent of roots of Panax notoginseng (ginseng). Notoginsenoside L is found in tea.

   

Vinaginsenoside R7

2-[(2-{5-[(3-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl)oxy]-16-hydroxy-2,6,6,10,11-pentamethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-6-methylhept-5-en-2-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


Vinaginsenoside R7 is found in tea. Vinaginsenoside R7 is a constituent of Panax vietnamensis (Vietnamese ginseng). Constituent of Panax vietnamensis (Vietnamese ginseng). Vinaginsenoside R7 is found in tea.

   

M-Secociguatoxin 4A

(29Z)-16-[(1Z)-buta-1,3-dien-1-yl]-45-(3-hydroxypropyl)-43,44,49,54,58-pentamethyl-2,7,11,17,21,26,33,37,41,46,51,57-dodecaoxadodecacyclo[30.28.0.0³,²⁷.0⁶,²⁵.0⁸,²².0¹⁰,²⁰.0¹²,¹⁸.0³⁴,⁵⁸.0³⁶,⁵⁶.0³⁸,⁵².0⁴⁰,⁵⁰.0⁴²,⁴⁷]hexaconta-4,14,23,29-tetraene-19,45,48,59-tetrol

C60H86O17 (1078.5864706)


M-Secociguatoxin 4A is found in fishes. M-Secociguatoxin 4A is isolated from Gambierdiscus toxicus.

   

PIP(22:3(10Z,13Z,16Z)/PGE2)

{[(1S,6R,12Z,15R,18R,19S,20R,21R,22R,23S,24R)-3,18,20,22,23,24-hexahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,16-trioxo-6-{[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]methyl}-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-21-yl]oxy}phosphonic acid

C52H88O19P2 (1078.5394758)


PIP(22:3(10Z,13Z,16Z)/PGE2) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/PGE2), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of Prostaglandin E2 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGE2/22:3(10Z,13Z,16Z))

{[(1S,6R,13Z,16R,19R,20S,21R,22R,23R,24S,25R)-3,19,21,23,24,25-hexahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,17-trioxo-6-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-22-yl]oxy}phosphonic acid

C52H88O19P2 (1078.5394758)


PIP(PGE2/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGE2/22:3(10Z,13Z,16Z)), in particular, consists of one chain of Prostaglandin E2 at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:3(10Z,13Z,16Z)/PGD2)

{[(1S,6R,12Z,15S,16S,19R,20R,21R,22R,23S,24R)-3,16,20,22,23,24-hexahydroxy-19-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,8,18-trioxo-6-{[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]methyl}-2,4,7-trioxa-3lambda5-phosphabicyclo[13.6.3]tetracos-12-en-21-yl]oxy}phosphonic acid

C52H88O19P2 (1078.5394758)


PIP(22:3(10Z,13Z,16Z)/PGD2) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/PGD2), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of Prostaglandin D2 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(PGD2/22:3(10Z,13Z,16Z))

{[(1S,6R,13Z,16S,17S,20R,21R,22R,23R,24S,25R)-3,17,21,23,24,25-hexahydroxy-20-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-3,9,19-trioxo-6-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]-2,4,8-trioxa-3lambda5-phosphabicyclo[14.6.3]pentacos-13-en-22-yl]oxy}phosphonic acid

C52H88O19P2 (1078.5394758)


PIP(PGD2/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(PGD2/22:3(10Z,13Z,16Z)), in particular, consists of one chain of Prostaglandin D2 at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(22:3(10Z,13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-3-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]-2-{[(5S,6S,7E,9E,11Z,13E,15S)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H88O19P2 (1078.5394758)


PIP(22:3(10Z,13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(22:3(10Z,13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)), in particular, consists of one chain of 10Z,13Z,16Z-docosenoyl at the C-1 position and one chain of Lipoxin A4 at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

PIP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:3(10Z,13Z,16Z))

{[(1R,5S)-2,3,4,6-tetrahydroxy-5-({hydroxy[(2R)-2-[(10Z,13Z,16Z)-tricosa-10,13,16-trienoyloxy]-3-{[(5R,6R,7E,9E,11Z,13E,15R)-5,6,15-trihydroxyicosa-7,9,11,13-tetraenoyl]oxy}propoxy]phosphoryl}oxy)cyclohexyl]oxy}phosphonic acid

C52H88O19P2 (1078.5394758)


PIP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:3(10Z,13Z,16Z)) is an oxidized phosphatidylinositol phosphate (PIP). As other PIPs, oxidized phosphatidylinositol phosphates are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to a phosphorylated inositol (hexahydroxycyclohexane). Phosphatidylinositol phosphates are generated from phosphatidylinositols, which are phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated. Phosphatidylinositol phosphates can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. PIP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:3(10Z,13Z,16Z)), in particular, consists of one chain of Lipoxin A4 at the C-1 position and one chain of 10Z,13Z,16Z-docosenoyl at the C-2 position. The most important phosphatidylinositol phosphate in both quantitative and biological terms is phosphatidylinositol 4-phosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. Phosphatidylinositol phosphates are usually present at low levels only in tissues, typically at about 1 to 3\\% of the concentration of phosphatidylinositol.

