3-phosphoglycerate (BioDeep_00000014379)
Secondary id: BioDeep_00000001314, BioDeep_00000270834, BioDeep_00000405372
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C3H7O7P (185.9929)
中文名称: 3-磷酸甘油酸, 磷酸甘油酸二钠盐
谱图信息:
最多检出来源 Homo sapiens(plant) 10.2%
Last reviewed on 2024-09-13.
Cite this Page
3-phosphoglycerate. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/3-phosphoglycerate (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000014379). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(C(C(=O)O)O)OP(=O)(O)O
InChI: InChI=1S/C3H7O7P/c4-2(3(5)6)1-10-11(7,8)9/h2,4H,1H2,(H,5,6)(H2,7,8,9)
描述信息
3-Phosphoglyceric acid, also known as 3PG, belongs to the class of organic compounds known as sugar acids and derivatives. Sugar acids and derivatives are compounds containing a saccharide unit which bears a carboxylic acid group. 3PG is the conjugate acid of glycerate 3-phosphate (GP or G3P). It is a solid that is soluble in water. 3-Phosphoglyceric acid exists in all living species, ranging from bacteria to humans. The glycerate is a biochemically significant metabolic intermediate in both glycolysis and the Calvin cycle. This is the first compound formed during the C3 or Calvin cycle. Glycerate 3-phosphate is also a precursor for serine, which, in turn, can create cysteine and glycine through the homocysteine cycle. Within humans, 3-phosphoglyceric acid participates in a number of enzymatic reactions. In particular, 3-phosphoglyceric acid can be biosynthesized from glyceric acid 1,3-biphosphate, which is mediated by the enzyme phosphoglycerate kinase 1. In addition, 3PG can be converted into 2-phospho-D-glyceric acid, which is catalyzed by the enzyme phosphoglycerate mutase 2. 3-phosphoglyceric acid is involved in the Warburg effect (aerobic glycolysis), a metabolic shift that is a hallmark of cancer (PMID: 29362480).
3-phosphoglyceric acid (3PG) is a 3-carbon molecule that is a metabolic intermediate in both glycolysis and the Calvin cycle. This chemical is often termed PGA when referring to the Calvin cycle. In the Calvin cycle, two glycerate 3-phosphate molecules are reduced to form two molecules of glyceraldehyde 3-phosphate (GALP). (wikipedia) [HMDB]
KEIO_ID P028
同义名列表
32 个代谢物同义名
3-(Dihydrogen phosphoric acid)glyceric acid; 2-hydroxy-3-(phosphonooxy)propanoic acid; 3-(Dihydrogen phosphate)glyceric acid; 3-Phosphoglycerate, monosodium salt; 3-Phosphoglycerate, trisodium salt; DL-Glyceric acid 3-phosphoric acid; 3-(Dihydrogen phosphate)glycerate; Glyceric acid 3-phosphoric acid; 3-Phosphoglycerate, (R)-isomer; D-(-)-3-Phosphoglyceric acid; Glyceric acid 3-phosphates; Glyceric acid 3-phosphate; DL-Glycerate 3-phosphate; 3-Glycerophosphoric acid; 3-Phospho-glyceric acid; 3-Phospho-(R)-glycerate; D-Glycerate 3-phosphate; 3-Phosphoglyceric acid; Glycerate 3-phosphates; 3-Phospho-D-glycerate; Glycerate 3-phosphate; 3-Glycerophosphorate; 3-Phospho-glycerate; 3-phosphoglycerate; Phosphoglycerate; 3-p-D-Glycerate; Glycerate-3-p; 3-p-Glycerate; 3-PGA; 3-PG; G3P; 3-Phosphoglycerate
数据库引用编号
17 个数据库交叉引用编号
- ChEBI: CHEBI:17050
- KEGG: C00597
- PubChem: 724
- HMDB: HMDB0000807
- ChEMBL: CHEMBL87788
- Wikipedia: 3-Phosphoglyceric_acid
- KNApSAcK: C00007286
- foodb: FDB022255
- chemspider: 704
- CAS: 820-11-1
- MoNA: KO003688
- MoNA: KO003687
- MoNA: KO003689
- MoNA: KO003686
- PubChem: 3874
- RefMet: 3-Phosphoglyceric acid
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-216
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
144 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(6)
- Metabolic pathways of fibroblasts:
Pyruvate ⟶ Lactic acid
- Cori cycle:
erythroses ⟶ D-Fructose-6-phosphate
- Glycolysis and gluconeogenesis:
Aspartate ⟶ Oxaloacetate
- Glycolysis and gluconeogenesis:
Phosphoenolpyruvate ⟶ Pyruvic acid
- Aerobic glycolysis:
PYR ⟶ LAC
- Metabolic Epileptic Disorders:
P-enolpyruvate ⟶ Pyruvate
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(138)
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis and Pyruvate Dehydrogenase:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Gluconeogenesis from L-Malic Acid:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Fructose Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycolysis I:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Starch and Sucrose Metabolism:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis from L-Malic Acid:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Photosynthesis:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Calvin-Benson Cycle:
Fructose 1,6-bisphosphate + Water ⟶ Fructose 6-phosphate + Phosphate
- Glycolysis:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Gluconeogenesis:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type VII. Tarui Disease:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fructose-1,6-diphosphatase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Triosephosphate Isomerase Deficiency:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Fanconi-Bickel Syndrome:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycogenosis, Type IB:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IC:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Glycogenosis, Type IA. Von Gierke Disease:
Glucose 1-phosphate + Water ⟶ D-Glucose + Phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Gluconeogenesis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Starch and Sucrose Metabolism:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycolysis:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glycogen Storage Disease Type 1A (GSD1A) or Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type VII. Tarui Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogen Synthetase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type III. Cori Disease, Debrancher Glycogenosis:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type IV. Amylopectinosis, Anderson Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Glycogenosis, Type VI. Hers Disease:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Mucopolysaccharidosis VII. Sly Syndrome:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Sucrase-Isomaltase Deficiency:
