Uvaol (BioDeep_00000017373)
Secondary id: BioDeep_00000287597
human metabolite PANOMIX_OTCML-2023 Endogenous natural product
代谢物信息卡片
化学式: C30H50O2 (442.3811)
中文名称: 乌发醇
谱图信息:
最多检出来源 Viridiplantae(plant) 24.84%
分子结构信息
SMILES: C1[C@@H](C([C@H]2[C@](C1)([C@@H]1[C@@](CC2)([C@]2(C(=CC1)[C@H]1[C@@](CC2)(CC[C@H]([C@@H]1C)C)CO)C)C)C)(C)C)O
InChI: InChI=1S/C30H50O2/c1-19-10-15-30(18-31)17-16-28(6)21(25(30)20(19)2)8-9-23-27(5)13-12-24(32)26(3,4)22(27)11-14-29(23,28)7/h8,19-20,22-25,31-32H,9-18H2,1-7H3/t19-,20+,22+,23-,24+,25+,27+,28-,29-,30-/m1/s1
描述信息
Uvaol is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Uvaol exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID:17292619).
Uvaol is a triterpenoid. It has a role as a metabolite.
Uvaol is a natural product found in Salacia chinensis, Debregeasia saeneb, and other organisms with data available.
Constituent of olive oil and Osmanthus fragrans (sweet osmanthus)
A natural product found in Rhododendron ferrugineum.
Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1].
Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1].
同义名列表
25 个代谢物同义名
(3S,4aR,6aR,6bS,8aS,11R,12S,12aS,14aR,14bR)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol; (3S,4aR,6aR,6bS,8aS,11R,12S,12aS,14bR)-8a-Hydroxymethyl-4,4,6a,6b,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol; (3S,4aR,6aR,6bS,8aS,11R,12S,12aS,14aR,14bR)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1H-picen-3-ol; Urs-12-ene-3,28-diol, (3.beta.)-; Urs-12-ene-3,28-diol, (3.beta.); 3-beta,28-Dihydroxy-urs-12-ene; (3.beta.)-Urs-12-ene-3,28-diol; 3.BETA.,28-DIHYDROXYURS-12-ENE; (3beta)-Urs-12-ene-3,28-diol; 3beta,28-Dihydroxyurs-12-ene; Urs-12-ene-3,28-diol, (3b)-; URS-12-ENE-3.BETA.,28-DIOL; URS-12-EN-3.BETA.,28-DIOL; urs-12-ene-3 beta,28-diol; 3,28-DIHYDROXYURS-12-ENE; Urs-12-ene-3beta,28-diol; Urs-12-ene-3,28-diol; BCBcMAP01_000233; Uvaol, >=95\\%; SMP1_000309; Uvaol (AS); UVALOL; Uvaol; MCULE-1620592725; Uvaol
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:67894
- PubChem: 92802
- PubChem: 3266408
- HMDB: HMDB0002391
- ChEMBL: CHEMBL399873
- MeSH: uvaol
- ChemIDplus: 0000545460
- MetaCyc: CPD-14494
- KNApSAcK: C00032467
- foodb: FDB013518
- chemspider: 83774
- CAS: 545-46-0
- medchemexpress: HY-N1109
- PMhub: MS000029269
- MetaboLights: MTBLC67894
- HERB: HBIN000984
- LOTUS: LTS0008025
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
88 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(2)
- ursolate biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
- ursolate biosynthesis:
H+ + NADPH + O2 + uvaol ⟶ H2O + NADP+ + ursolic aldehyde
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(86)
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
- ursolate biosynthesis:
H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
- ursolate biosynthesis:
H+ + NADPH + O2 + ursolic aldehyde ⟶ H2O + NADP+ + ursolate
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
O2 + a reduced [NADPH-hemoprotein reductase] + uvaol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + ursolic aldehyde
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
- ursolate biosynthesis:
α-amyrin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + uvaol
