Classification Term: 1798

Hydroxyeicosapentaenoic acids (ontology term: CHEMONTID:0000214)

Eicosanoic acids with an attached hydroxyl group and five CC double bonds." []

found 24 associated metabolites at category metabolite taxonomy ontology rank level.

Ancestor: Eicosanoids

Child Taxonomies: There is no child term of current ontology term.

18R-hydroxy-5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid

(5Z,8Z,11Z,14Z,16E,18R)-18-hydroxyicosa-5,8,11,14,16-pentaenoic acid

C20H30O3 (318.2195)


18R-hydroxy-5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid is also known as 18-HEPE or 18(R)-Hydroxyeicosa-5Z,8Z,11E,14Z,16E-pentaenoate. 18R-hydroxy-5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid is considered to be practically insoluble (in water) and acidic. 18R-hydroxy-5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid is an eicosanoid lipid molecule

   

Resolvin E1

(6Z,8E,10E,14Z,16E)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoic acid

C20H30O5 (350.2093)


Resolvin E1 is a resolvin, a bioactive oxygenated product of EPA (eicosapentaenoic acid). It is a inflammation-resolving lipid mediator. RvE1 reduces neutrophil hyper-function, it also prevents the initiation and progression of tissue destruction (PMID: 16373400). RvE1, can also act as a host response modulator in the control of the inflammatory diseases that also involve bone loss such as periodontitis and arthritis. RvE1 has been shown to display specific binding sites on human neutrophils with an apparent Kd of 47 nM (PMID: 15753205; 16373400). RvE1 is a potent modulator of leukocytes as well as selective platelet responses in blood and platelet-rich plasma (PMID: 18480426). [HMDB] Resolvin E1 is a resolvin, a bioactive oxygenated product of EPA (eicosapentaenoic acid). It is a inflammation-resolving lipid mediator. RvE1 reduces neutrophil hyper-function, it also prevents the initiation and progression of tissue destruction (PMID: 16373400). RvE1, can also act as a host response modulator in the control of the inflammatory diseases that also involve bone loss such as periodontitis and arthritis. RvE1 has been shown to display specific binding sites on human neutrophils with an apparent Kd of 47 nM (PMID: 15753205; 16373400). RvE1 is a potent modulator of leukocytes as well as selective platelet responses in blood and platelet-rich plasma (PMID: 18480426).

   

12-HEPE

(5Z,8Z,10E,14Z,17Z)-12-Hydroxyeicosa-5,8,10,14,17-pentaenoic acid

C20H30O3 (318.2195)


12-HEPE is hydroxy derivative of 12-lipoxygenase metabolites of Eicosapentaenoic acid (EPA). 12S-HEPE participates in platelet-neutrophil interactions in a manner similar to 12S-HETE. It can also compete with endogenous arachidonic acid for 5-lipoxygenation in stimulated human neutrophils. By providing competing substrates for neutrophil 5-lipoxygenase, platelets might contribute to the antiinflammatory potential of dietary n-3 fatty acids through platelet-neutrophil interaction. ( PMID: 2116491) [HMDB] 12-HEPE is hydroxy derivative of 12-lipoxygenase metabolites of Eicosapentaenoic acid (EPA). 12S-HEPE participates in platelet-neutrophil interactions in a manner similar to 12S-HETE. It can also compete with endogenous arachidonic acid for 5-lipoxygenation in stimulated human neutrophils. By providing competing substrates for neutrophil 5-lipoxygenase, platelets might contribute to the antiinflammatory potential of dietary n-3 fatty acids through platelet-neutrophil interaction. ( PMID: 2116491).

   

15R-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid

(5Z,8Z,11Z,13E,15R,17Z)-15-hydroxyicosa-5,8,11,13,17-pentaenoic acid

C20H30O3 (318.2195)


15R-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid is also known as 15R-HEPE. 15R-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid is considered to be practically insoluble (in water) and acidic. 15R-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid is an eicosanoid lipid molecule

   

18R-HEPE

(5Z,8Z,11E,14Z,16E,18S)-18-hydroxyicosa-5,8,11,14,16-pentaenoic acid

C20H30O3 (318.2195)


18R-HEPE which is the R form of 18(+/-)-HEPE, is produced by non-enzymatic oxidation of EPA. [HMDB] 18R-HEPE which is the R form of 18(+/-)-HEPE, is produced by non-enzymatic oxidation of EPA.