Isovalerylglucuronide + Water ⟶ Alcohol + D-Glucuronic acid
- Phosphoenolpyruvate Carboxykinase Deficiency 1 (PEPCK1):
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fructose-1,6-diphosphatase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Triosephosphate Isomerase Deficiency:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fanconi-Bickel Syndrome:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IB:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IC:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Glycogenosis, Type IA. Von Gierke Disease:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Fructose Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism II:
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism III (sn-Glycero-3-Phosphoethanolamine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism IV (Glycerophosphoglycerol):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycerol Metabolism V (Glycerophosphoserine):
Adenosine monophosphate + Hydrogen Ion + Phosphate + Phosphoenolpyruvic acid ⟶ Adenosine triphosphate + Pyruvic acid + Water
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycerolipid Metabolism:
Glyceraldehyde + NADP ⟶ Glycerol + NADPH
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycerol Kinase Deficiency:
Glyceraldehyde + NADP ⟶ Glycerol + NADPH
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- D-Glyceric Acidura:
Glyceraldehyde + NADP ⟶ Glycerol + NADPH
- Familial Lipoprotein Lipase Deficiency:
Glyceraldehyde + NADP ⟶ Glycerol + NADPH
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Serine Biosynthesis and Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Glycolate and Glyoxylate Degradation:
Allantoin ⟶ (S)-(+)-allantoin
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Glycolate and Glyoxylate Degradation II:
Water + cis-Aconitic acid ⟶ Isocitric acid
- Glycine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Serine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Glycerol Metabolism:
Dihydroxyacetone + Hydrogen Ion + NADPH ⟶ Glycerol + NADP
- Ethanol Fermentation:
Adenosine triphosphate + D-Glucose ⟶ Adenosine diphosphate + Glucose 6-phosphate
- Glycine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Serine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Glycerolipid Metabolism:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycerol Kinase Deficiency:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- D-Glyceric Acidura:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Familial Lipoprotein Lipase Deficiency:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycerolipid Metabolism:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycerolipid Metabolism:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycerol Kinase Deficiency:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- D-Glyceric Acidura:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Familial Lipoprotein Lipase Deficiency:
DG(16:0/16:0/0:0) + Palmityl-CoA ⟶ Coenzyme A + TG(16:0/16:0/16:0)[iso]
- Cysteine Biosynthesis:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Glycolate and Glyoxylate Degradation:
Allantoin ⟶ (S)-(+)-allantoin
- Secondary Metabolites: Cysteine Biosynthesis from Serine:
Hydrogen sulfide + O-Acetylserine ⟶ Acetic acid + Hydrogen Ion + L-Cysteine
- Glycolate and Glyoxylate Degradation II:
Water + cis-Aconitic acid ⟶ Isocitric acid
PharmGKB(0)
8 个相关的物种来源信息
- 3702 - Arabidopsis thaliana:
- 5476 - Candida albicans: 10.1007/S11306-016-1134-2
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 7227 - Drosophila melanogaster: 10.1038/S41467-019-11933-Z
- 9606 - Homo sapiens: -
- 303 - Pseudomonas putida: 10.1073/PNAS.2016380117
- 32046 - Synechococcus elongatus: 10.1111/1462-2920.12899
- 29760 - Vitis vinifera: 10.1016/J.DIB.2020.106469
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Chung-I Li, Yu-Min Yeh, Yi-Shan Tsai, Tzu-Hsuan Huang, Meng-Ru Shen, Peng-Chan Lin. Controlling the confounding effect of metabolic gene expression to identify actual metabolite targets in microsatellite instability cancers.
Human genomics.
2023 Mar; 17(1):18. doi:
10.1186/s40246-023-00465-9
. [PMID: 36879264] - Rumi Itoyama, Noriko Yasuda-Yoshihara, Fumimasa Kitamura, Tadahito Yasuda, Luke Bu, Atsuko Yonemura, Tomoyuki Uchihara, Kota Arima, Xichen Hu, Zhang Jun, Yuya Okamoto, Takahiko Akiyama, Kohei Yamashita, Yosuke Nakao, Toshihiko Yusa, Yuki Kitano, Takaaki Higashi, Tatsunori Miyata, Katsunori Imai, Hiromitsu Hayashi, Yo-Ichi Yamashita, Takumi Mikawa, Hiroshi Kondoh, Hideo Baba, Takatsugu Ishimoto. Metabolic shift to serine biosynthesis through 3-PG accumulation and PHGDH induction promotes tumor growth in pancreatic cancer.
Cancer letters.
2021 12; 523(?):29-42. doi:
10.1016/j.canlet.2021.09.007
. [PMID: 34508795] - Pauline Duminil, Marlène Davanture, Céline Oury, Edouard Boex-Fontvieille, Guillaume Tcherkez, Michel Zivy, Michael Hodges, Nathalie Glab. Arabidopsis thaliana 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 2 activity requires serine 82 phosphorylation.
The Plant journal : for cell and molecular biology.
2021 09; 107(5):1478-1489. doi:
10.1111/tpj.15395
. [PMID: 34174129] - Lingyan Jiang, Peisheng Wang, Xiaorui Song, Huan Zhang, Shuangshuang Ma, Jingting Wang, Wanwu Li, Runxia Lv, Xiaoqian Liu, Shuai Ma, Jiaqi Yan, Haiyan Zhou, Di Huang, Zhihui Cheng, Chen Yang, Lu Feng, Lei Wang. Salmonella Typhimurium reprograms macrophage metabolism via T3SS effector SopE2 to promote intracellular replication and virulence.
Nature communications.