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
255 个相关的物种来源信息
- 58507 - Alibertia: LTS0008025
- 58508 - Alibertia edulis:
- 58508 - Alibertia edulis: 10.1016/S0031-9422(00)89654-5
- 58508 - Alibertia edulis: 10.1590/S0100-40422003000500003
- 58508 - Alibertia edulis: LTS0008025
- 4056 - Apocynaceae: LTS0008025
- 4294 - Aquifoliaceae: LTS0008025
- 83607 - Arctostaphylos: LTS0008025
- 143365 - Arctostaphylos columbiana: 10.1002/JPS.2600551210
- 143365 - Arctostaphylos columbiana: LTS0008025
- 89200 - Arctostaphylos patula: 10.1002/JPS.2600551210
- 89200 - Arctostaphylos patula: LTS0008025
- 4210 - Asteraceae: LTS0008025
- 41487 - Baccharis: LTS0008025
- 2707402 - Baccharis coridifolia: 10.1055/S-2007-969601
- 2707402 - Baccharis coridifolia: LTS0008025
- 72900 - Baccharis dracunculifolia: 10.1016/J.FITOTE.2009.06.007
- 72900 - Baccharis dracunculifolia: LTS0008025
- 29600 - Blechnaceae: LTS0008025
- 73722 - Callistemon: LTS0008025
- 376184 - Callistemon citrinus: 10.1055/S-2006-957706
- 155884 - Callistemon lanceolatus: 10.1055/S-2006-957706
- 155884 - Callistemon lanceolatus: LTS0008025
- 13384 - Calluna: LTS0008025
- 13385 - Calluna vulgaris: 10.1007/BF00598555
- 13385 - Calluna vulgaris: LTS0008025
- 4305 - Celastraceae: LTS0008025
- 22973 - Chrysobalanaceae: LTS0008025
- 23159 - Crataegus: LTS0008025
- 140997 - Crataegus monogyna: 10.1016/S0031-9422(00)00250-8
- 140997 - Crataegus monogyna: LTS0008025
- 510735 - Crataegus pinnatifida:
- 510735 - Crataegus pinnatifida: 10.1055/S-2006-960474
- 510735 - Crataegus pinnatifida: 10.1055/S-2006-960792
- 510735 - Crataegus pinnatifida: LTS0008025
- 36609 - Cydonia: LTS0008025
- 36610 - Cydonia oblonga: 10.1016/J.FOODCHEM.2009.04.098
- 36610 - Cydonia oblonga: LTS0008025
- 204971 - Cylicodiscus: LTS0008025
- 204972 - Cylicodiscus gabunensis: 10.1248/CPB.58.1100
- 204972 - Cylicodiscus gabunensis: LTS0008025
- 210329 - Debregeasia: LTS0008025
- 1037061 - Debregeasia saeneb: 10.1080/10575630290033088
- 210330 - Debregeasia salicifolia: 10.1080/10575630290033088
- 210330 - Debregeasia salicifolia: LTS0008025
- 13492 - Diospyros: 10.1016/S0031-9422(97)01020-0
- 13492 - Diospyros: LTS0008025
- 983402 - Diospyros argentea: 10.1016/S0031-9422(00)80490-2
- 983402 - Diospyros argentea: LTS0008025
- 1932074 - Diospyros blancoi: 10.1016/S0031-9422(00)80490-2
- 1932074 - Diospyros blancoi: LTS0008025
- 268838 - Diospyros discolor: 10.1016/S0031-9422(00)80490-2
- 268838 - Diospyros discolor: LTS0008025
- 35925 - Diospyros kaki:
- 35925 - Diospyros kaki: 10.1007/S10600-012-0104-9
- 35925 - Diospyros kaki: 10.1016/S0009-8981(02)00021-9
- 35925 - Diospyros kaki: 10.1016/S0031-9422(97)01020-0
- 35925 - Diospyros kaki: 10.1021/NP980217V
- 35925 - Diospyros kaki: LTS0008025
- 55363 - Diospyros lotus:
- 55363 - Diospyros lotus: 10.1016/S0031-9422(00)80490-2
- 55363 - Diospyros lotus: 10.1016/S0031-9422(97)01020-0
- 55363 - Diospyros lotus: 10.1021/NP980217V
- 55363 - Diospyros lotus: LTS0008025
- 413754 - Diospyros maingayi:
- 413754 - Diospyros maingayi: 10.1016/S0031-9422(00)80490-2
- 413754 - Diospyros maingayi: 10.1016/S0031-9422(97)01020-0