   

Tuberoside F

2-[(4-hydroxy-6-{[(6Z)-15-hydroxy-7-methoxy-7,9,13-trimethyl-6-(3-methyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butylidene)-5-oxapentacyclo[10.8.0.0²,⁹.0⁴,⁸.0¹³,¹⁸]icosan-16-yl]oxy}-2-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl)oxy]-6-methyloxane-3,4,5-triol

C52H86O23 (1078.5559606000002)


Tuberoside f is a member of the class of compounds known as steroidal glycosides. Steroidal glycosides are sterol lipids containing a carbohydrate moiety glycosidically linked to the steroid skeleton. Tuberoside f is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Tuberoside f can be found in potato, which makes tuberoside f a potential biomarker for the consumption of this food product.

   

Methylprotogracillin

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-2-[[(1S,2S,4S,6R,7S,8R,9S,12S,13R,16S)-6-methoxy-7,9,13-trimethyl-6-[(3R)-3-methyl-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutyl]-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-en-16-yl]oxy]-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C52H86O23 (1078.5559606000002)


(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-2-[[(1S,2S,4S,6R,7S,8R,9S,12S,13R,16S)-6-methoxy-7,9,13-trimethyl-6-[(3R)-3-methyl-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutyl]-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-en-16-yl]oxy]-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Dracaena draco, Dracaena concinna, and other organisms with data available. Methyl protogracillin (NSC-698793), isolated from the roots of Dioscorea opposite Thunb, exhibits strong anti-cancer activity[1]. Methyl protogracillin (NSC-698793), isolated from the roots of Dioscorea opposite Thunb, exhibits strong anti-cancer activity[1].

   

Gypenoside IV

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,12.BETA.)-3-((2-O-.BETA.-D-GLUCOPYRANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)-12-HYDROXYDAMMAR-24-EN-20-YL 6-O-.BETA.-D-XYLOPYRANOSYL-

C53H90O22 (1078.592344)


Ginsenoside Rb3 is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-xylopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antioxidant, an antidepressant, a cardioprotective agent, a NMDA receptor antagonist and a neuroprotective agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Gypenoside IV is a natural product found in Gynostemma pentaphyllum and Panax japonicus with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside and beta-D-xylopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Rb3 is extracted from steamed Panax ginseng C. A. Meyer. Ginsenoside Rb3 exhibits inhibitory effect on TNFα-induced NF-κB transcriptional activity with an IC50 of 8.2 μM in 293T cell lines. Ginsenoside Rb3 also inhibits the induction of COX-2 and iNOS mRNA. Ginsenoside Rb3 is extracted from steamed Panax ginseng C. A. Meyer. Ginsenoside Rb3 exhibits inhibitory effect on TNFα-induced NF-κB transcriptional activity with an IC50 of 8.2 μM in 293T cell lines. Ginsenoside Rb3 also inhibits the induction of COX-2 and iNOS mRNA.

   

Ginsenoside C

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,12.BETA.)-20-((6-O-.ALPHA.-L-ARABINOPYRANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)-12-HYDROXYDAMMAR-24-EN-3-YL 2-O-.BETA.-D-GLUCOPYRANOSYL-

C53H90O22 (1078.592344)


Ginsenoside Rb2 is a ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside and alpha-L-arabinopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antiviral agent and a hypoglycemic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Ginsenoside Rb2 is a natural product found in Panax vietnamensis, Panax ginseng, and other organisms with data available. See also: Asian Ginseng (part of); Panax notoginseng root (part of). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression. Ginsenoside Rb2 has antiviral effects. Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression. Ginsenoside Rb2 has antiviral effects.