   

5-HEPE

(6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoic acid

C20H30O3 (318.2195)


5-HEPE is a major eicosanoid formed from eicosapentaenoic acid (EPA). 5-HEPE is produced in human neutrophils. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. (PMID: 8847485, 15896193) [HMDB] 5-HEPE is a major eicosanoid formed from eicosapentaenoic acid (EPA). 5-HEPE is produced in human neutrophils. The eicosanoids are a diverse family of molecules that have powerful effects on cell function. They are best known as intercellular messengers, having autocrine and paracrine effects following their secretion from the cells that synthesize them. The diversity of possible products that can be synthesized from eicosatrienoic acid is due, in part to the variety of enzymes that can act on it. Studies have placed many, but not all, of these enzymes at or inside the nucleus. In some cases, the nuclear import or export of eicosatrienoic acid-processing enzymes is highly regulated. Furthermore, nuclear receptors that are activated by specific eicosanoids are known to exist. (PMID: 8847485, 15896193).

   

Leukotriene B5

(5S,6Z,8E,10E,12R,14Z,17Z)-5,12-dihydroxyicosa-6,8,10,14,17-pentaenoic acid

C20H30O4 (334.2144)


Leukotriene B5 (LTB5) is a 5-lipoxygenase metabolite of arachidonic (AA) and eicosapentaenoic acid (EPA), involved in numerous inflammatory diseases and possesses a substantially less potent inflammatory effect than LTB4. Binding of LTB5 to human neutrophil LTB4 high affinity binding sites is lower than that of LTB4. Polymorphonuclear leukocytes isolated from volunteers who ingested eicosapentaenoic acid (EPA) form LTB5. Enrichment of human neutrophils with EPA, by dietary supplementation for at least 3 weeks, reduces their formation of LTB4 ex vivo. LTB5 is catabolized to 20-OH-LTB5, which in turn is metabolized to 20-COOH-LTB5. Presumably the same enzyme systems are involved in the catabolism of LTB5 that are responsible for catabolism of LTB4. Fish oil supplementation has a protective effect on exercise-induced bronchoconstriction (EIB) in elite athletes, which may be attributed to its antiinflammatory properties due to a significant reduction in LTB4 and a significant increase in LTB5 generation from activated polymorphonuclear leukocytes (PMNLs). (PMID: 1964169, 15866528, 2538061, 16424411). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene B5 (LTB5) is a 5-lipoxygenase metabolite of arachidonic (AA) and eicosapentaenoic acid (EPA), involved in numerous inflammatory diseases and possesses a substantially less potent inflammatory effect than LTB4. Binding of LTB5 to human neutrophil LTB4 high affinity binding sites is lower than that of LTB4. Polymorphonuclear leukocytes isolated from volunteers who ingested eicosapentaenoic acid (EPA) form LTB5. Enrichment of human neutrophils with EPA, by dietary supplementation for at least 3 weeks, reduces their formation of LTB4 ex vivo. LTB5 is catabolized to 20-OH-LTB5, which in turn is metabolized to 20-COOH-LTB5. Presumably the same enzyme systems are involved in the catabolism of LTB5 that are responsible for catabolism of LTB4. Fish oil supplementation has a protective effect on exercise-induced bronchoconstriction (EIB) in elite athletes, which may be attributed to its antiinflammatory properties due to a significant reduction in LTB4 and a significant increase in LTB5 generation from activated polymorphonuclear leukocytes (PMNLs). (PMID: 1964169, 15866528, 2538061, 16424411)

   

9-HEPE

(5E,7E,11E,14E,17E)-9-hydroxyicosa-5,7,11,14,17-pentaenoic acid

C20H30O3 (318.2195)


9-HEPE is produced by non-enzymatic oxidation of EPA. It contains equal amounts of 9(S)-HEPE and 9(R)-HEPE. The biological activity of (±)9-HEPE has not been clearly documented. (http://www.caymanchem.com)

   