- 413754 - Diospyros maingayi: 10.1021/NP980217V
- 413754 - Diospyros maingayi: LTS0008025
- 1948899 - Diospyros melanoxylon: 10.1076/PHBI.39.1.20.5941
- 1948899 - Diospyros melanoxylon: LTS0008025
- 268846 - Diospyros sumatrana: 10.1016/S0031-9422(00)80490-2
- 268846 - Diospyros sumatrana: LTS0008025
- 589132 - Diospyros wallichii: 10.1016/S0031-9422(00)80490-2
- 589132 - Diospyros wallichii: LTS0008025
- 40588 - Dipterocarpaceae: LTS0008025
- 19955 - Ebenaceae: LTS0008025
- 25996 - Elaeagnaceae: LTS0008025
- 45918 - Empetrum: LTS0008025
- 191066 - Empetrum nigrum: 10.1016/0040-4039(95)01286-Q
- 191066 - Empetrum nigrum: LTS0008025
- 233691 - Englerophytum: LTS0008025
- 233692 - Englerophytum magalismontanum: 10.1039/A708239H
- 233692 - Englerophytum magalismontanum: LTS0008025
- 4345 - Ericaceae: LTS0008025
- 23166 - Eriobotrya: LTS0008025
- 32224 - Eriobotrya japonica: 10.1016/J.BMC.2010.01.010
- 32224 - Eriobotrya japonica: LTS0008025
- 3932 - Eucalyptus: LTS0008025
- 34317 - Eucalyptus globulus: 10.1016/S0031-9422(96)00680-2
- 34317 - Eucalyptus globulus: LTS0008025
- 627158 - Eucalyptus robusta: 10.1002/CJOC.19860040110
- 627158 - Eucalyptus robusta: LTS0008025
- 99019 - Eucalyptus saligna: 10.1016/S0305-1978(03)00134-0
- 99019 - Eucalyptus saligna: LTS0008025
- 2759 - Eukaryota: LTS0008025
- 4306 - Euonymus: LTS0008025
- 4307 - Euonymus alatus: 10.1007/S10600-011-0024-0
- 4307 - Euonymus alatus: LTS0008025
- 3990 - Euphorbia: LTS0008025
- 1333928 - Euphorbia micractina: 10.1021/NP900305J
- 1333928 - Euphorbia micractina: 10.1055/S-0028-1097667
- 1333928 - Euphorbia micractina: LTS0008025
- 756629 - Euphorbia paralias: 10.1021/NP900305J
- 756629 - Euphorbia paralias: 10.1055/S-0028-1097667
- 756629 - Euphorbia paralias: LTS0008025
- 1091645 - Euphorbia retusa:
- 1091645 - Euphorbia retusa: 10.1016/S0031-9422(00)82286-4
- 1091645 - Euphorbia retusa: LTS0008025
- 1091647 - Euphorbia sulcata:
- 3977 - Euphorbiaceae: LTS0008025
- 3803 - Fabaceae: LTS0008025
- 21496 - Gentiana: LTS0008025
- 1169731 - Gentiana davidii: LTS0008025
- 21472 - Gentianaceae: LTS0008025
- 48233 - Hippophae: LTS0008025
- 193516 - Hippophae rhamnoides:
- 193516 - Hippophae rhamnoides: 10.1007/BF00579142
- 193516 - Hippophae rhamnoides: 10.1007/BF00580456
- 193516 - Hippophae rhamnoides: LTS0008025
- 9606 - Homo sapiens: -
- 4295 - Ilex: 10.1021/NP040059+
- 4295 - Ilex: LTS0008025
- 185489 - Ilex affinis: 10.1021/NP040059+
- 185489 - Ilex affinis: LTS0008025
- 185495 - Ilex buxifolia: 10.1021/NP040059+
- 185495 - Ilex buxifolia: LTS0008025
- 53205 - Ilex latifolia: 10.3329/DUJPS.V3I1.189
- 53205 - Ilex latifolia: LTS0008025
- 204130 - Isodon: LTS0008025
- 204131 - Isodon coetsa: 10.1016/0031-9422(93)80051-S
- 204131 - Isodon coetsa: LTS0008025
- 4136 - Lamiaceae: LTS0008025
- 344770 - Lecanthus: LTS0008025
- 344771 - Lecanthus peduncularis: 10.1080/10575630290033088
- 344771 - Lecanthus peduncularis: LTS0008025
- 106047 - Leptospermum: LTS0008025
- 295139 - Leptospermum scoparium:
- 295139 - Leptospermum scoparium: 10.1002/ARDP.19963291005
- 295139 - Leptospermum scoparium: 10.1016/0031-9422(90)85462-O
- 295139 - Leptospermum scoparium: LTS0008025
- 49147 - Leucothoe: LTS0008025