   

Ginsenoside

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,12.BETA.)-20-((6-O-.ALPHA.-L-ARABINOFURANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)-12-HYDROXYDAMMAR-24-EN-3-YL 2-O-.BETA.-D-GLUCOPYRANOSYL-

C53H90O22 (1078.592344)


Ginsenoside Rc is a ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside and alpha-L-arabinofuranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite and a hypoglycemic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Ginsenoside Rc is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside and alpha-L-arabinofuranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β.

   

Ginsenoside

.BETA.-D-GLUCOPYRANOSIDE, (3.BETA.,12.BETA.)-20-((6-O-.ALPHA.-L-ARABINOPYRANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)-12-HYDROXYDAMMAR-24-EN-3-YL 2-O-.BETA.-D-GLUCOPYRANOSYL-

C53H90O22 (1078.592344)


Ginsenoside Rb2 is a ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside and alpha-L-arabinopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite, an antiviral agent and a hypoglycemic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Ginsenoside Rb2 is a natural product found in Panax vietnamensis, Panax ginseng, and other organisms with data available. See also: Asian Ginseng (part of); Panax notoginseng root (part of). A ginsenoside found in Panax ginseng that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranoside and alpha-L-arabinopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression. Ginsenoside Rb2 has antiviral effects. Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression. Ginsenoside Rb2 has antiviral effects. Ginsenoside Rb3 is extracted from steamed Panax ginseng C. A. Meyer. Ginsenoside Rb3 exhibits inhibitory effect on TNFα-induced NF-κB transcriptional activity with an IC50 of 8.2 μM in 293T cell lines. Ginsenoside Rb3 also inhibits the induction of COX-2 and iNOS mRNA. Ginsenoside Rb3 is extracted from steamed Panax ginseng C. A. Meyer. Ginsenoside Rb3 exhibits inhibitory effect on TNFα-induced NF-κB transcriptional activity with an IC50 of 8.2 μM in 293T cell lines. Ginsenoside Rb3 also inhibits the induction of COX-2 and iNOS mRNA.

   

Pneumocandin A0

Pneumocandin A0

C51H82N8O17 (1078.5797642)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents > D054714 - Echinocandins

   

methyl protogracillin

(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-2-[[(1S,2S,4S,6R,7S,8R,9S,12S,13R,16S)-6-methoxy-7,9,13-trimethyl-6-[(3R)-3-methyl-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutyl]-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-en-16-yl]oxy]-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C52H86O23 (1078.5559606000002)


(2S,3R,4R,5R,6S)-2-[(2R,3R,4S,5R,6R)-5-hydroxy-6-(hydroxymethyl)-2-[[(1S,2S,4S,6R,7S,8R,9S,12S,13R,16S)-6-methoxy-7,9,13-trimethyl-6-[(3R)-3-methyl-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutyl]-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icos-18-en-16-yl]oxy]-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol is a natural product found in Dracaena draco, Dracaena concinna, and other organisms with data available. Methyl protogracillin (NSC-698793), isolated from the roots of Dioscorea opposite Thunb, exhibits strong anti-cancer activity[1]. Methyl protogracillin (NSC-698793), isolated from the roots of Dioscorea opposite Thunb, exhibits strong anti-cancer activity[1].

   

Floralquinquenoside E

Floralquinquenoside E

C53H90O22 (1078.592344)


   
   

Floralginsenoside M

Floralginsenoside M

C53H90O22 (1078.592344)


   
   
   
   

anagalligenin A 3-O-{beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl-(1->4)-[beta-D-glucopyranosyl-(1->2)]-alpha-L-arabinopyranoside}|capilliposide A

anagalligenin A 3-O-{beta-D-xylopyranosyl-(1->2)-beta-D-glucopyranosyl-(1->4)-[beta-D-glucopyranosyl-(1->2)]-alpha-L-arabinopyranoside}|capilliposide A

C52H86O23 (1078.5559606000002)


   

ginsenoside rb3

ginsenoside rb3

C53H90O22 (1078.592344)


Annotation level-1 Ginsenoside Rb3 is extracted from steamed Panax ginseng C. A. Meyer. Ginsenoside Rb3 exhibits inhibitory effect on TNFα-induced NF-κB transcriptional activity with an IC50 of 8.2 μM in 293T cell lines. Ginsenoside Rb3 also inhibits the induction of COX-2 and iNOS mRNA. Ginsenoside Rb3 is extracted from steamed Panax ginseng C. A. Meyer. Ginsenoside Rb3 exhibits inhibitory effect on TNFα-induced NF-κB transcriptional activity with an IC50 of 8.2 μM in 293T cell lines. Ginsenoside Rb3 also inhibits the induction of COX-2 and iNOS mRNA.