Leukotriene D5

(5R,6S,7E,9E,11Z,14Z,17Z)-6-{[(2R)-2-amino-2-[(carboxymethyl)carbamoyl]ethyl]sulfanyl}-5-hydroxyicosa-7,9,11,14,17-pentaenoic acid

C25H38N2O6S (494.245)


leukotriene D5 is coverted from 5-hydroxy-6-S-glutathionyl-7,9,11,14,17-eicosapentaenoic acid (leukotriene C5) by gamma-glutamyl transpeptidase. Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. leukotriene D5 is coverted from 5-hydroxy-6-S-glutathionyl-7,9,11,14,17-eicosapentaenoic acid (leukotriene C5) by gamma-glutamyl transpeptidase

   

15-Epi-lipoxin B5

(5R,6E,8Z,10E,12E,14R,15R,17Z)-5,14,15-trihydroxyicosa-6,8,10,12,17-pentaenoic acid

C20H30O5 (350.2093)


15-epi-lipoxin B5 is a lipoxin derivative. Lipoxins (LXs) and aspirin-triggered Lipoxin (ATL) are trihydroxytetraene-containing eicosanoids generated from arachidonic acid that are distinct in structure, formation, and function from the many other proinflammatory lipid-derived mediators. These endogenous eicosanoids have now emerged as founding members of the first class of lipid/chemical mediators involved in the resolution of the inflammatory response. Lipoxin A4 (LXA4), ATL, and their metabolic stable analogs elicit cellular responses and regulate leukocyte trafficking in vivo by activating the specific receptor, ALX. Many of the eicosanoids derived from arachidonic acid (AA2), including prostaglandins (PGs) and leukotrienes (LTs), play important roles as local mediators exerting a wide range of actions relevant in immune hypersensitivity and inflammation. However, recent observations indicate that other agents derived from the lipoxygenase (LO) pathways are formed and play a key role in initiating the resolution of acute inflammation. This phenomenon is an active process that is governed by specific lipid mediators and involves a series of well-orchestrated temporal events. Thus, potent locally released mediators serve as checkpoint controllers of inflammation. In addition to the well-appreciated ability of aspirin to inhibit PGs, aspirin also acetylates cyclooxygenase (COX)-2, triggering the formation of a 15-epimeric form of lipoxins, termed aspirin-triggered LXA4 (ATL). These eicosanoids (i.e., LXA4 and ATL) with a unique trihydroxytetraene structure function as stop signals in inflammation and actively participate in dampening host responses to bring the inflammation to a close, namely, resolution. LXA4 and ATL elicit the multicellular responses via a specific G protein-coupled receptor (GPCR) termed ALX that has been identified in human. (PMID: 16968948, 11478982). 15-epi-lipoxin B5 is a lipoxin derivative

   

11R-HEPE

(5Z,8Z,11R,12E,14Z,17Z)-11-hydroxyicosa-5,8,12,14,17-pentaenoic acid

C20H30O3 (318.2195)


11(R)-HEPE is produced by the oxidation of EPA by 11(R)-LO. This enzymatic activity and the resulting 11(R)-hydroxy acid have been isolated from the sea urchin S. purpuratus [HMDB] 11(R)-HEPE is produced by the oxidation of EPA by 11(R)-LO. This enzymatic activity and the resulting 11(R)-hydroxy acid have been isolated from the sea urchin S. purpuratus.

   

15-HEPE

(5Z,8Z,11Z,13E,17Z)-16-hydroxyicosa-5,8,11,13,17-pentaenoic acid

C20H30O3 (318.2195)


15-HEPE has been identified as a possible anti-inflammatory metabolite, and its elevated presence in the epidermis of animals fed oils rich in 20:5(n-3) or 18:3(n-6) may provide a mechanism for the beneficial effects of these oils on inflammatory conditions. 15-HEPE is a metabolite of eicosapentaenoic acid (EPA) which has anti-inflammatory properties and plays an important role in the resolution phase of inflammation. 15-HEPE is deposited in the epidermis, particularly in the metabolically active basal layer. This is considered advantageous in psoriasis therapy. (PMID: 17540633, 2106017) [HMDB] 15-HEPE has been identified as a possible anti-inflammatory metabolite, and its elevated presence in the epidermis of animals fed oils rich in 20:5(n-3) or 18:3(n-6) may provide a mechanism for the beneficial effects of these oils on inflammatory conditions. 15-HEPE is a metabolite of eicosapentaenoic acid (EPA) which has anti-inflammatory properties and plays an important role in the resolution phase of inflammation. 15-HEPE is deposited in the epidermis, particularly in the metabolically active basal layer. This is considered advantageous in psoriasis therapy. (PMID: 17540633, 2106017).