- 679021 - Leucothoe keiskei: 10.1248/YAKUSHI1881.59.9_619
- 679021 - Leucothoe keiskei: LTS0008025
- 22986 - Licania: LTS0008025
- 1272984 - Licania pyrifolia: 10.1021/NP960134J
- 26468 - Loganiaceae: LTS0008025
- 3495 - Maclura: LTS0008025
- 3496 - Maclura pomifera: 10.1080/10575639708043746
- 3496 - Maclura pomifera: LTS0008025
- 3398 - Magnoliopsida: LTS0008025
- 1089415 - Microtropis: LTS0008025
- 1089417 - Microtropis fokienensis:
- 1089417 - Microtropis fokienensis: 10.1021/NP050458K
- 1089417 - Microtropis fokienensis: 10.1021/NP060369N
- 1089417 - Microtropis fokienensis: LTS0008025
- 1272984 - Moquilea pyrifolia: 10.1021/NP960134J
- 3487 - Moraceae: LTS0008025
- 3497 - Morus: LTS0008025
- 3498 - Morus alba: 10.3390/MOLECULES16076010
- 3498 - Morus alba: LTS0008025
- 170012 - Morus alba var. multicaulis: 10.3390/MOLECULES16076010
- 170012 - Morus alba var. multicaulis: LTS0008025
- 3931 - Myrtaceae: LTS0008025
- 200662 - Nardophyllum bryoides: 10.1016/J.PHYTOCHEM.2010.04.019
- 63461 - Nerium: 10.1021/NP040072U
- 63461 - Nerium: LTS0008025
- 63479 - Nerium oleander:
- 63479 - Nerium oleander: 10.1021/NP040072U
- 63479 - Nerium oleander: 10.1021/NP50048A019
- 63479 - Nerium oleander: LTS0008025
- 144307 - Nierembergia: LTS0008025
- 144308 - Nierembergia hippomanica: 10.1016/0031-9422(95)00731-8
- 144308 - Nierembergia hippomanica: LTS0008025
- 274375 - Nierembergia linariifolia: 10.1016/0031-9422(95)00731-8
- 274375 - Nierembergia linariifolia: LTS0008025
- 69069 - Nuxia: LTS0008025
- 4145 - Olea: LTS0008025
- 4146 - Olea europaea:
- 4146 - Olea europaea: 10.1016/0031-9422(94)85026-7
- 4146 - Olea europaea: 10.1078/0944-7113-00329
- 4146 - Olea europaea: 10.1248/CPB.55.784
- 4146 - Olea europaea: LTS0008025
- 4144 - Oleaceae: LTS0008025
- 39174 - Origanum: LTS0008025
- 497761 - Origanum dictamnus: 10.1016/S0031-9422(00)85522-3
- 497761 - Origanum dictamnus: LTS0008025
- 33090 - Plants: -
- 241806 - Polypodiopsida: LTS0008025
- 39358 - Prunella vulgaris L.: -
- 3754 - Prunus: 10.3390/MOLECULES21010078
- 3754 - Prunus: LTS0008025
- 23207 - Prunus serotina: 10.3390/MOLECULES21010078
- 23207 - Prunus serotina: LTS0008025
- 120289 - Psidium: LTS0008025
- 120290 - Psidium guajava:
- 120290 - Psidium guajava: 10.1007/S10600-015-1220-0
- 120290 - Psidium guajava: LTS0008025
- 144561 - Pyracantha: LTS0008025
- 193309 - Pyracantha coccinea: 10.1016/S0040-4020(01)90428-4
- 193309 - Pyracantha coccinea: LTS0008025
- 4346 - Rhododendron: LTS0008025
- 134444 - Rhododendron ellipticum: 10.1016/0031-9422(94)00905-9
- 134444 - Rhododendron ellipticum: LTS0008025
- 49622 - Rhododendron ferrugineum: 10.1021/NP100778K
- 49622 - Rhododendron ferrugineum: LTS0008025
- 2946439 - Rhododendron kotschyi: 10.1007/BF00564187
- 184576 - Rhododendron latoucheae: 10.1016/0031-9422(94)00905-9
- 49626 - Rhododendron moulmainense: 10.1016/0031-9422(94)00905-9
- 49626 - Rhododendron moulmainense: LTS0008025
- 1851392 - Rhododendron myrtifolium: 10.1007/BF00564187
- 1851392 - Rhododendron myrtifolium: LTS0008025
- 3745 - Rosaceae: LTS0008025
- 24966 - Rubiaceae: LTS0008025
- 23216 - Rubus: LTS0008025
- 32247 - Rubus idaeus: 10.1016/S0031-9422(00)00250-8