   

3beta,19,20S,21-tetrahydroxydammar-24-ene 3-O-{[alpha-L-rhamnopyranosyl(1->2)][beta-D-xylopyranosyl(1->3)]-beta-D-glucopyranosyl}-21-O-beta-D-glucopyranoside

3beta,19,20S,21-tetrahydroxydammar-24-ene 3-O-{[alpha-L-rhamnopyranosyl(1->2)][beta-D-xylopyranosyl(1->3)]-beta-D-glucopyranosyl}-21-O-beta-D-glucopyranoside

C53H90O22 (1078.592344)


   

(25R)-26-(??-D-Glucopyranosyloxy)-22-methoxyfurost-5-en-3??-yl-O-??-L-rhamnopyranosyl-(1鈥樏傗垎2)-O-[??-D-glucopyranosyl-(1鈥樏傗垎6)]-??-D-glucopyranoside

(25R)-26-(??-D-Glucopyranosyloxy)-22-methoxyfurost-5-en-3??-yl-O-??-L-rhamnopyranosyl-(1鈥樏傗垎2)-O-[??-D-glucopyranosyl-(1鈥樏傗垎6)]-??-D-glucopyranoside

C52H86O23 (1078.5559606000002)


   
   
   

ginsenoside Rb2

2-({4,5-dihydroxy-2-[(16-hydroxy-2,6,6,10,11-pentamethyl-14-{6-methyl-2-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl)oxy]hept-5-en-2-yl}tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadecan-5-yl)oxy]-6-(hydroxymethyl)oxan-3-yl}oxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


Constituent of Panax ginseng (ginseng). Ginsenoside Rb3 is found in tea. Annotation level-1 [Raw Data] CB037_Ginsenoside-Rb2_pos_50eV_000003.txt [Raw Data] CB037_Ginsenoside-Rb2_pos_40eV_000003.txt [Raw Data] CB037_Ginsenoside-Rb2_pos_30eV_000003.txt [Raw Data] CB037_Ginsenoside-Rb2_pos_20eV_000003.txt [Raw Data] CB037_Ginsenoside-Rb2_pos_10eV_000003.txt Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression. Ginsenoside Rb2 has antiviral effects. Ginsenoside Rb2 is one of the main bioactive components of ginseng extracts. Rb2 can upregulate GPR120 gene expression. Ginsenoside Rb2 has antiviral effects.

   
   
   
   

3beta-{{O-[O-[beta-D-glucopyranosyl-(1->2)]-O-[beta-D-apiofuranosyl-(1->3)]]-beta-D-glucopyranosyl-(1->2)-alpha-L-arabinopyranosyl}oxy}lotogenin|lotoside A

3beta-{{O-[O-[beta-D-glucopyranosyl-(1->2)]-O-[beta-D-apiofuranosyl-(1->3)]]-beta-D-glucopyranosyl-(1->2)-alpha-L-arabinopyranosyl}oxy}lotogenin|lotoside A

C52H86O23 (1078.5559606000002)


   

2alpha,3beta,20(S)-trihydroxydammar-24-ene-3-O-[beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranosyl]-20-O-[beta-D-xylopyranosyl-(1->6)-beta-D-glucopyranoside]

2alpha,3beta,20(S)-trihydroxydammar-24-ene-3-O-[beta-D-glucopyranosyl-(1->2)-beta-D-glucopyranosyl]-20-O-[beta-D-xylopyranosyl-(1->6)-beta-D-glucopyranoside]

C53H90O22 (1078.592344)


   

3-O-{alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosyl-22alpha-methoxy-25R-furost-5-ene-3beta,17alpha,26-triol|lycianthoside A

3-O-{alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranosyl}-26-O-beta-D-glucopyranosyl-22alpha-methoxy-25R-furost-5-ene-3beta,17alpha,26-triol|lycianthoside A

C52H86O23 (1078.5559606000002)


   

26-O-beta-D-glucopyranosyl-(25S,20R)-20-O-methyl-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranoside|tuberoside F

26-O-beta-D-glucopyranosyl-(25S,20R)-20-O-methyl-5alpha-furost-22(23)-en-2alpha,3beta,20,26-tetraol 3-O-alpha-L-rhamnopyranosyl-(1->2)-[alpha-L-rhamnopyranosyl-(1->4)]-beta-D-glucopyranoside|tuberoside F

C52H86O23 (1078.5559606000002)


   

