Classification Term: 641
Hydroxypyrimidines (ontology term: CHEMONTID:0004161)
Organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions." []
found 23 associated metabolites at category
metabolite taxonomy ontology rank level.
Ancestor: Pyrimidines and pyrimidine derivatives
Child Taxonomies: There is no child term of current ontology term.
5-Methylcytosine
5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties.; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. Its function varies significantly among species:; A methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem. 5-Methylcytosine is a methylated nucleotide base found in eukaryotic DNA. In animals, the DNA methylation of cytosine to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In plants, the methylated sequence is CpNpGp, where N can be any base. -- Pubchem; 5-Methylcytosine is a methylated form of cytosine in which a methyl group is attached to carbon 5, altering its structure without altering its base-pairing properties. -- Wikipedia; 5-Methylcytosine is an epigenetic modification formed by the action of DNA methyltransferases. In bacteria, 5-methylcytosine can be found at a variety of sites, and is often used as a marker to protect DNA from being cut by native methylation-sensitive restriction enzymes. In plants, 5-methylcytosine occurs at both CpG and CpNpG sequences. In fungi and animals, 5-methylcytosine predominately occurs at CpG dinucleotides. Although most eukaryotes methylate only a small percentage of these sites, in vertebrates 70-80\\\% of CpG cytosines are methylated. -- Wikipedia. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID M029 5-Methylcytosine is a well-characterized DNA modification, and is also predominantly in abundant non-coding RNAs in both prokaryotes and eukaryotes. 5-Methylcytosine in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development[1].
Thymine
Thymine, also known as 5-methyluracil, belongs to the class of organic compounds known as hydroxypyrimidines. These are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. Thymine was first isolated in 1893 by Albrecht Kossel and Albert Neumann from calves thymus glands, hence its name. Thymine is one of the 4 nuelcoebases found in DNA and is essential to all life. Thymine exists in all living species, ranging from bacteria to plants to humans. Thymine combined with deoxyribose creates the nucleoside deoxythymidine (also called thymidine) which when phosphorylated to dTDP can be incorporated into DNA via DNA polymerases. Thymidine can be phosphorylated with up to three phosphoric acid groups, producing dTMP (deoxythymidine monophosphate) dTDP and/or dTTP. In RNA thymine is replaced with uracil in most cases. In DNA, thymine binds to adenine via two hydrogen bonds to assist in stabilizing the nucleic acid structures. Within humans, thymine participates in a number of enzymatic reactions. In particular, thymine and deoxyribose 1-phosphate can be biosynthesized from thymidine through its interaction with the enzyme thymidine phosphorylase. In addition, thymine can be converted into dihydrothymine; which is mediated by the enzyme dihydropyrimidine dehydrogenase [NADP(+)]. One of the pyrimidine bases of living matter. Derivation: Hydrolysis of deoxyribonucleic acid, from methylcyanoacetylurea by catalytic reduction. Use: Biochemical research. (Hawleys Condensed Chemical Dictionary) Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus KEIO_ID T015 Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM. Thymine is one of the four nucleobases in the nucleic acid of DNA and can be a target for actions of 5-fluorouracil (5-FU) in cancer treatment, with a Km of 2.3 μM.