- 32247 - Rubus idaeus: LTS0008025
- 4319 - Salacia: LTS0008025
- 1009589 - Salacia chinensis: 10.1016/J.TET.2008.05.054
- 1009589 - Salacia chinensis: LTS0008025
- 21880 - Salvia: LTS0008025
- 49210 - Salvia canariensis: 10.1007/SPRINGERREFERENCE_69355
- 1933731 - Salvia lanata: 10.1007/SPRINGERREFERENCE_69355
- 1933731 - Salvia lanata: LTS0008025
- 38868 - Salvia officinalis: 10.1021/NP50017A014
- 1132405 - Salvia tomentosa: 10.1021/NP50017A014
- 1132405 - Salvia tomentosa: LTS0008025
- 3737 - Sapotaceae: LTS0008025
- 254917 - Saussurea muliensis: 10.1021/NP070483L
- 64588 - Shorea: LTS0008025
- 666687 - Shorea robusta: 10.1016/S0031-9422(97)00004-6
- 666687 - Shorea robusta: LTS0008025
- 4070 - Solanaceae: LTS0008025
- 23222 - Sorbus: LTS0008025
- 765745 - Sorbus decora: 10.1021/NP1003005
- 765745 - Sorbus decora: LTS0008025
- 41867 - Stilbaceae: LTS0008025
- 35493 - Streptophyta: LTS0008025
- 26496 - Strychnos: LTS0008025
- 99302 - Strychnos spinosa: 10.1021/NP070038Q
- 99302 - Strychnos spinosa: LTS0008025
- 178174 - Syzygium: LTS0008025
- 1609897 - Syzygium formosanum: 10.1021/NP980313W
- 1609897 - Syzygium formosanum: LTS0008025
- 58023 - Tracheophyta: LTS0008025
- 3499 - Urticaceae: LTS0008025
- 33090 - Viridiplantae: LTS0008025
- 54476 - Vitex: LTS0008025
- 39994 - Vochysia: LTS0008025
- 177074 - Vochysia ferruginea: 10.1590/S0103-50532000000300007
- 177074 - Vochysia ferruginea: LTS0008025
- 27223 - Vochysiaceae: LTS0008025
- 29603 - Woodwardia: LTS0008025
- 204638 - Woodwardia radicans: 10.1016/S0305-1978(99)00085-X
- 204638 - Woodwardia radicans: LTS0008025
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Huiqiang Wei, Jianghong Guo, Xiao Sun, Wenfeng Gou, Hongxin Ning, Haihua Shang, Qiang Liu, Wenbin Hou, Yiliang Li. Discovery of Natural Ursane-type SENP1 Inhibitors and the Platinum Resistance Reversal Activity Against Human Ovarian Cancer Cells: A Structure-Activity Relationship Study.
Journal of natural products.
2022 05; 85(5):1248-1255. doi:
10.1021/acs.jnatprod.1c01166
. [PMID: 35500202] - Xuewa Jiang, Pingping Shen, Jing Zhou, Haixia Ge, Richa Raj, Weiwei Wang, Boyang Yu, Jian Zhang. Microbial transformation and inhibitory effect assessment of uvaol derivates against LPS and HMGB1 induced NO production in RAW264.7 macrophages.
Bioorganic & medicinal chemistry letters.
2022 02; 58(?):128523. doi:
10.1016/j.bmcl.2021.128523
. [PMID: 34973341] - Jiaming Wang, Mei Jin, Chunshi Jin, Chao Ye, Yi Zhou, Rongshen Wang, Huanhuan Cui, Wei Zhou, Gao Li. A new pentacyclic triterpenoid from the leaves of Rhododendron dauricum L. with inhibition of NO production in LPS-induced RAW 264.7 cells.
Natural product research.
2020 Dec; 34(23):3313-3319. doi:
10.1080/14786419.2019.1566822
. [PMID: 30810367] - Gloria C Bonel-Pérez, Amalia Pérez-Jiménez, Isabel Gris-Cárdenas, Alberto M Parra-Pérez, José Antonio Lupiáñez, Fernando J Reyes-Zurita, Eva Siles, René Csuk, Juan Peragón, Eva E Rufino-Palomares. Antiproliferative and Pro-Apoptotic Effect of Uvaol in Human Hepatocarcinoma HepG2 Cells by Affecting G0/G1 Cell Cycle Arrest, ROS Production and AKT/PI3K Signaling Pathway.
Molecules (Basel, Switzerland).