3-O-beta-D-xylopyranosyl-(1?6)-beta-D-glucopyranosyl-20-O-beta-D-glucopyranosyl-(1?6)-beta-D-glucopyranosyl-20(S)-protopanaxadiol|chikusetsusaponin VII

3-O-beta-D-xylopyranosyl-(1?6)-beta-D-glucopyranosyl-20-O-beta-D-glucopyranosyl-(1?6)-beta-D-glucopyranosyl-20(S)-protopanaxadiol|chikusetsusaponin VII

C53H90O22 (1078.592344)


   

6-{(1E,3E)-5-[(2S,3S,5R,6R)-5-{[(2Z,4S)-4-(acetyloxy)pent-2-enoyl]amino}-3,6-dimethyltetrahydro-2H-pyran-2-yl]-3-methylpenta-1,3-dien-1-yl}-4-C-[({[6-{(1E,3E)-5-[(2S,3S,5R,6R)-5-{[(2Z,4S)-4-(acetyloxy )pent-2-enoyl]amino}-3,6-dimethyltetrahydro-2H-pyran-2-yl]-3-methylpenta-1,3-dien-1-yl}-4-(chloromethyl)-4-hydroxytetrahydro-2H-pyran-2-yl]acetyl}oxy)methyl]-1-deoxyhex-2-ulopyranose

6-{(1E,3E)-5-[(2S,3S,5R,6R)-5-{[(2Z,4S)-4-(acetyloxy)pent-2-enoyl]amino}-3,6-dimethyltetrahydro-2H-pyran-2-yl]-3-methylpenta-1,3-dien-1-yl}-4-C-[({[6-{(1E,3E)-5-[(2S,3S,5R,6R)-5-{[(2Z,4S)-4-(acetyloxy )pent-2-enoyl]amino}-3,6-dimethyltetrahydro-2H-pyran-2-yl]-3-methylpenta-1,3-dien-1-yl}-4-(chloromethyl)-4-hydroxytetrahydro-2H-pyran-2-yl]acetyl}oxy)methyl]-1-deoxyhex-2-ulopyranose

C55H83ClN2O17 (1078.5379978)


   

(3beta,20S)-3,19,20,21-tetrahydroxydammar-24-ene 3-O-{[alpha-L-rhamnopyranosyl-(1-2)]-[beta-D-xylopyranosyl-(1-3)]-beta-D-glucopyranosyl}-21-O-beta-D-glucopyranoside

(3beta,20S)-3,19,20,21-tetrahydroxydammar-24-ene 3-O-{[alpha-L-rhamnopyranosyl-(1-2)]-[beta-D-xylopyranosyl-(1-3)]-beta-D-glucopyranosyl}-21-O-beta-D-glucopyranoside

C53H90O22 (1078.592344)


   

3-O-beta-D-xylopyranosyl(1->3)-[beta-D-galactopyranosyl(1->2)]-beta-D-methylglucuronopyranosyl-22-O-benzoylbarringtogenol C

3-O-beta-D-xylopyranosyl(1->3)-[beta-D-galactopyranosyl(1->2)]-beta-D-methylglucuronopyranosyl-22-O-benzoylbarringtogenol C

C55H82O21 (1078.5348322)


   

19-Oxo-3??,20S,21-trihydroxy-25-hydroperoxydammar-23-ene 3-O-{[??-L-rhamnopyranosyl(1鈥樏傗垎2)][??-D-xylopyranosyl(1鈥樏傗垎3)]-??-L-arabinopyranosyl}-21-O-??-D-glucopyranoside

19-Oxo-3??,20S,21-trihydroxy-25-hydroperoxydammar-23-ene 3-O-{[??-L-rhamnopyranosyl(1鈥樏傗垎2)][??-D-xylopyranosyl(1鈥樏傗垎3)]-??-L-arabinopyranosyl}-21-O-??-D-glucopyranoside

C52H86O23 (1078.5559606000002)


   

3beta-O-[beta-D-glucopyranosyl (1->3) alpha-L-rhamnopyranosyl (1->2) beta-D-glucopyranosyl (3->1) alpha-L-rhamnopyranosyl]-4alpha,23S,29-trihydroxy-30-nor-lanosta-8(9)-ene|feroxoside B

3beta-O-[beta-D-glucopyranosyl (1->3) alpha-L-rhamnopyranosyl (1->2) beta-D-glucopyranosyl (3->1) alpha-L-rhamnopyranosyl]-4alpha,23S,29-trihydroxy-30-nor-lanosta-8(9)-ene|feroxoside B

C53H90O22 (1078.592344)