2021 02; 12(1):879. doi:
10.1038/s41467-021-21186-4
. [PMID: 33563986] - Muhammad Mazhar Fareed, Mohamed A El-Esawi, Enas M El-Ballat, Gaber El-Saber Batiha, Abdur Rauf, Fatma M El-Demerdash, Fahad A Alhumaydhi, Suliman A Alsagaby. In Silico Drug Screening Analysis against the Overexpression of PGAM1 Gene in Different Cancer Treatments.
BioMed research international.
2021; 2021(?):5515692. doi:
10.1155/2021/5515692
. [PMID: 34195264] - Sara Rosa-Téllez, Armand Djoro Anoman, María Flores-Tornero, Walid Toujani, Saleh Alseek, Alisdair R Fernie, Sergio G Nebauer, Jesús Muñoz-Bertomeu, Juan Segura, Roc Ros. Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth.
Plant physiology.
2018 02; 176(2):1182-1198. doi:
10.1104/pp.17.01227
. [PMID: 28951489] - Yongchan Lee, Tomohiro Nishizawa, Mizuki Takemoto, Kaoru Kumazaki, Keitaro Yamashita, Kunio Hirata, Ayumi Minoda, Satoru Nagatoishi, Kouhei Tsumoto, Ryuichiro Ishitani, Osamu Nureki. Structure of the triose-phosphate/phosphate translocator reveals the basis of substrate specificity.
Nature plants.
2017 Oct; 3(10):825-832. doi:
10.1038/s41477-017-0022-8
. [PMID: 28970497] - María Flores-Tornero, Armand D Anoman, Sara Rosa-Téllez, Walid Toujani, Andreas P M Weber, Marion Eisenhut, Samantha Kurz, Saleh Alseekh, Alisdair R Fernie, Jesús Muñoz-Bertomeu, Roc Ros. Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase mutants.
The Plant journal : for cell and molecular biology.
2017 Mar; 89(6):1146-1158. doi:
10.1111/tpj.13452
. [PMID: 27984670] - Bikram-Datt Pant, Pooja Pant, Alexander Erban, David Huhman, Joachim Kopka, Wolf-Rüdiger Scheible. Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation.
Plant, cell & environment.
2015 Jan; 38(1):172-87. doi:
10.1111/pce.12378
. [PMID: 24894834] - Aytug Tuncel, Bilal Cakir, Seon-Kap Hwang, Thomas W Okita. The role of the large subunit in redox regulation of the rice endosperm ADP-glucose pyrophosphorylase.
The FEBS journal.
2014 Nov; 281(21):4951-63. doi:
10.1111/febs.13041
. [PMID: 25204204] - Joanna C Scales, Martin A J Parry, Michael E Salvucci. A non-radioactive method for measuring Rubisco activase activity in the presence of variable ATP: ADP ratios, including modifications for measuring the activity and activation state of Rubisco.
Photosynthesis research.
2014 Mar; 119(3):355-65. doi:
10.1007/s11120-013-9964-5
. [PMID: 24390640] - Susan K Boehlein, Janine R Shaw, Seon K Hwang, Jon D Stewart, L Curtis Hannah. Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases.
Archives of biochemistry and biophysics.
2013 Jul; 535(2):215-26. doi:
10.1016/j.abb.2013.04.003
. [PMID: 23603314] - F A Busch. Current methods for estimating the rate of photorespiration in leaves.
Plant biology (Stuttgart, Germany).
2013 Jul; 15(4):648-55. doi:
10.1111/j.1438-8677.2012.00694.x
. [PMID: 23186383] - Andrew Benson. A conversation with Andrew Benson: reflections on the discovery of the Calvin-Benson cycle.
Photosynthesis research.
2013 Mar; 114(3):207-14. doi:
10.1007/s11120-012-9790-1
. [PMID: 23269523] - Misty L Kuhn, Carlos M Figueroa, Alberto A Iglesias, Miguel A Ballicora. The ancestral activation promiscuity of ADP-glucose pyrophosphorylases from oxygenic photosynthetic organisms.
BMC evolutionary biology.
2013 Feb; 13(?):51. doi:
10.1186/1471-2148-13-51
. [PMID: 23433303] - Carlos M Figueroa, Misty L Kuhn, Christine A Falaschetti, Ligin Solamen, Kenneth W Olsen, Miguel A Ballicora, Alberto A Iglesias. Unraveling the activation mechanism of the potato tuber ADP-glucose pyrophosphorylase.
PloS one.
2013; 8(6):e66824. doi:
10.1371/journal.pone.0066824
. [PMID: 23826149] - Shinji Wakuta, Yumi Shibata, Yumiko Yoshizaki, Wataru Saburi, Shigeki Hamada, Hiroyuki Ito, Seon-Kap Hwang, Thomas W Okita, Hirokazu Matsui. Modulation of allosteric regulation by E38K and G101N mutations in the potato tuber ADP-glucose pyrophosphorylase.
Bioscience, biotechnology, and biochemistry.
2013; 77(9):1854-9. doi:
10.1271/bbb.130276
. [PMID: 24018661] - Jalal A Aliyev. Photosynthesis, photorespiration and productivity of wheat and soybean genotypes.
Physiologia plantarum.
2012 Jul; 145(3):369-83. doi:
10.1111/j.1399-3054.2012.01613.x
. [PMID: 22420741] - Aurélie Méneret, Elsa Wiame, Cecilia Marelli, Timothée Lenglet, Emile Van Schaftingen, Frédéric Sedel. A serine synthesis defect presenting with a Charcot-Marie-Tooth-like polyneuropathy.
Archives of neurology.
2012 Jul; 69(7):908-11. doi:
10.1001/archneurol.2011.1526
. [PMID: 22393170] - Carolina Gimiliani Lembke, Milton Yutaka Nishiyama, Paloma Mieko Sato, Rodrigo Fandiño de Andrade, Glaucia Mendes Souza. Identification of sense and antisense transcripts regulated by drought in sugarcane.
Plant molecular biology.
2012 Jul; 79(4-5):461-77. doi:
10.1007/s11103-012-9922-1
. [PMID: 22610347] - J Musembi Mutuku, Akihiro Nose. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway.