   

5,12,18R-TriHEPE

(5R,6E,8Z,10E,12S,14Z,16E,18R)-5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoic acid

C20H30O5 (350.2093)


This compound belongs to the family of Leukotrienes. These are eicosanoids containing an hydroxyl group attached to the aliphati chain of an arachidonic acid.

   

15S-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid

(5Z,8Z,11Z,13E,15S,17Z)-15-hydroxyicosa-5,8,11,13,17-pentaenoic acid

C20H30O3 (318.2195)


15S-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid, also known as 15S-HEPE, is classified as a member of the Hydroxyeicosapentaenoic acids. Hydroxyeicosapentaenoic acids are eicosanoic acids with an attached hydroxyl group and five CC double bonds. 15S-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid is considered to be practically insoluble (in water) and acidic. 15S-hydroxy-5Z,8Z,11Z,13E,17Z-eicosapentaenoic acid is an eicosanoid lipid molecule

   

5S-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid

(5S,6E,8Z,11Z,14Z,17Z)-5-hydroxyicosa-6,8,11,14,17-pentaenoic acid

C20H30O3 (318.2195)


5S-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid is classified as a member of the Hydroxyeicosapentaenoic acids. Hydroxyeicosapentaenoic acids are eicosanoic acids with an attached hydroxyl group and five CC double bonds. 5S-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid is considered to be practically insoluble (in water) and acidic. 5S-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid is an eicosanoid lipid molecule

   

5,12-dihydroxy-6,8,10,14,17-eicosapentaenoic acid

(6E,8E,10E,14E,17E)-5,12-dihydroxyicosa-6,8,10,14,17-pentaenoic acid

C20H30O4 (334.2144)


5,12-dihydroxy-6,8,10,14,17-eicosapentaenoic acid, also known as LTB 5 or Leukotriene b5, is classified as a member of the Hydroxyeicosapentaenoic acids. Hydroxyeicosapentaenoic acids are eicosanoic acids with an attached hydroxyl group and five CC double bonds. 5,12-dihydroxy-6,8,10,14,17-eicosapentaenoic acid is considered to be practically insoluble (in water) and acidic

   

(+/-)-18-Hydroxy-5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid

(+/-)-18-hydroxy-5Z,8Z,11Z,14Z,16E-eicosapentaenoic acid

C20H30O3 (318.2195)


   

(+/-)-8-Hydroxy-5Z,9E,11Z,14Z,17Z-eicosapentaenoic acid

(+/-)-8-hydroxy-5Z,9E,11Z,14Z,17Z-eicosapentaenoic acid

C20H30O3 (318.2195)


   

12S-Hepe

12-Hydroxy-5,8,10,14,17-eicospentaenoic acid, (e,Z,Z,Z,Z)-isomer

C20H30O3 (318.2195)


   

(5S,12R)-5,12-Dihydroxyicosa-6,8,10,14,17-pentaenoic acid

5,12-dihydroxyicosa-6,8,10,14,17-pentaenoic acid

C20H30O4 (334.2144)


   

Resolvin E2

5,18-dihydroxyicosa-6,8,11,14,16-pentaenoic acid

C20H30O4 (334.2144)


   

Resolvin E3

17,18-dihydroxyicosa-5,8,11,13,15-pentaenoic acid

C20H30O4 (334.2144)


   

18-Hydroxyeicosapentaenoic acid

18-hydroxyicosa-2,4,6,8,10-pentaenoic acid

C20H30O3 (318.2195)


   

(5S,12R,18R)-5,12,18-Trihydroxyicosa-6,8,10,14,16-pentaenoic acid

5,12,18-trihydroxyicosa-6,8,10,14,16-pentaenoic acid

C20H30O5 (350.2093)