   

Ginsenoside Rc

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3R,5S,8S,9S,10S,12S,13S,14S,17R)-17-[(2R)-2-[(2R,3S,4R,5R,6S)-6-[[(2S,3S,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


Annotation level-1 [Raw Data] CB038_Ginsenoside-Rc_pos_50eV_000004.txt [Raw Data] CB038_Ginsenoside-Rc_pos_40eV_000004.txt [Raw Data] CB038_Ginsenoside-Rc_pos_30eV_000004.txt [Raw Data] CB038_Ginsenoside-Rc_pos_20eV_000004.txt [Raw Data] CB038_Ginsenoside-Rc_pos_10eV_000004.txt Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β.

   

(25R)-26-[(??-L-Rhamnopyranosyl)oxy]-22??-methoxyfurost-5-en-3??-yl-O-??-D-glucopyranosyl-(1鈥樏傗垎3)-O-??-D-glucopyranosyl-(1鈥樏傗垎3)-O-??-D-glucopyranoside

(25R)-26-[(??-L-Rhamnopyranosyl)oxy]-22??-methoxyfurost-5-en-3??-yl-O-??-D-glucopyranosyl-(1鈥樏傗垎3)-O-??-D-glucopyranosyl-(1鈥樏傗垎3)-O-??-D-glucopyranoside

C52H86O23 (1078.5559606000002)


   

(25R)-O-beta-D-glucopyranosyl-22-O-methylfurost-5-ene-3beta,22xi,26-triol 3-O-2)-O-4)>-beta-D-glucopyranoside>|22-O-methyl-26-O-beta-D-glucopyranosyl-(25R)-furost-5-ene-3beta,22xi,26-triol 3-O--beta-D-glucopyranoside>|26-O-beta-D-glucopyranosyl-22-O-methylfurost-5-ene-3beta,26-diol 3-O-2)>-4)>-beta-D-glucopyranoside|26-O-beta-D-glucopyranosyl-22-O-methylfurost-5-ene-3beta,26-diol 3-O-[alpha-L-rhamnopyranosyl(1[*]2)]-[beta-D-glucopyranosyl(1[*]4)]-beta-D-glucopyranoside|methyl proto-deltonin

(25R)-O-beta-D-glucopyranosyl-22-O-methylfurost-5-ene-3beta,22xi,26-triol 3-O-2)-O-4)>-beta-D-glucopyranoside>|22-O-methyl-26-O-beta-D-glucopyranosyl-(25R)-furost-5-ene-3beta,22xi,26-triol 3-O--beta-D-glucopyranoside>|26-O-beta-D-glucopyranosyl-22-O-methylfurost-5-ene-3beta,26-diol 3-O-2)>-4)>-beta-D-glucopyranoside|26-O-beta-D-glucopyranosyl-22-O-methylfurost-5-ene-3beta,26-diol 3-O-[alpha-L-rhamnopyranosyl(1[*]2)]-[beta-D-glucopyranosyl(1[*]4)]-beta-D-glucopyranoside|methyl proto-deltonin

C52H86O23 (1078.5559606000002)


   

(25R)-26-[(beta-D-glucopyranosyl)oxy]-1alpha-hydroxy-22alpha-methoxyfurost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-[O-alpha-L-rhamnopyranosyl(1->4)]-beta-D-glucopyranoside

(25R)-26-[(beta-D-glucopyranosyl)oxy]-1alpha-hydroxy-22alpha-methoxyfurost-5-en-3beta-yl O-alpha-L-rhamnopyranosyl-(1->2)-[O-alpha-L-rhamnopyranosyl(1->4)]-beta-D-glucopyranoside

C52H86O23 (1078.5559606000002)


   
   

Panaxoside RC

2-[2-[[17-[2-[6-[[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β. Ginsenoside Rc, one of major Ginsenosides from Panax ginseng, enhances GABA receptorA (GABAA)-mediated ion channel currents (IGABA). Ginsenoside Rc inhibits the expression of TNF-α and IL-1β.