2020 Sep; 25(18):. doi:
10.3390/molecules25184254
. [PMID: 32947962] - Julie A Lawrence, Zhongping Huang, Sivaprakash Rathinavelu, Jin-Feng Hu, Eliane Garo, Michael Ellis, Vanessa L Norman, Ronald Buckle, Russell B Williams, Courtney M Starks, Gary R Eldridge. Optimized plant compound with potent anti-biofilm activity across gram-negative species.
Bioorganic & medicinal chemistry.
2020 03; 28(5):115229. doi:
10.1016/j.bmc.2019.115229
. [PMID: 32033878] - Yulin Ren, Gerardo D Anaya-Eugenio, Austin A Czarnecki, Tran Ngoc Ninh, Chunhua Yuan, Hee-Byung Chai, Djaja D Soejarto, Joanna E Burdette, Esperanza J Carcache de Blanco, A Douglas Kinghorn. Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives.
Bioorganic & medicinal chemistry.
2018 08; 26(15):4452-4460. doi:
10.1016/j.bmc.2018.07.025
. [PMID: 30057155] - Bing-Xin Tan, Lu Yang, Yi-You Huang, Yun-Yun Chen, Guang-Tian Peng, Si Yu, Yi-Nuo Wu, Hai-Bin Luo, Xi-Xin He. Bioactive triterpenoids from the leaves of Eriobotrya japonica as the natural PDE4 inhibitors.
Natural product research.
2017 Dec; 31(24):2836-2841. doi:
10.1080/14786419.2017.1300796
. [PMID: 28281360] - Thanh Tra Nguyen, Bich Ngan Truong, Huong Doan Thi Mai, Marc Litaudon, Van Hung Nguyen, Thao Do Thi, Van Minh Chau, Van Cuong Pham. Cytotoxic dammarane-type triterpenoids from the leaves of Viburnum sambucinum.
Bioorganic & medicinal chemistry letters.
2017 04; 27(8):1665-1669. doi:
10.1016/j.bmcl.2017.03.014
. [PMID: 28318944] - Amarinder Singh, S Arvinda, Surjeet Singh, Jyotsna Suri, Surinder Koul, Dilip M Mondhe, Gurdarshan Singh, Ram Vishwakarma. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity.
Toxicology and applied pharmacology.
2017 03; 318(?):8-15. doi:
10.1016/j.taap.2017.01.011
. [PMID: 28122196] - Yao-wu Tao, Ye Tian, Wen-dong Xu, Qing-lan Guo, Jian-gong Shi. [Terpenoids from Euphorbia micractina].
Yao xue xue bao = Acta pharmaceutica Sinica.
2016 03; 51(3):411-9. doi:
"
. [PMID: 29859022] - Francisco J Luna-Vázquez, César Ibarra-Alvarado, Alejandra Rojas-Molina, Antonio Romo-Mancillas, Fabián H López-Vallejo, Mariana Solís-Gutiérrez, Juana I Rojas-Molina, Fausto Rivero-Cruz. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits.
Molecules (Basel, Switzerland).
2016 Jan; 21(1):78. doi:
10.3390/molecules21010078
. [PMID: 26771591] - Laura Flores-Bocanegra, Araceli Pérez-Vásquez, Mariana Torres-Piedra, Robert Bye, Edelmira Linares, Rachel Mata. α-Glucosidase Inhibitors from Vauquelinia corymbosa.
Molecules (Basel, Switzerland).
2015 Aug; 20(8):15330-42. doi:
10.3390/molecules200815330
. [PMID: 26307962] - Gamal A Mohamed. New cytotoxic cycloartane triterpene from Cassia italica aerial parts.
Natural product research.
2014; 28(13):976-83. doi:
10.1080/14786419.2014.902820
. [PMID: 24684761] - Yi-ping Jiang, Hua Li, Xue-zhi Pan, Xue-gang Sun, Qing-fa Tang, Meng Shao. [Chemical constituents from the roots of Ilex pubescens].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2013 Nov; 36(11):1774-8. doi:
"
. [PMID: 24956816] - Brian Mathison, Dirk Holstege. A rapid method to determine sterol, erythrodiol, and uvaol concentrations in olive oil.
Journal of agricultural and food chemistry.
2013 May; 61(19):4506-13. doi:
10.1021/jf400254k
. [PMID: 23587059] - Anna Szakiel, Cezary Pączkowski, Satu Huttunen. Triterpenoid content of berries and leaves of bilberry Vaccinium myrtillus from Finland and Poland.
Journal of agricultural and food chemistry.