Plant & cell physiology.
2012 Jun; 53(6):1017-32. doi:
10.1093/pcp/pcs047
. [PMID: 22492233] - Johannes Freitag, Julia Ast, Michael Bölker. Cryptic peroxisomal targeting via alternative splicing and stop codon read-through in fungi.
Nature.
2012 May; 485(7399):522-5. doi:
10.1038/nature11051
. [PMID: 22622582] - Sabrina Kleessen, Zoran Nikoloski. Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations.
BMC systems biology.
2012 Mar; 6(?):16. doi:
10.1186/1752-0509-6-16
. [PMID: 22409942] - Birgit Pudelski, Annette Schock, Stefan Hoth, Ruslana Radchuk, Hans Weber, Jörg Hofmann, Uwe Sonnewald, Jürgen Soll, Katrin Philippar. The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination.
Journal of experimental botany.
2012 Mar; 63(5):1919-36. doi:
10.1093/jxb/err375
. [PMID: 22155670] - Randor Radakovits, Robert E Jinkerson, Susan I Fuerstenberg, Hongseok Tae, Robert E Settlage, Jeffrey L Boore, Matthew C Posewitz. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana.
Nature communications.
2012 Feb; 3(?):686. doi:
10.1038/ncomms1688
. [PMID: 22353717] - Ming Yuan, Fei Xu, Shao-Dong Wang, Da-Wei Zhang, Zhong-Wei Zhang, Yang Cao, Xiao-Chao Xu, Ming-Hua Luo, Shu Yuan. A single leaf of Camellia oleifera has two types of carbon assimilation pathway, C(3) and crassulacean acid metabolism.
Tree physiology.
2012 Feb; 32(2):188-99. doi:
10.1093/treephys/tps002
. [PMID: 22337600] - Jessica Schmitz, Mark Aurel Schöttler, Stephan Krueger, Stefan Geimer, Anja Schneider, Tatjana Kleine, Dario Leister, Kirsten Bell, Ulf-Ingo Flügge, Rainer E Häusler. Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana.
BMC plant biology.
2012 Jan; 12(?):8. doi:
10.1186/1471-2229-12-8
. [PMID: 22248311] - Yoichi Shimoda, Junkyu Han, Kiyokazu Kawada, Abderrazak Smaoui, Hiroko Isoda. Metabolomics analysis of Cistus monspeliensis leaf extract on energy metabolism activation in human intestinal cells.
Journal of biomedicine & biotechnology.
2012; 2012(?):428514. doi:
10.1155/2012/428514
. [PMID: 22523469] - Carolin A Kolmeder, Mark de Been, Janne Nikkilä, Ilja Ritamo, Jaana Mättö, Leena Valmu, Jarkko Salojärvi, Airi Palva, Anne Salonen, Willem M de Vos. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions.
PloS one.
2012; 7(1):e29913. doi:
10.1371/journal.pone.0029913
. [PMID: 22279554] - Xing Fan, Li-Na Sha, Jian Zeng, Hou-Yang Kang, Hai-Qin Zhang, Xiao-Li Wang, Li Zhang, Rui-Wu Yang, Chun-Bang Ding, You-Liang Zheng, Yong-Hong Zhou. Evolutionary dynamics of the Pgk1 gene in the polyploid genus Kengyilia (Triticeae: Poaceae) and its diploid relatives.
PloS one.
2012; 7(2):e31122. doi:
10.1371/journal.pone.0031122
. [PMID: 22363562] - Liezel M Gouws, Eileen Botes, Anna J Wiese, Sandra Trenkamp, Ivone Torres-Jerez, Yuhong Tang, Paul N Hills, Björn Usadel, James R Lloyd, Alisdair R Fernie, Jens Kossmann, Margaretha J van der Merwe. The plant growth promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots.
Frontiers in plant science.
2012; 3(?):120. doi:
10.3389/fpls.2012.00120
. [PMID: 22701462] - LingLin Wan, Juan Han, Min Sang, AiFen Li, Hong Wu, ShunJi Yin, ChengWu Zhang. De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels.
PloS one.
2012; 7(4):e35142. doi:
10.1371/journal.pone.0035142
. [PMID: 22536352] - Huawu Jiang, Pingzhi Wu, Sheng Zhang, Chi Song, Yaping Chen, Meiru Li, Yongxia Jia, Xiaohua Fang, Fan Chen, Guojiang Wu. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.
PloS one.
2012; 7(5):e36522. doi:
10.1371/journal.pone.0036522
. [PMID: 22574177] - Melisa Gualdron-López, Miia H Vapola, Ilkka J Miinalainen, J Kalervo Hiltunen, Paul A M Michels, Vasily D Antonenkov. Channel-forming activities in the glycosomal fraction from the bloodstream form of Trypanosoma brucei.
PloS one.
2012; 7(4):e34530. doi:
10.1371/journal.pone.0034530
. [PMID: 22506025] - Dorothee Girbig, Sergio Grimbs, Joachim Selbig. Systematic analysis of stability patterns in plant primary metabolism.
PloS one.
2012; 7(4):e34686. doi:
10.1371/journal.pone.0034686
. [PMID: 22514655] - Vello Oja, Hillar Eichelmann, Agu Laisk. The size of the lumenal proton pool in leaves during induction and steady-state photosynthesis.
Photosynthesis research.
2011 Dec; 110(2):73-88. doi:
10.1007/s11120-011-9697-2
. [PMID: 22002818] - Ehud Katz, Kyung Hwan Boo, Ho Youn Kim, Richard A Eigenheer, Brett S Phinney, Vladimir Shulaev, Florence Negre-Zakharov, Avi Sadka, Eduardo Blumwald. Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development.
Journal of experimental botany.
2011 Nov; 62(15):5367-84. doi:
10.1093/jxb/err197
. [PMID: 21841177] - William J Chirico. Protein release through nonlethal oncotic pores as an alternative nonclassical secretory pathway.