   
   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

NCGC00180704-02!(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,8R,10R,12R,14R,17S)-17-[(2S)-2-[(2S,3R,4S,5S,6R)-6-[[(2R,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

NCGC00180847-02!(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,8R,10R,12R,14R,17S)-17-[(2S)-2-[(2S,3R,4S,5S,6R)-6-[[(2R,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,8R,10R,12R,14R,17S)-17-[(2S)-2-[(2S,3R,4S,5S,6R)-6-[[(2R,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,8R,10R,12R,14R,17S)-17-[(2S)-2-[(2S,3R,4S,5S,6R)-6-[[(2R,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


   

N-[(3S,6S,9S,11R,15S,18S,20R,21R,24S,25S,26S)-3-[(1R)-2-carbamoyl-1-hydroxyethyl]-6-[(1S,2S)-1,2-dihydroxy-2-(4-hydroxyphenyl)ethyl]-11,20,21,25-tetrahydroxy-15-[(1R)-1-hydroxyethyl]-26-methyl-2,5,8,14,17,23-hexaoxo-1,4,7,13,16,22-hexaazatricyclo[22.3.0.0⁹,¹³]heptacosan-18-yl]-10,12-dimethyltetradecanamide

N-[(3S,6S,9S,11R,15S,18S,20R,21R,24S,25S,26S)-3-[(1R)-2-carbamoyl-1-hydroxyethyl]-6-[(1S,2S)-1,2-dihydroxy-2-(4-hydroxyphenyl)ethyl]-11,20,21,25-tetrahydroxy-15-[(1R)-1-hydroxyethyl]-26-methyl-2,5,8,14,17,23-hexaoxo-1,4,7,13,16,22-hexaazatricyclo[22.3.0.0⁹,¹³]heptacosan-18-yl]-10,12-dimethyltetradecanamide

C51H82N8O17 (1078.5797642)


   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol [IIN-based: Match]

NCGC00180704-02!(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol [IIN-based: Match]

C53H90O22 (1078.592344)


   

[IIN-based: Match]

NCGC00347717-02! [IIN-based: Match]

C51H82N8O17 (1078.5797642)


   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol [IIN-based on: CCMSLIB00000847353]

NCGC00180704-02!(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol [IIN-based on: CCMSLIB00000847353]

C53H90O22 (1078.592344)


   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,8R,10R,12R,14R,17S)-17-[(2S)-2-[(2S,3R,4S,5S,6R)-6-[[(2R,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol_major

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-2-[[(3S,8R,10R,12R,14R,17S)-17-[(2S)-2-[(2S,3R,4S,5S,6R)-6-[[(2R,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxymethyl]-3,4,5-trihydroxyoxan-2-yl]oxy-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol_major

C53H90O22 (1078.592344)


   

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol_major

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-2-[[(3S,8R,10R,12R,14R,17S)-12-hydroxy-4,4,8,10,14-pentamethyl-17-[(2S)-6-methyl-2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2S,3R,4S,5S)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxyhept-5-en-2-yl]-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol_major

C53H90O22 (1078.592344)


   

(R)-Ginsenoside Rg3

(R)-Ginsenoside Rg3

C53H90O22 (1078.592344)


   

M-Secociguatoxin 4A

16-[(1Z)-buta-1,3-dien-1-yl]-45-(3-hydroxypropyl)-43,44,49,54,58-pentamethyl-2,7,11,17,21,26,33,37,41,46,51,57-dodecaoxadodecacyclo[30.28.0.0^{3,27}.0^{6,25}.0^{8,22}.0^{10,20}.0^{12,18}.0^{34,58}.0^{36,56}.0^{38,52}.0^{40,50}.0^{42,47}]hexaconta-4,14,23,29-tetraene-19,45,48,59-tetrol

C60H86O17 (1078.5864706)


   

Arenaroside A

3-O-beta-d-glucopyranosyl-(1-2)-[beta-d-xylopyranosyl-(1-2)-beta-d-glucopyranosyl-(1-4)]-alpha-l-arabinopyranosyl-3beta,15alpha,16alpha,22alpha,28-pentahydroxyolean-12-ene

C52H86O23 (1078.5559606000002)


   

N-{(6S,9R,14aS,20S,23S,25aS)-20-[(1S)-3-Amino-1-hydroxy-3-oxopropyl]-23-[(1R)-1,2-dihydroxy-2-(4-hydroxyphenyl)ethyl]-2,11,12,15-tetrahydroxy-6-[(1S)-1-hydroxyethyl]-16-methyl-5,8,14,19,22,25-hexaoxotetracosahydro-1H-dipyrrolo[2,1-c:2,1-l][1,4,7,10,13,16]hexaazacyclohenicosin-9-yl}-10,12-dimethyltetradecanamide