2012 Dec; 60(48):11839-49. doi:
10.1021/jf3046895
. [PMID: 23157739] - Gassan Hodaifa, Leopoldo MartínezNieto, Juan L Lozano, Sebastián Sánchez. Changes of the wax contents in mixtures of olive oils as determined by gas chromatography with a flame ionization detector.
Journal of AOAC International.
2012 Nov; 95(6):1720-4. doi:
10.5740/jaoacint.12-011
. [PMID: 23451389] - A Martins, A Vasas, M Viveiros, J Molnár, J Hohmann, L Amaral. Antibacterial properties of compounds isolated from Carpobrotus edulis.
International journal of antimicrobial agents.
2011 May; 37(5):438-44. doi:
10.1016/j.ijantimicag.2011.01.016
. [PMID: 21411294] - De-Hong Huang, Yan-Fang Yang, Lun-Qiang Ai, Yi Lu, He-Zhen Wu. [Studies on the chemical constituents of Coleus forskohlii transplanted in Tongcheng and their antitumor activity].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2011 Mar; 34(3):375-8. doi:
"
. [PMID: 21823451] - A Martins, A Vasas, Zs Schelz, M Viveiros, J Molnár, J Hohmann, L Amaral. Constituents of Carpobrotus edulis inhibit P-glycoprotein of MDR1-transfected mouse lymphoma cells.
Anticancer research.
2010 Mar; 30(3):829-35. doi:
. [PMID: 20393003]
- Judith M Rollinger, Denise V Kratschmar, Daniela Schuster, Petra H Pfisterer, Christel Gumy, Evelyne M Aubry, Sarah Brandstötter, Hermann Stuppner, Gerhard Wolber, Alex Odermatt. 11beta-Hydroxysteroid dehydrogenase 1 inhibiting constituents from Eriobotrya japonica revealed by bioactivity-guided isolation and computational approaches.
Bioorganic & medicinal chemistry.
2010 Feb; 18(4):1507-15. doi:
10.1016/j.bmc.2010.01.010
. [PMID: 20100662] - Wendong Xu, Chenggen Zhu, Wei Cheng, Xiaona Fan, Xiaoguang Chen, Sen Yang, Ying Guo, Fei Ye, Jiangong Shi. Chemical Constituents of the Roots of Euphorbia micractina.
Journal of natural products.
2009 Sep; 72(9):1620-6. doi:
10.1021/np900305j
. [PMID: 19702283] - Rubén Martín, Elvira Ibeas, Juliana Carvalho-Tavares, Marita Hernández, Valentina Ruiz-Gutierrez, María Luisa Nieto. Natural triterpenic diols promote apoptosis in astrocytoma cells through ROS-mediated mitochondrial depolarization and JNK activation.
PloS one.
2009 Jun; 4(6):e5975. doi:
10.1371/journal.pone.0005975
. [PMID: 19543395] - Emad M Hassan, Abdelaaty A Shahat, Nabawya A Ibrahim, Arnold J Vlietinck, Sandra Apers, Luc Pieters. A new monoterpene alkaloid and other constituents of Plumeria acutifolia.
Planta medica.
2008 Nov; 74(14):1749-50. doi:
10.1055/s-0028-1088317
. [PMID: 18975263] - Phuong Thien Thuong, Chul Ho Lee, Trong Tuan Dao, Phi Hung Nguyen, Wan Gi Kim, Sang Jun Lee, Won Keun Oh. Triterpenoids from the leaves of Diospyros kaki (persimmon) and their inhibitory effects on protein tyrosine phosphatase 1B.
Journal of natural products.
2008 Oct; 71(10):1775-8. doi:
10.1021/np800298w
. [PMID: 18798681] - Guang-Bo Xie, Si-Xiang Zhou, Lian-Di Lei, Peng-Fei Tu. [Studies on triterpenoid constituents in leaf of Ilex pernyi].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2007 Sep; 32(18):1890-2. doi:
"
. [PMID: 18051898] - Sara Hoet, Luc Pieters, Giulio G Muccioli, Jean-Louis Habib-Jiwan, Fred R Opperdoes, Joëlle Quetin-Leclercq. Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds.
Journal of natural products.
2007 Aug; 70(8):1360-3. doi:
10.1021/np070038q
. [PMID: 17637068] - Ana Marquez-Martin, Rocio De La Puerta, Angeles Fernandez-Arche, Valentina Ruiz-Gutierrez, Parveen Yaqoob. Modulation of cytokine secretion by pentacyclic triterpenes from olive pomace oil in human mononuclear cells.