BMC cell biology.
2011 Oct; 12(?):46. doi:
10.1186/1471-2121-12-46
. [PMID: 22008609] - Noushina Iqbal, Rahat Nazar, Shabina Syeed, Asim Masood, Nafees A Khan. Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard.
Journal of experimental botany.
2011 Oct; 62(14):4955-63. doi:
10.1093/jxb/err204
. [PMID: 21705383] - Zhixin Zhao, Sarah M Assmann. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana.
Journal of experimental botany.
2011 Oct; 62(14):5179-89. doi:
10.1093/jxb/err223
. [PMID: 21813794] - Daijun Xiang, Qing Xia, Dexi Chen, Xia Feng, Yan Zhao, Yan Liu, Huiyu Liao, Yanmin Liu, Ning Li, Huiping Yan. Detection of D-3-phosphoglycerate dehydrogenase autoantibodies in patients with autoimmune hepatitis: Clinical significance evaluation.
Hepatology research : the official journal of the Japan Society of Hepatology.
2011 Sep; 41(9):867-76. doi:
10.1111/j.1872-034x.2011.00839.x
. [PMID: 21707887] - Tzu-Ying Sung, Tsui-Yun Chung, Chih-Ping Hsu, Ming-Hsiun Hsieh. The ACR11 encodes a novel type of chloroplastic ACT domain repeat protein that is coordinately expressed with GLN2 in Arabidopsis.
BMC plant biology.
2011 Aug; 11(?):118. doi:
10.1186/1471-2229-11-118
. [PMID: 21861936] - Fernando H Sant'Anna, Luiz G P Almeida, Ricardo Cecagno, Luciano A Reolon, Franciele M Siqueira, Maicon R S Machado, Ana T R Vasconcelos, Irene S Schrank. Genomic insights into the versatility of the plant growth-promoting bacterium Azospirillum amazonense.
BMC genomics.
2011 Aug; 12(?):409. doi:
10.1186/1471-2164-12-409
. [PMID: 21838888] - Pavinee Kurdrid, Jittisak Senachak, Matura Sirijuntarut, Rayakorn Yutthanasirikul, Phuttawadee Phuengcharoen, Wattana Jeamton, Sittiruk Roytrakul, Supapon Cheevadhanarak, Apiradee Hongsthong. Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: uncovering cross-talk of signaling components.
Proteome science.
2011 Jul; 9(?):39. doi:
10.1186/1477-5956-9-39
. [PMID: 21756373] - Claudia Vanesa Piattoni, Diego Martín Bustos, Sergio Adrián Guerrero, Alberto Álvaro Iglesias. Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase is phosphorylated in wheat endosperm at serine-404 by an SNF1-related protein kinase allosterically inhibited by ribose-5-phosphate.
Plant physiology.
2011 Jul; 156(3):1337-50. doi:
10.1104/pp.111.177261
. [PMID: 21546456] - Iker Aranjuelo, Llorenç Cabrera-Bosquet, Rosa Morcuende, Jean Christophe Avice, Salvador Nogués, José Luis Araus, Rafael Martínez-Carrasco, Pilar Pérez. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2?.
Journal of experimental botany.
2011 Jul; 62(11):3957-69. doi:
10.1093/jxb/err095
. [PMID: 21511906] - Babu Raman, Catherine K McKeown, Miguel Rodriguez, Steven D Brown, Jonathan R Mielenz. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation.
BMC microbiology.
2011 Jun; 11(?):134. doi:
10.1186/1471-2180-11-134
. [PMID: 21672225] - Elena A Salina, Ekaterina M Sergeeva, Irina G Adonina, Andrey B Shcherban, Harry Belcram, Cecile Huneau, Boulos Chalhoub. The impact of Ty3-gypsy group LTR retrotransposons Fatima on B-genome specificity of polyploid wheats.
BMC plant biology.
2011 Jun; 11(?):99. doi:
10.1186/1471-2229-11-99
. [PMID: 21635794] - Anthony Gandin, Sylvain Gutjahr, Pierre Dizengremel, Line Lapointe. Source-sink imbalance increases with growth temperature in the spring geophyte Erythronium americanum.
Journal of experimental botany.
2011 Jun; 62(10):3467-79. doi:
10.1093/jxb/err020
. [PMID: 21335435] - Mariana Martín, Sebastián Pablo Rius, Florencio Esteban Podestá. Two phosphoenolpyruvate carboxykinases coexist in the Crassulacean Acid Metabolism plant Ananas comosus. Isolation and characterization of the smaller 65 kDa form.
Plant physiology and biochemistry : PPB.
2011 Jun; 49(6):646-53. doi:
10.1016/j.plaphy.2011.02.015
. [PMID: 21398135] - Peter E Larsen, Avinash Sreedasyam, Geetika Trivedi, Gopi K Podila, Leland J Cseke, Frank R Collart. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome.
BMC systems biology.
2011 May; 5(?):70. doi:
10.1186/1752-0509-5-70
. [PMID: 21569493] - Hong Lin, Binghai Lou, Jonathan M Glynn, Harshavardhan Doddapaneni, Edwin L Civerolo, Chuanwu Chen, Yongping Duan, Lijuan Zhou, Cheryl M Vahling. The complete genome sequence of 'Candidatus Liberibacter solanacearum', the bacterium associated with potato zebra chip disease.
PloS one.
2011 Apr; 6(4):e19135. doi:
10.1371/journal.pone.0019135
. [PMID: 21552483] - Klaus F X Mayer, Mihaela Martis, Pete E Hedley, Hana Simková, Hui Liu, Jenny A Morris, Burkhard Steuernagel, Stefan Taudien, Stephan Roessner, Heidrun Gundlach, Marie Kubaláková, Pavla Suchánková, Florent Murat, Marius Felder, Thomas Nussbaumer, Andreas Graner, Jerome Salse, Takashi Endo, Hiroaki Sakai, Tsuyoshi Tanaka, Takeshi Itoh, Kazuhiro Sato, Matthias Platzer, Takashi Matsumoto, Uwe Scholz, Jaroslav Dolezel, Robbie Waugh, Nils Stein. Unlocking the barley genome by chromosomal and comparative genomics.