N-{(6S,9R,14aS,20S,23S,25aS)-20-[(1S)-3-Amino-1-hydroxy-3-oxopropyl]-23-[(1R)-1,2-dihydroxy-2-(4-hydroxyphenyl)ethyl]-2,11,12,15-tetrahydroxy-6-[(1S)-1-hydroxyethyl]-16-methyl-5,8,14,19,22,25-hexaoxotetracosahydro-1H-dipyrrolo[2,1-c:2,1-l][1,4,7,10,13,16]hexaazacyclohenicosin-9-yl}-10,12-dimethyltetradecanamide

C51H82N8O17 (1078.5797642)


   
   
   
   
   

2-[O-(beta-D-glucopyranosyl)]-tylosin

2-[O-(beta-D-glucopyranosyl)]-tylosin

C52H88NO22+ (1078.5797688)


   

2-[4-hydroxy-6-[[(6Z)-15-hydroxy-7-methoxy-7,9,13-trimethyl-6-[3-methyl-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutylidene]-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosan-16-yl]oxy]-2-(hydroxymethyl)-5-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

2-[4-hydroxy-6-[[(6Z)-15-hydroxy-7-methoxy-7,9,13-trimethyl-6-[3-methyl-4-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxybutylidene]-5-oxapentacyclo[10.8.0.02,9.04,8.013,18]icosan-16-yl]oxy]-2-(hydroxymethyl)-5-(3,4,5-trihydroxy-6-methyloxan-2-yl)oxyoxan-3-yl]oxy-6-methyloxane-3,4,5-triol

C52H86O23 (1078.5559606000002)


   

PIP(22:3(10Z,13Z,16Z)/PGE2)

PIP(22:3(10Z,13Z,16Z)/PGE2)

C52H88O19P2 (1078.5394758)


   

PIP(PGE2/22:3(10Z,13Z,16Z))

PIP(PGE2/22:3(10Z,13Z,16Z))

C52H88O19P2 (1078.5394758)


   

PIP(22:3(10Z,13Z,16Z)/PGD2)

PIP(22:3(10Z,13Z,16Z)/PGD2)

C52H88O19P2 (1078.5394758)


   

PIP(PGD2/22:3(10Z,13Z,16Z))

PIP(PGD2/22:3(10Z,13Z,16Z))

C52H88O19P2 (1078.5394758)


   

PIP(22:3(10Z,13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

PIP(22:3(10Z,13Z,16Z)/20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S))

C52H88O19P2 (1078.5394758)


   

PIP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:3(10Z,13Z,16Z))

PIP(20:4(7E,9E,11Z,13E)-3OH(5S,6R,15S)/22:3(10Z,13Z,16Z))

C52H88O19P2 (1078.5394758)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-3,6,9,12,15,18,21-heptaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,12Z,15Z,18Z)-tetracosa-9,12,15,18-tetraenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(3Z,6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-3,6,9,12,15,18,21-heptaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,12Z,15Z,18Z)-tetracosa-9,12,15,18-tetraenoate

C57H92O15P2 (1078.5911142)


   

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[hydroxy-[2-hydroxy-3-[(6Z,9Z,12Z,15Z,18Z,21Z)-tetracosa-6,9,12,15,18,21-hexaenoyl]oxypropoxy]phosphoryl]oxypropoxy]phosphoryl]oxypropyl] (9Z,12Z,15Z,18Z,21Z)-tetracosa-9,12,15,18,21-pentaenoate

C57H92O15P2 (1078.5911142)


   
   

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-[[12-hydroxy-4,4,10,14-tetramethyl-17-[(E)-6-methyl-2-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoct-5-en-2-yl]-1,2,3,5,6,7,8,9,11,12,13,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

2-[4,5-dihydroxy-6-(hydroxymethyl)-2-[[12-hydroxy-4,4,10,14-tetramethyl-17-[(E)-6-methyl-2-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoct-5-en-2-yl]-1,2,3,5,6,7,8,9,11,12,13,15,16,17-tetradecahydrocyclopenta[a]phenanthren-3-yl]oxy]oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)


   

2-[[2-[[17-[2-[[6-[[3,4-dihydroxy-5-(hydroxymethyl)-2-oxolanyl]oxymethyl]-3,4,5-trihydroxy-2-oxanyl]oxy]-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)-3-oxanyl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[[2-[[17-[2-[[6-[[3,4-dihydroxy-5-(hydroxymethyl)-2-oxolanyl]oxymethyl]-3,4,5-trihydroxy-2-oxanyl]oxy]-6-methylhept-5-en-2-yl]-12-hydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-4,5-dihydroxy-6-(hydroxymethyl)-3-oxanyl]oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C53H90O22 (1078.592344)