2,6-Diamino-4-hydroxy-5-N-methylformamidopyrimidine
2,6-Diamino-4-hydroxy-5-N-methylformamidopyrimidine is a methylated derivative of 2,6-Diamino-4-hydroxy-5-N-formamidopyrimidine or FapyGua. It is produced by DNA-formamidopyrimidine glycosylase (EC 3.2.2.23). This enzyme catalyzes the hydrolysis of DNA containing ring-opened 7-methylguanine residues, releasing 2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine. More specifically, this enzyme catalyzes the removal of oxidized purine bases by cleaving the N-C1 glycosidic bond between the oxidized purine and the deoxyribose sugar. The reaction involves the formation of a covalent enzyme substrate intermediate. Release of the enzyme and free base by a beta-elimination or a beta, gamma-elimination mechanism results in the cleavage of the DNA backbone 3 of the apurinic (AP) site. The presence of this compound in urine is indicative of oxidative damage to DNA (oxidized purine base lesions) [HMDB] 2,6-Diamino-4-hydroxy-5-N-methylformamidopyrimidine is a methylated derivative of 2,6-Diamino-4-hydroxy-5-N-formamidopyrimidine or FapyGua. It is produced by DNA-formamidopyrimidine glycosylase (EC 3.2.2.23). This enzyme catalyzes the hydrolysis of DNA containing ring-opened 7-methylguanine residues, releasing 2,6-diamino-4-hydroxy-5-(N-methyl)formamidopyrimidine. More specifically, this enzyme catalyzes the removal of oxidized purine bases by cleaving the N-C1 glycosidic bond between the oxidized purine and the deoxyribose sugar. The reaction involves the formation of a covalent enzyme substrate intermediate. Release of the enzyme and free base by a beta-elimination or a beta, gamma-elimination mechanism results in the cleavage of the DNA backbone 3 of the apurinic (AP) site. The presence of this compound in urine is indicative of oxidative damage to DNA (oxidized purine base lesions).
5-Acetylamino-6-formylamino-3-methyluracil
5-Acetylamino-6-formylamino-3-methyluracil participates in Caffeine metabolism. 5-Acetylamino-6-formylamino-3-methyluracil is converted from paraxanthine via arylamine N-acetyltransferase [EC:2.3.1.5] [HMDB] 5-Acetylamino-6-formylamino-3-methyluracil participates in Caffeine metabolism. 5-Acetylamino-6-formylamino-3-methyluracil is converted from paraxanthine via arylamine N-acetyltransferase [EC:2.3.1.5].
6-Dehydrotestosterone glucuronide
6-Dehydrotestosterone glucuronide is a natural human metabolite of 6-dehydrotestosterone generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys.
1,3-Diethyl-6-hydroxy-2-sulfanylidenepyrimidin-4-one
5'-Iododeoxyuridine
Zidovudine monophosphate
Gemctitabine
Cytidine, 2'-deoxy-2',2'-difluoro-N-(1-oxo-2-propylpentyl)-
N-[(5-{2-[(6R)-2-Amino-4-oxo-3,4,5,6,7,8-hexahydropyrido[2,3-D]pyrimidin-6-YL]ethyl}-2-thienyl)carbonyl]-L-glutamic acid
2-(6-Hydroxy-4-oxo-2-sulfanylidene-1H-pyrimidin-5-yl)propanedial
5-Hydroxyuracil
5-hydroxyuracil, also known as dihydropyrimidine-2,4,5(3h)-trione or isobarbituric acid, is a member of the class of compounds known as hydroxypyrimidines. Hydroxypyrimidines are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 5-hydroxyuracil is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-hydroxyuracil can be found in broad bean, which makes 5-hydroxyuracil a potential biomarker for the consumption of this food product. 5-hydroxyuracil is an oxidized form of cytosine that is produced by the oxidative deamination of cytosines by reactive oxygen species. It does not distort the DNA molecule and is bypassed by replicative DNA polymerases. It can miscode for adenine and is potentially mutagenic .
2,4-Diamino-5,6-dihydroxypyrimidine
2,4-diamino-5,6-dihydroxypyrimidine is a member of the class of compounds known as hydroxypyrimidines. Hydroxypyrimidines are organic compounds containing a hydroxyl group attached to a pyrimidine ring. Pyrimidine is a 6-membered ring consisting of four carbon atoms and two nitrogen centers at the 1- and 3- ring positions. 2,4-diamino-5,6-dihydroxypyrimidine can be found in broad bean, which makes 2,4-diamino-5,6-dihydroxypyrimidine a potential biomarker for the consumption of this food product.