The Plant cell.
2011 Apr; 23(4):1249-63. doi:
10.1105/tpc.110.082537
. [PMID: 21467582] - Sascha Offermann, Thomas W Okita, Gerald E Edwards. Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici.
Plant physiology.
2011 Apr; 155(4):1612-28. doi:
10.1104/pp.110.170381
. [PMID: 21263039] - Jeffrey J Dunmire, Rachida Bouhenni, Michael L Hart, Bassam T Wakim, Anthony M Chomyk, Sarah E Scott, Hiroshi Nakamura, Deepak P Edward. Novel serum proteomic signatures in a non-human primate model of retinal injury.
Molecular vision.
2011 Mar; 17(?):779-91. doi:
NULL
. [PMID: 21527995] - Aliccia Bollig-Fischer, T Gregory Dewey, Stephen P Ethier. Oncogene activation induces metabolic transformation resulting in insulin-independence in human breast cancer cells.
PloS one.
2011 Mar; 6(3):e17959. doi:
10.1371/journal.pone.0017959
. [PMID: 21437235] - Hadi Farazdaghi. The single-process biochemical reaction of Rubisco: a unified theory and model with the effects of irradiance, CO₂ and rate-limiting step on the kinetics of C₃ and C₄ photosynthesis from gas exchange.
Bio Systems.
2011 Feb; 103(2):265-84. doi:
10.1016/j.biosystems.2010.11.004
. [PMID: 21093535] - L Tabatabaie, L W J Klomp, M E Rubio-Gozalbo, L J M Spaapen, A A M Haagen, L Dorland, T J de Koning. Expanding the clinical spectrum of 3-phosphoglycerate dehydrogenase deficiency.
Journal of inherited metabolic disease.
2011 Feb; 34(1):181-4. doi:
10.1007/s10545-010-9249-5
. [PMID: 21113737] - Albrecht Ingo Schmid, Julia Szendroedi, Marek Chmelik, Martin Krssák, Ewald Moser, Michael Roden. Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes.
Diabetes care.
2011 Feb; 34(2):448-53. doi:
10.2337/dc10-1076
. [PMID: 21216854] - Stephen L Byrne, Alexandre Foito, Pete E Hedley, Jenny A Morris, Derek Stewart, Susanne Barth. Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency.
Annals of botany.
2011 Feb; 107(2):243-54. doi:
10.1093/aob/mcq234
. [PMID: 21148585] - Jan Huege, Jan Goetze, Doreen Schwarz, Hermann Bauwe, Martin Hagemann, Joachim Kopka. Modulation of the major paths of carbon in photorespiratory mutants of synechocystis.
PloS one.
2011 Jan; 6(1):e16278. doi:
10.1371/journal.pone.0016278
. [PMID: 21283704] - Magali Siaut, Stéphan Cuiné, Caroline Cagnon, Boris Fessler, Mai Nguyen, Patrick Carrier, Audrey Beyly, Fred Beisson, Christian Triantaphylidès, Yonghua Li-Beisson, Gilles Peltier. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves.
BMC biotechnology.
2011 Jan; 11(?):7. doi:
10.1186/1472-6750-11-7
. [PMID: 21255402] - Lothar Wissler, Francisco M Codoñer, Jenny Gu, Thorsten B H Reusch, Jeanine L Olsen, Gabriele Procaccini, Erich Bornberg-Bauer. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life.
BMC evolutionary biology.
2011 Jan; 11(?):8. doi:
10.1186/1471-2148-11-8
. [PMID: 21226908] - Tiziana Cervelli, Ana Backovic, Alvaro Galli. Formation of AAV single stranded DNA genome from a circular plasmid in Saccharomyces cerevisiae.
PloS one.
2011; 6(8):e23474. doi:
10.1371/journal.pone.0023474
. [PMID: 21853137] - Jesús Muñoz-Bertomeu, María Angeles Bermúdez, Juan Segura, Roc Ros. Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism.
Journal of experimental botany.
2011 Jan; 62(3):1229-39. doi:
10.1093/jxb/erq353
. [PMID: 21068209] - Fabio Facchinelli, Andreas P M Weber. The metabolite transporters of the plastid envelope: an update.
Frontiers in plant science.
2011; 2(?):50. doi:
10.3389/fpls.2011.00050
. [PMID: 22645538] - Danilo C Centeno, Sonia Osorio, Adriano Nunes-Nesi, Ana L F Bertolo, Raphael T Carneiro, Wagner L Araújo, Marie-Caroline Steinhauser, Justyna Michalska, Johannes Rohrmann, Peter Geigenberger, Sandra N Oliver, Mark Stitt, Fernando Carrari, Jocelyn K C Rose, Alisdair R Fernie. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening.
The Plant cell.
2011 Jan; 23(1):162-84. doi:
10.1105/tpc.109.072231
. [PMID: 21239646] - Lars Matthias Voll, Robin Jonathan Horst, Anna-Maria Voitsik, Doreen Zajic, Birgit Samans, Jörn Pons-Kühnemann, Gunther Doehlemann, Steffen Münch, Ramon Wahl, Alexandra Molitor, Jörg Hofmann, Alfred Schmiedl, Frank Waller, Holger Bruno Deising, Regine Kahmann, Jörg Kämper, Karl-Heinz Kogel, Uwe Sonnewald. Common Motifs in the Response of Cereal Primary Metabolism to Fungal Pathogens are not Based on Similar Transcriptional Reprogramming.
Frontiers in plant science.