Cytokine.
2006 Dec; 36(5-6):211-7. doi:
10.1016/j.cyto.2006.12.007
. [PMID: 17292619] - I-Hsiao Chen, Fang-Rong Chang, Chin-Chung Wu, Shu-Li Chen, Pei-Wen Hsieh, Hsin-Fu Yen, Ying-Chi Du, Yang-Chang Wu. Cytotoxic triterpenoids from the leaves of Microtropis fokienensis.
Journal of natural products.
2006 Nov; 69(11):1543-6. doi:
10.1021/np060369n
. [PMID: 17125218] - Liwei Fu, Shujun Zhang, Na Li, Jinlan Wang, Ming Zhao, Junichi Sakai, Toshiaki Hasegawa, Tomokazu Mitsui, Takao Kataoka, Seiko Oka, Miwa Kiuchi, Katutoshi Hirose, Masayoshi Ando. Three new triterpenes from Nerium oleander and biological activity of the isolated compounds.
Journal of natural products.
2005 Feb; 68(2):198-206. doi:
10.1021/np040072u
. [PMID: 15730243] - Toshihiro Akihisa, Scott G Franzblau, Motohiko Ukiya, Hiroki Okuda, Fangqiu Zhang, Ken Yasukawa, Takashi Suzuki, Yumiko Kimura. Antitubercular activity of triterpenoids from Asteraceae flowers.
Biological & pharmaceutical bulletin.
2005 Jan; 28(1):158-60. doi:
10.1248/bpb.28.158
. [PMID: 15635183] - Alexandre T C Taketa, Simone C B Gnoatto, Grace Gosmann, Viviane S Pires, Eloir P Schenkel, Dominique Guillaume. Triterpenoids from Brazilian Ilex species and their in vitro antitrypanosomal activity.
Journal of natural products.
2004 Oct; 67(10):1697-700. doi:
10.1021/np040059+
. [PMID: 15497942] - Sabira Begum, Syed Imran Hassan, Syed Nawazish Ali, Bina S Siddiqui. Chemical constituents from the leaves of Psidium guajava.
Natural product research.
2004 Apr; 18(2):135-40. doi:
10.1080/14786410310001608019
. [PMID: 14984086] - L I Somova, F O Shode, M Mipando. Cardiotonic and antidysrhythmic effects of oleanolic and ursolic acids, methyl maslinate and uvaol.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2004 Feb; 11(2-3):121-9. doi:
10.1078/0944-7113-00329
. [PMID: 15070161] - C L Cantrell, S G Franzblau, N H Fischer. Antimycobacterial plant terpenoids.
Planta medica.
2001 Nov; 67(8):685-94. doi:
10.1055/s-2001-18365
. [PMID: 11731906] - T Akihisa, J Ogihara, J Kato, K Yasukawa, M Ukiya, S Yamanouchi, K Oishi. Inhibitory effects of triterpenoids and sterols on human immunodeficiency virus-1 reverse transcriptase.
Lipids.
2001 May; 36(5):507-12. doi:
10.1007/s11745-001-0750-4
. [PMID: 11432464] - B S Min, Y H Kim, S M Lee, H J Jung, J S Lee, M K Na, C O Lee, J P Lee, K Bae. Cytotoxic triterpenes from Crataegus pinnatifida.
Archives of pharmacal research.
2000 Apr; 23(2):155-8. doi:
10.1007/bf02975505
. [PMID: 10836742] - X Z Xu, X Tian. [Studies on chemical components of Gentiana tizuensis Franch. (I)].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2000 Apr; 25(4):225-6. doi:
"
. [PMID: 12512438] - B S Min, H J Jung, J S Lee, Y H Kim, S H Bok, C M Ma, N Nakamura, M Hattori, K Bae. Inhibitory effect of triterpenes from Crataegus pinatifida on HIV-I protease.
Planta medica.
1999 May; 65(4):374-5. doi:
10.1055/s-2006-960792
. [PMID: 10364847] - M Amelio, R Rizzo, F Varazini. Determination of sterols, erythrodiol, uvaol and alkanols in olive oils using combined solid-phase extraction, high-performance liquid chromatographic and high-resolution gas chromatographic techniques.
Journal of chromatography.
1992 Aug; 606(2):179-85. doi:
10.1016/0021-9673(92)87023-2
. [PMID: 1430013] - . .
.
. doi:
. [PMID: 22039103]