2011; 2(?):39. doi:
10.3389/fpls.2011.00039
. [PMID: 22645534] - Iker Aranjuelo, Gemma Molero, Gorka Erice, Jean Christophe Avice, Salvador Nogués. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.).
Journal of experimental botany.
2011 Jan; 62(1):111-23. doi:
10.1093/jxb/erq249
. [PMID: 20797998] - M G Vander Heiden, S Y Lunt, T L Dayton, B P Fiske, W J Israelsen, K R Mattaini, N I Vokes, G Stephanopoulos, L C Cantley, C M Metallo, J W Locasale. Metabolic pathway alterations that support cell proliferation.
Cold Spring Harbor symposia on quantitative biology.
2011; 76(?):325-34. doi:
10.1101/sqb.2012.76.010900
. [PMID: 22262476] - Hongxia Zhang, Lina Ding, Xuemei Fang, Zhimin Shi, Yating Zhang, Hebing Chen, Xianzhong Yan, Jiayin Dai. Biological responses to perfluorododecanoic acid exposure in rat kidneys as determined by integrated proteomic and metabonomic studies.
PloS one.
2011; 6(6):e20862. doi:
10.1371/journal.pone.0020862
. [PMID: 21677784] - Xiaolu Liu, Tao Guo, Xiangyuan Wan, Haiyang Wang, Mingzhu Zhu, Aili Li, Ning Su, Yingyue Shen, Bigang Mao, Huqu Zhai, Long Mao, Jianmin Wan. Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice.
BMC genomics.
2010 Dec; 11(?):730. doi:
10.1186/1471-2164-11-730
. [PMID: 21192807] - Cristiana Gomes de Oliveira Dal'Molin, Lake-Ee Quek, Robin William Palfreyman, Stevens Michael Brumbley, Lars Keld Nielsen. C4GEM, a genome-scale metabolic model to study C4 plant metabolism.
Plant physiology.
2010 Dec; 154(4):1871-85. doi:
10.1104/pp.110.166488
. [PMID: 20974891] - Ignacio Ezquer, Jun Li, Miroslav Ovecka, Edurne Baroja-Fernández, Francisco José Muñoz, Manuel Montero, Jessica Díaz de Cerio, Maite Hidalgo, María Teresa Sesma, Abdellatif Bahaji, Ed Etxeberria, Javier Pozueta-Romero. A suggested model for potato MIVOISAP involving functions of central carbohydrate and amino acid metabolism, as well as actin cytoskeleton and endocytosis.
Plant signaling & behavior.
2010 Dec; 5(12):1638-41. doi:
10.4161/psb.5.12.13808
. [PMID: 21150257] - Rachel Miller, Guangxi Wu, Rahul R Deshpande, Astrid Vieler, Katrin Gärtner, Xiaobo Li, Eric R Moellering, Simone Zäuner, Adam J Cornish, Bensheng Liu, Blair Bullard, Barbara B Sears, Min-Hao Kuo, Eric L Hegg, Yair Shachar-Hill, Shin-Han Shiu, Christoph Benning. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism.
Plant physiology.
2010 Dec; 154(4):1737-52. doi:
10.1104/pp.110.165159
. [PMID: 20935180] - Feng Xu, Guang Li, Chen Zhao, Yuhua Li, Peng Li, Jian Cui, Youping Deng, Tieliu Shi. Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana.
BMC genomics.
2010 Nov; 11 Suppl 2(?):S2. doi:
10.1186/1471-2164-11-s2-s2
. [PMID: 21047383] - Mohammad Hosein Ehtemam, Mohammad Reza Rahiminejad, Hojjatollah Saeidi, Badraldin Ebrahim Sayed Tabatabaei, Simon G Krattinger, Beat Keller. Relationships among the A Genomes of Triticum L. species as evidenced by SSR markers, in Iran.
International journal of molecular sciences.
2010 Nov; 11(11):4309-25. doi:
10.3390/ijms11114309
. [PMID: 21151440] - Orfeas Liangos, Sophie Domhan, Christian Schwager, Martin Zeier, Peter E Huber, Francesco Addabbo, Michael S Goligorsky, Lynn Hlatky, Bertrand L Jaber, Amir Abdollahi. Whole blood transcriptomics in cardiac surgery identifies a gene regulatory network connecting ischemia reperfusion with systemic inflammation.
PloS one.
2010 Oct; 5(10):e13658. doi:
10.1371/journal.pone.0013658
. [PMID: 21048961] - Johanna M S Lemons, Xiao-Jiang Feng, Bryson D Bennett, Aster Legesse-Miller, Elizabeth L Johnson, Irene Raitman, Elizabeth A Pollina, Herschel A Rabitz, Joshua D Rabinowitz, Hilary A Coller. Quiescent fibroblasts exhibit high metabolic activity.
PLoS biology.
2010 Oct; 8(10):e1000514. doi:
10.1371/journal.pbio.1000514
. [PMID: 21049082] - Melanie L Hand, Noel O I Cogan, Alan V Stewart, John W Forster. Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex.
BMC evolutionary biology.
2010 Oct; 10(?):303. doi:
10.1186/1471-2148-10-303
. [PMID: 20937141] - Chunmei Yu, Yiwen Li, Bin Li, Xin Liu, Lifang Hao, Jing Chen, Weiqiang Qian, Shiming Li, Guanfeng Wang, Shiwei Bai, Hua Ye, Huanju Qin, Qianhua Shen, Liangbiao Chen, Aimin Zhang, Daowen Wang. Molecular analysis of phosphomannomutase (PMM) genes reveals a unique PMM duplication event in diverse Triticeae species and the main PMM isozymes in bread wheat tissues.
BMC plant biology.
2010 Oct; 10(?):214. doi:
10.1186/1471-2229-10-214
. [PMID: 20920368] - Ignacio Ezquer, Jun Li, Miroslav Ovecka, Edurne Baroja-Fernández, Francisco José Muñoz, Manuel Montero, Jessica Díaz de Cerio, Maite Hidalgo, María Teresa Sesma, Abdellatif Bahaji, Ed Etxeberria, Javier Pozueta-Romero. Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono- and dicotyledonous plants.
Plant & cell physiology.
2010 Oct; 51(10):1674-93. doi:
10.1093/pcp/pcq126
. [PMID: 20739303] - Cécile Vriet, Tracey Welham, Andreas Brachmann, Marilyn Pike, Jodie Pike, Jillian Perry, Martin Parniske, Shusei Sato, Satoshi Tabata, Alison M Smith, Trevor L Wang. A suite of Lotus japonicus starch mutants reveals both conserved and novel features of starch metabolism.
Plant physiology.
2010 Oct; 154(2):643-55. doi:
10.1104/pp.110.161844
. [PMID: 20699404] - Chihiro Takasaki, Miwako Yamasaki, Motokazu Uchigashima, Kohtarou Konno, Yuchio Yanagawa, Masahiko Watanabe. Cytochemical and cytological properties of perineuronal oligodendrocytes in the mouse cortex.
The European journal of neuroscience.
2010 Oct; 32(8):1326-36. doi:
10.1111/j.1460-9568.2010.07377.x
. [PMID: 20846325] - Jasper J L Pengelly, Xavier R R Sirault, Youshi Tazoe, John R Evans, Robert T Furbank, Susanne von Caemmerer. Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry.
Journal of experimental botany.
2010 Sep; 61(14):4109-22. doi:
10.1093/jxb/erq226
. [PMID: 20693408] - Mariana Bertea, Markus F Rütti, Alaa Othman, Jaqueline Marti-Jaun, Martin Hersberger, Arnold von Eckardstein, Thorsten Hornemann. Deoxysphingoid bases as plasma markers in diabetes mellitus.
Lipids in health and disease.
2010 Aug; 9(?):84. doi:
10.1186/1476-511x-9-84
. [PMID: 20712864] - Antonio Di Matteo, Adriana Sacco, Milena Anacleria, Mario Pezzotti, Massimo Delledonne, Alberto Ferrarini, Luigi Frusciante, Amalia Barone. The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation.
BMC plant biology.
2010 Aug; 10(?):163. doi:
10.1186/1471-2229-10-163
. [PMID: 20691085] - Anna K Junk, Manik Goel, Tom Mundorf, Edward J Rockwood, Sanjoy K Bhattacharya. Decreased carbohydrate metabolism enzyme activities in the glaucomatous trabecular meshwork.
Molecular vision.
2010 Jul; 16(?):1286-91. doi:
. [PMID: 20664702]
- Weihua Chen, Yingjun Chi, Nicolas L Taylor, Hans Lambers, Patrick M Finnegan. Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidial lipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis.
Plant physiology.
2010 Jul; 153(3):1385-97. doi:
10.1104/pp.110.153452
. [PMID: 20488895] - Sadaf Khan, Scott C Rowe, Frank G Harmon. Coordination of the maize transcriptome by a conserved circadian clock.
BMC plant biology.
2010 Jun; 10(?):126. doi:
10.1186/1471-2229-10-126
. [PMID: 20576144] - Rubén Rellán-Alvarez, Sofía Andaluz, Jorge Rodríguez-Celma, Gert Wohlgemuth, Graziano Zocchi, Ana Alvarez-Fernández, Oliver Fiehn, Ana Flor López-Millán, Javier Abadía. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply.
BMC plant biology.
2010 Jun; 10(?):120. doi:
10.1186/1471-2229-10-120
. [PMID: 20565974] - Moehninsi, Kenji Miura, Haruyuki Nakajyo, Kosumi Yamada, Koji Hasegawa, Hideyuki Shigemori. Comparative transcriptional profiling-based identification of raphanusanin-inducible genes.
BMC plant biology.
2010 Jun; 10(?):111. doi:
10.1186/1471-2229-10-111
. [PMID: 20553608] - Veronica G Maurino, Christoph Peterhansel. Photorespiration: current status and approaches for metabolic engineering.
Current opinion in plant biology.
2010 Jun; 13(3):249-56. doi:
10.1016/j.pbi.2010.01.006
. [PMID: 20185358] - Xiu-Qiang Huang, Anita Brûlé-Babel. Development of genome-specific primers for homoeologous genes in allopolyploid species: the waxy and starch synthase II genes in allohexaploid wheat (Triticum aestivum L.) as examples.
BMC research notes.
2010 May; 3(?):140. doi:
10.1186/1756-0500-3-140
. [PMID: 20497560] - A Elizabete Carmo-Silva, Alfred J Keys, P John Andralojc, Stephen J Powers, M Celeste Arrabaça, Martin A J Parry. Rubisco activities, properties, and regulation in three different C4 grasses under drought.
Journal of experimental botany.
2010 May; 61(9):2355-66. doi:
10.1093/jxb/erq071
. [PMID: 20363871] - Maria E Faricelli, Miroslav Valárik, Jorge Dubcovsky. Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium.
Functional & integrative genomics.
2010 May; 10(2):293-306. doi:
10.1007/s10142-009-0146-7
. [PMID: 19851796] - Marie-Caroline Steinhauser, Dirk Steinhauser, Karin Koehl, Fernando Carrari, Yves Gibon, Alisdair R Fernie, Mark Stitt. Enzyme activity profiles during fruit development in tomato cultivars and Solanum pennellii.
Plant physiology.
2010 May; 153(1):80-98. doi:
10.1104/pp.110.154336
. [PMID: 20335402] - Hiromoto Yamakawa, Makoto Hakata. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation.
Plant & cell physiology.
2010 May; 51(5):795-809. doi:
10.1093/pcp/pcq034
. [PMID: 20304786] - Zhiguo He, Jeroen De Buck. Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155.
BMC microbiology.
2010 Apr; 10(?):121. doi:
10.1186/1471-2180-10-121
. [PMID: 20412585]